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Abstract 

Brucella bacteria cause brucellosis, a major zoonosis whose control requires efficient diagnosis and vaccines. Iden‑
tification of classical Brucella spp. has traditionally relied on phenotypic characterization, including surface antigens 
and 5–10%  CO2 necessity for growth  (CO2‑dependence), a trait of Brucella ovis and most Brucella abortus biovars 1–4 
strains. Although molecular tests are replacing phenotypic methods,  CO2‑dependence remains of interest as it condi‑
tions isolation and propagation and reflects Brucella metabolism, an area of active research. Here, we investigated the 
connection of  CO2‑dependence and carbonic anhydrases (CA), the enzymes catalyzing the hydration of  CO2 to the 
bicarbonate used by anaplerotic and biosynthetic carboxylases. Based on the previous demonstration that B. suis car‑
ries two functional CAs (CAI and CAII), we analyzed the CA sequences of  CO2‑dependent and ‑independent brucellae 
and spontaneous mutants. The comparisons strongly suggested that CAII is not functional in  CO2‑dependent B. abor-
tus and B. ovis, and that a modified CAII sequence explains the  CO2‑independent phenotype of spontaneous mutants. 
Then, by mutagenesis and heterologous plasmid complementation and chromosomal insertion we proved that CAI 
alone is enough to support  CO2‑independent growth of B. suis in rich media but not of B. abortus in rich media or 
B. suis in minimal media. Finally, we also found that insertion of a heterologous active CAII into B. ovis reverted the 
 CO2‑dependence but did not alter its virulence in the mouse model. These results allow a better understanding of 
central aspects of Brucella metabolism and, in the case of B. ovis, provide tools for large‑scale production of diagnostic 
antigens and vaccines.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Brucella is a genus of gram-negative bacteria of the α-2 
subdivision of the class Proteobacteria [1] that includes 
the causal agents of brucellosis, a zoonosis produc-
ing important economical loses and human suffering in 
many developing countries [2]. Currently, the genus con-
tains twelve nominal species often showing host prefer-
ence. Those spp. that were identified early (frequently 
referred to as the classical Brucella spp.) are Brucella 
abortus, preferentially infecting cattle, B. melitensis, 
usually infecting sheep and goats, B. suis, infecting pigs, 

hares, reindeer ad several wild rodents, B. canis, found in 
dogs, B. neotomae, isolated from desert wood rats, and 
Brucella ovis, a non-zoonotic species that is restricted 
to sheep and causes a condition known as B. ovis ovine 
epididymitis [3]. More recently, brucellae have been iso-
lated from marine mammals, voles and other wild life 
vertebrates, and new species proposed [4–8].

Conventional identification of the classical Brucella 
spp. and biovars has traditionally relied on dye and phage 
sensitivity,  H2S production, urease activity, require-
ment of 5–10%  CO2 atmospheres (0.04% in normal air) 
for growth  (CO2-dependence) and surface antigens [9]. 
Even though these methods are being rapidly replaced by 
molecular tests, antigenic structure and  CO2-dependence 
remain of immediate practical interest as these prop-
erties affect the conditions for primary isolation and 
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propagation in  vitro and the implementation of diag-
nostic tests. Antigenically, the classical Brucella spp. are 
divided in two groups: the rough (R) species (B. canis and 
B. ovis), which carry R-type lipopolysaccharides (LPS), 
and the smooth (S) brucellae, which carry S-LPS [3, 10]. 
Concerning  CO2-dependence, this is a trait of B. ovis and 
most strains of B. abortus biovars 1–4 [3, 10]. In both 
cases,  CO2-independent variants may appear with low 
frequency [11] and, for obvious practical reasons, some 
of these variants have been used for B. ovis and B. abortus 
antigen production [3, 10]. Similarly, B. abortus vaccines 
have been developed on  CO2-independent backgrounds 
[10].

The classical Brucella spp. are facultative intracel-
lular parasites able to circumvent early proinflamma-
tory responses and endowed with a type IV secretion 
system involved in the control of intracellular traffick-
ing [12–15]. Moreover, it is postulated that these bacte-
ria have progressively adapted their metabolism to the 
nutrients encountered within cells as an essential part of 
their intracellular strategy [16–21]. In this regard, despite 
being a notorious phenotype of practical importance, 
Brucella  CO2-dependence has deserved no attention 
since the demonstration over 60 years ago that  CO2-rich 
atmospheres are not required to reduce oxygen tension 
and that  CO2 is used as a nutrient per se (reviewed in 
[11]). Indeed,  CO2 assimilation requires carbonic anhy-
drases (CAs), a group of critically important ubiquitous 
enzymes distributed into six evolutionary distinct classes 
named α to η, with the β class present in bacteria [22]. 
In heterotrophs, CAs are involved in C acquisition via 
assimilatory and anaplerotic reactions linked to several 
biosynthetic processes [23], and  CO2-dependence has 
been related to defects in CA function in several micro-
organisms [24–30]. However, to the best of our knowl-
edge, the role of CAs in  CO2-dependence has not been 
investigated in Brucella spp. where the information is 
limited to recent investigations in search for targets for 
new drugs [31–34]. These investigations have described 
that B. suis (thus  CO2-independent) strain 1330 has 
two ORFs (BRA0788 and BR1829) that code for β CAs 
(henceforth Bs1330CAI and Bs1330CAII). Both CAs are pre-
dicted to contain all the amino acid residues involved 
in the catalytic site and, more important, their activity 
was verified upon purification and found to be better 
for Bs1330CAII [31–33]. The demonstration that these B. 
suis ORFs actually code for enzymes with the predicted 
activity, together with the availability of the genome 
sequences of both  CO2-independent and -dependent 
Brucella spp. and biovars, open the way to investigate 
the mechanisms underlying  CO2-dependence in Bru-
cella. The aim of the work described here was twofold: to 
investigate the genetic background behind the Brucella 

 CO2-independent and -dependent phenotypes and, for B. 
ovis, a species that shows constant  CO2-dependence, to 
construct a  CO2-independent strain suitable for vaccine 
and antigen production.

Materials and methods
Bacterial strains and growth conditions
The bacterial strains and plasmids used in this study are 
listed in Table 1 and Additional files 1 and 2. B. abortus 
and B. suis strains were grown in standard Peptone-Glu-
cose (Tryptic soy broth, TSB) or in this medium sup-
plemented with agar (TSA). B. ovis strains were grown 
in TSB supplemented with yeast extract (0.5%) and fetal 
bovine serum 5% (TYSB) or this medium supplemented 
with agar (TYSA). For the studies in mice, strains were 
growth in Blood Agar Base supplemented with fetal 
bovine serum 5% (BABS). In addition, two minimal 
media were used. The components for 1 L of the defined 
medium of Gerhardt (Glutamate–Lactate–Glycerol) 
[35] are: glycerol (30  g), lactic acid (5  g), glutamic acid 
(1.5 g), thiamine (0.2 mg), nicotinic acid (0.2 mg), panto-
thenic acid (0.04 mg), biotin (0.0001 mg),  K2HPO4 (10 g), 
 Na2S2O3∙5H2O (0.1 g),  MgSO4 (10 mg),  MnSO4 (0.1 mg), 
 FeSO4 (0.1 mg) and NaCl (7.5 g). The pH was adjusted to 
6.8–7. The second minimal medium was a modification 
of Plommet’s [17, 36] and 1 L of this medium is composed 
of thiamine (0.2  g), nicotinic acid (0.2  g), pantothenic 
acid (0.07  g), biotin (0.1  mg),  K2HPO4 (2.3  g),  KH2PO4 
(3 g),  Na2S2O3 (0.1 g),  MgSO4 (0.01 g),  MnSO4 (0.1 mg), 
 FeSO4 (0.1 mg); NaCl (5 g),  (NH4)2SO4 (0.5 g) and 1 g/L 
of glucose. Incubation was at 37  °C, with (5%) or with-
out  CO2. When needed, media were supplemented with 
5% sucrose (Sigma), kanamycin (Km) at 50 μg/mL, nali-
dixic acid (Nal) at 25 μg/mL, polymyxin (Pmx) at 1.5 μg/
mL, chloramphenicol (Cm) at 20 μg/mL, spectinomycin 
(Spc) at 100 μg/mL or ampicillin (Amp) at 100 μg/mL (all 
from Sigma). All strains were stored in skimmed milk or 
TYSB-DMSO at −80 °C.

Sequence analyses
Genomic sequences of B. suis 1330, B. suis 513 (not anno-
tated), B. abortus 544 (not annotated) and B. abortus 292 
were obtained from the databases at National Center for 
Biotechnology Information (NCBI), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) or The Broad Institute. 
The genomic sequence of B. abortus 2308W was obtained 
from the European Nucleotide Archive (ENA) and com-
pared with its sibling 2308 sequence in KEGG. When 
genomic sequences were not available (B. ovis PA, B. ovis 
REO198, B. abortus AB0339, AB0339-CO2

mut, B. abortus 
AB0127, AB0127-CO2

mut, B. abortus AB0130, AB0130-
CO2

mut and BoPA-CO2
mut) ORFs were PCR amplified and 

then sequenced. DNA sequencing was carried out by 
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“Servicio de Secuenciación de CIMA (Centro de Inves-
tigación Médica Aplicada, Pamplona, Spain)”. Sequence 
alignments were performed with Clustal Omega.

DNA manipulations
Plasmid and chromosomal DNA were extracted with 
QIAprep Spin Miniprep (Qiagen) and Ultraclean Micro-
bial DNA Isolation kit (Mo Bio Laboratories), respec-
tively. When needed, DNA was purified from agarose 
gels using QIAquick Gel Extraction Kit (Qiagen). Prim-
ers (Additional file 3) were synthesized by Sigma (Haver-
hill, United Kingdom). Restriction modification enzymes 
were used under the conditions recommended by the 
manufacturer.

Construction of B. abortus 2308W and B. suis mutants 
by gene disruption
For the construction of the CAI mutants, an internal 
region of 323  bp was amplified with oligonucleotides 
CAI-F1-ins (5′-GAA TTT CTA TGG ATC GGC TGTT-3′) 
and CAI-R2-ins (5′-CGG TCC TGC GTG TTT TCT AT-3′). 
The resulting fragment containing an internal region of 
the ORF was cloned into pCR2.1-TOPO® vector (Invitro-
gen) to generate plasmid pCR2.1Ba2308WCAI (Additional 
file 2) and then, sequenced to verify the insertion. After 
sequencing, this fragment was cloned into the BamHI 
and XbaI sites of the suicide vector pJQKm [37]. The 
resulting plasmid  pJQKmBa2308WCAI (Additional file  2) 
was transformed into competent E. coli S17 λpir [38, 

39] and transferred into B. abortus 2308W, B. suis 1330 
and B. suis 513 by conjugation, where a single crosso-
ver led to disruption of the wild type locus. Integrative 
mutants were selected on a medium containing kanamy-
cin and nalidixic acid or polymyxin and called B. abortus 
2308W::pJQKm-CAI, B. suis 513::pJQKm-CAI and B. suis 
1330::pJQKm-CAI (Additional file 1). Since the orienta-
tion of the insert in the pJQKm vector was known after 
sequencing, gene disruption was confirmed by detect-
ing PCR products with primers CAI-Fw and M13Fw and 
primers CAI-Rv and M13Rv.

The CAII mutants were constructed in a similar way. 
A 302  bp internal fragment of CAII was amplified with 
oligonucleotides CAII-F1-Ins (5′-CAA TGT GGC CAA 
TCT CAT TC-3′) and CAII-R2-ins (5′-GCG AAT AGC 
GGA TCG AAA TA-3′). The resulting fragment was cloned 
into pCR2.1-TOPO® vector (Invitrogen) to generate plas-
mid pCR2.1Ba2308W CAII (Additional file  2), sequenced 
to verify the insertion and subsequently cloned into 
the BamHI and XbaI sites of the suicide vector pJQKm 
[37]. The mutants were named B. suis 513::pJQKm-CAII 
and B. suis 1330::pJQKm-CAII (Additional file  1). Since 
the orientation of the insert in the pJQKm vector was 
known after sequencing, the site of the insertion was 
confirmed by independent PCR rounds with primers 
CAII-Fw and M13Fw, and primers CAII-Rv and M13Rv. 
After several attempts, no mutant in B. abortus 2308W 
CAII was obtained either under normal or  CO2-enriched 
conditions.

Table 1 Characteristics of the Brucella strains used in CO2-dependence studies 

a  n.a. not applicable (no biovars defined for B. ovis).

Strain (biovar) CO2-dependence Other relevant characteristics References (code)

Reference/collection strains

 B. suis 1330 (1) – Virulent; reference strain of biovar 1; ATCC 23444 [9]

 B. suis 513 (5) – Virulent; reference strain of biovar 5; NCTC 11996 [9, 45, 61]

 B. abortus 2308W (1) – Virulent; Wisconsin replicate of USDA challenge strain 2308 [45, 62]

 B. abortus 544 (1) + Virulent; reference strain of biovar 1; ATCC 23448 [9]

 B. abortus 292 (4) + Virulent; reference strain of biovar 4; ATCC 23451 [9]

 B. ovis PA (n.a.)a + Virulent; challenge strain used in B. ovis vaccine studies. [63–65]

 B. ovis REO198 (n.a.)a – Attenuated; genome not sequenced; used for R antigen production for 
serodiagnosis of ovine epididymitis

[3, 66]

Field strains

 B. abortus AB0339 (1) + Cattle isolate [44]

 B. abortus AB0127 (3) + Cattle isolate [44]

 B. abortus AB0130 (3) + Cattle isolate [44]

Spontaneous mutants

 BoPA‑CO2
mut (n.a.)a – B. ovis PA mutant isolated during routine work at CITA This work (Ov‑2357)

 AB0339‑CO2
mut (1) – B. abortus mutant isolated during routine work at University of Navarra This work (AZB250)

 AB0127‑CO2
mut (3) – B. abortus mutant isolated during routine work at University of Navarra This work (AZB251)

 AB0130‑CO2
mut (3) – B. abortus mutant isolated during routine work at University of Navarra This work (AZB252)
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Selection of  CO2-independent spontaneous mutants
To obtain  CO2-independent spontaneous mutants from 
 CO2-dependent bacteria, B. ovis PA and three B. abortus 
isolates (one biovar 1 and two biovar 3) were plated on 
TYSA or TSA and incubated at 37 °C without  CO2. After 
5  days, one colony was picked and the genes encoding 
CAI and CAII were PCR amplified using primers CAI-
Fw and CAI-Rv, and CAII-Fw and CAII-Rv (see Addi-
tional file  3). DNA sequencing with these primers and 
CAI-F1-Sec and CAII-F1-Sec primers (Additional file 3) 
allowed identification of mutations by comparison with 
the nucleotide sequence of the parental  CO2-dependent 
strains.

Construction of the plasmid carrying  CAIIba2308W 
and introduction into B. abortus 292 and 544
For the construction of the expression plasmid encoding 
Ba2308WCAII oligonucleotides CAII-Fw-Gw (5′-GGG GAC 
AAG TTT GTA CAA AAA AGC AGG CTT CCGC TGC 
CGT GTT TGA AAT CA-3′) and CAII-Rv-Gw (5′-GGG 
GAC CAC TTT GTA CAA GAA AGC TGG GTC TCA AAG 
TTC AGG GCG TTT GAA-3′) that contain sequences 
attB (underlined) were used to amplify CAII and the 
promoter from B. abortus 2308W. The resulting PCR 
product was cloned into pDONR223 to generate plas-
mid  pDONOR223Ba2308WCAII (Additional file  2). After 
sequence verification, the ORF encoding CAII was trans-
ferred from  pDONOR223Ba2308WCAII to pRH001 [40]. 
The resulting plasmid,  pRH001Ba2308WCAII (Additional 
file  2) was transformed into competent E. coli S17 λpir 
and introduced into Brucella strains by conjugation. The 
clones that had acquired the plasmid were selected by 
kanamycin resistance and confirmed by PCR using prim-
ers CAII-Fw-Gw and CAII-Rv-Gw, and M13F-M13R. The 
strains were called B. abortus 292  pRH001Ba2308WCAII 
and B. abortus 544  pRH001Ba2308WCAII (Additional 
file 1).

Construction of miniTn7T-KmR plasmids carrying CAI 
or CAII and introduction into Brucella strains
Using DNA from B. abortus 2308W, oligonucleotides 
CAII-IF-F1 (5′-CCG GGC TGC AGG AAT TCG CTG 
CCG TGT TTG AAA TCA -3′) and CAII-IF-R2 (5′-AGC 
TTC TCG AGG AAT TTC AAA GTT CAG GGC GTT TGA 
A-3′) amplified a 966 bp region containing CAII and the 
promoter region. This fragment was cloned into the lin-
earized vector (EcoRI) pUC18R6KT-miniTn7T-KmR [41] 
using the In-Fusion HD Enzyme Premix (Clontech). The 
resulting plasmid was called pUC18R6KT-miniTn7T-
KmR

Ba2308WCAII (Additional file 2) and transformed into 
E. coli PIR1 and subsequently to E. coli S17 λpir. Then, 
it was transferred into Brucella by a tetraparental con-
jugation [42]. The resulting constructs (B. abortus 292 

 Tn7Ba2308WCAII, B. abortus 544  Tn7Ba2308WCAII and 
B. ovis PA  Tn7Ba2308WCAII; Additional file  1) were con-
firmed by PCR for the correct insertion and orientation 
of the mini-Tn7 between genes glmS and recG. Primers 
GlmS_B (5′-GTC CTT ATG GGA ACG GAC GT-3′) and 
Ptn7-R (5′-CAC AGC ATA ACT GGA CTG ATT-3′) were 
used to confirm insertion downstream glmS; Ptn7-L (5′-
ATT AGC TTA CGA CGC TAC ACCC-3′) and RecG (5′-
TAT ATT CTG GCG AGC GAT CC-3′) insertion upstream 
recG and GlmS_B and RecG presence of transposon.

Oligonucleotides CAI-IF-F1 (5′-CCG GGC TGC AGG 
AAT TTG TGG AAT TGC ACC GACAC-3′) and CAI-IF-
R2 (5′-AGC TTC TCG AGG AAT TCA ATT ATT CTG CCG 
GTTGG-3′) amplified a 987  bp fragment from B. suis 
513 DNA containing CAI and the promoter. This frag-
ment was subsequently cloned into the linearized vector 
(EcoRI) pUC18R6KT-miniTn7T-KmR using the In-Fusion 
HD Enzyme Premix (Clontech). The resulting plasmid 
was called pUC18R6KT-miniTn7T-KmR

Bs513CAI (Addi-
tional file  2) and was transformed into E. coli PIR1 and 
then to E. coli S17 λpir. After, the plasmid was introduced 
into the different Brucella strains by a tetraparental con-
jugation [42]. The strains were called B. abortus 2308W 
 Tn7Bs513CAI, B. abortus 292  Tn7Bs513CAI and B. abortus 
544 Tn7 Bs513CAI. The insertion of the transposon was 
confirmed by PCR (see above and Additional file 3).

When necessary, constructs without kanamycin resist-
ance cassette were obtained following the protocol set up 
by Martínez-Gómez et al. [43].

Growth measurements
The strains were inoculated into 10 mL of TSB or TYSB 
in a 50 mL flask and incubated at 37 °C for 18 h with or 
without orbital shaking, in an atmosphere with 5%  CO2 
in the case of  CO2-dependent strains. Then, these bac-
teria were harvested by centrifugation, resuspended in 
10 mL of the test medium at an optical density at 600 nm 
 (OD600nm) of 0.1, and incubated under the same condi-
tions for 18 h. These exponentially growing bacteria were 
harvested by centrifugation, resuspended at an  OD600nm 
of 0.1 (equivalent to 0.05 readings in the Bioscreen appa-
ratus) in the test medium in appropriate multiwell plates 
(200  μL/well) and cultivated in a Bioscreen C (Lab Sys-
tems) apparatus with continuous shaking at 37  °C. 
Absorbance values at 420–580  nm were automatically 
recorded at 30 min-intervals. All experiments were per-
formed in triplicate. Controls with medium and no bac-
teria were included in all experiments.

Studies in mice
Seven-week-old female BALB/c mice (Harlan Labora-
tories; Bicester, United Kingdom) were accommodated 
in the facilities of “Centro de Investigación y Tecnología 
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Agroalimentaria de Aragón” (CITA; Registration code 
ES502970012025) for 2  weeks before and during the 
experiments, with water and food ad  libitum under P3 
biosafety containment conditions. The animal handling 
and other procedures were in accordance with the cur-
rent European (directive 86/609/EEC) and Spanish (RD 
53/2013) legislations, supervised by the Animal Welfare 
Committee of the CITA (2014-20).

To prepare inocula, BABS-grown bacteria 
were harvested, adjusted spectrophotometrically 
 (OD600nm = 0.170) in sterile buffered saline (BSS; 0.85% 
NaCl, 0.1%  KH2PO4, 0.2%  K2HPO4; pH 6.85) and diluted 
in the same diluent up to approximately 5 × 107 CFU/mL. 
For each bacterial strain, five mice were intraperitoneally 
inoculated with 0.1 mL/mouse, the exact doses assessed 
retrospectively by plating dilutions of the inocula. The 
number of CFU in spleen was determined at 3 and 
8 weeks post-inoculation. For this, the spleens were asep-
tically removed and individually weighed and homog-
enized in 9 volumes of BSS. Serial tenfold dilutions of 
each homogenate were performed, and each dilution was 
plated by triplicate. Plates were incubated at 37 °C, with-
out  CO2, for 5  days. The identity of the spleen isolates 
was confirmed by PCR. The individual number of CFU/
spleen was normalized by logarithmic transformation, 
and the mean log CFU/spleen values and the standard 
deviations (n = 5) were calculated. Statistical compari-
sons were performed by Student’s t-test.

Results
ORF sequences suggest a critical role of CAII 
in  CO2-independence
We first analyzed whether the sequences of Bs1330CAI 
and Bs1330CAII, respectively encoded by BRA0788 and 
BR1829 of B. suis 1330 and with proved CA activity, had 
orthologues in reference and collection strains represent-
ative of the  CO2-independent and -dependent Brucella 
phenotypes (Table 1). This analysis showed that all these 
brucellae carry Bs1330CAI and Bs1330CAII orthologues, 
with the peculiarities summarized below (for further 
details, see Additional files 4 and 5).

B. suis 513 Bs1330CAI orthologue differed from Bs1330CAI 
only at position 40 (serine instead of leucine) and carried 
a CAII identical to Bs1330CAII. The B. abortus 2308W 
Bs1330CAI orthologue differed from Bs1330CAI in that the 
serine at position 40 and valine in position 76 were both 
substituted by glycine. Similarly, the Bs1330CAII ortho-
logue had an extra amino acid (alanine) at position 114. 
B. abortus 292 and 544, both  CO2-dependent, contained 
a Bs1330CAI orthologue with the same serine and valine 
substitutions as strain 2308W, and a cytosine insertion 
at position 338 of the Bs1330CAII orthologue leading to 
a frameshift affecting almost 50% of the protein. In the 

B. ovis PA Bs1330CAI orthologue, a deletion of 24 nucleo-
tides at positions 217–240 results in a protein lacking 
amino acids 74–81, and the insertion of a guanine at the 
Bs1330CAII orthologue originates a frameshift and a pro-
tein defective in the last 40 amino acids. B. ovis REO198, 
which is  CO2-independent, is identical to B. ovis PA with 
respect to the Bs1330CAI orthologue. However, the lack 
of a guanine in the Bs1330CAII orthologue three posi-
tions after the 521 position guanine of its B. ovis PA 
counterpart restores the reading frame and should allow 
synthesis of a protein identical to that of B. suis 1330 
(Additional files 4 and 5). Altogether, the observations 
strongly suggest that the  CO2-dependence of B. ovis PA, 
B. abortus 292 and 544 is caused by the lack of an active 
CAII (activity defined empirically as that allowing growth 
in a normal atmosphere) and, conversely, that mutations 
in B. ovis CAII could account for the spontaneous emer-
gence of  CO2-independent strains in at least B. ovis. On 
the other hand, these analyses did not allow inferring the 
relevance of CAI, which was apparently complete in B. 
abortus and B. suis.

CAII is mutated in spontaneous  CO2-independent mutants
We examined first the validity of the hypothesis on the 
relevance of CAII for growth in normal air by com-
paring the putative CA genes of several spontaneous 
 CO2-independent mutants that appeared during rou-
tine laboratory manipulations with their parental coun-
terparts (Table  1). For the B. ovis PA  CO2-independent 
mutant (BoPA-CO2

mut), we observed that while the 
guanine in the CAII gene causing the above-described 
frameshift was absent, the CAI gene had not undergone 
any changes. The  CO2-independent mutants of three 
recent B. abortus isolates (one biovar 1 and two biovar 
3) [44] lacked a guanine at position 340 of the CAII gene 
that was however present in the  CO2-dependent paren-
tal isolates. Altogether, these results support the starting 
hypothesis that CAII mutations are involved in the emer-
gence of  CO2-independent mutants and indirectly sug-
gest that CAI is less relevant in the uptake of  CO2.

An active CAI is enough by itself to support 
 CO2-independent growth of B. suis but not of B. abortus
To compare the physiological importance of CAI and 
CAII we first carried out mutagenesis in different back-
grounds and tested the mutants for  CO2-independence. 
Using B. abortus 2308W, we found that its CAI 
mutant (B. abortus 2308W::pJQKm-CAI) kept the 
 CO2-independent phenotype, proving that CAII by itself 
can sustain growth under normal atmospheric conditions 
(Figure 1). In contrast, and despite repeated attempts, we 
failed to obtain a similar mutant in CAII, suggesting that 
the B. abortus 2308W CAI cannot supply bicarbonate at 
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a rate high enough for growth under normal atmospheric 
conditions. This is in keeping with the identity of CAI 
sequence between B. abortus 2308W on one hand and B. 
abortus 292 and 544 on the other, and supports the idea 
that CAI is not active in these three B. abortus strains.

Köhler et al. [34] reported recently the failure to obtain 
B. suis 1330 (biovar 1) double CAI–CAII mutants, which 
together with the analysis of the purified CAI [31–33] 
strongly suggests that CAI is active in this strain. Thus, we 

hypothesized that CAI could be inactive in some Brucella 
strains but active in others. Indeed, this possibility was 
consistent with the observation that the valine in posi-
tion 76 in B. suis 1330 Bs1330CAI was substituted by gly-
cine in B. abortus 292 and 544 (both  CO2-dependent) as 
well as in strain 2308W (see above and Additional file 4) 
where CAII seemed essential for  CO2-independence. 
To validate our hypothesis, we first constructed pJQKm 
insertion mutants in the Bs1330CAI and Bs1330CAII genes 
of B. suis 1330 (biovar 1) and found that both were 
 CO2-independent (Figure  2). Then, we obtained similar 
pJQKm insertion mutants in B. suis 513 (biovar 5). Again, 
both mutants kept the  CO2-independent phenotype of 
the parental strain, proving that CAI was also active in 
B. suis 513 despite the difference in position 40 (serine 
instead of leucine) with respect to Bs1330CAI (see above 
and Additional files 4 and 5).

Once we knew that CAII was essential for 
 CO2-independent growth of B. abortus 2308 W and that 
CAI was active in B. suis 1330 and 513, we tested whether 
a functional CAII or CAI could accomplish the same role 
in  CO2-dependent B. abortus strains. For this, we first 
constructed a low-copy plasmid  (pRH001Ba2308WCAII) 
carrying the gene encoding B. abortus 2308W CAII 
(which we had proven to be active) under the control 
of its own promoter. When we introduced this plasmid 
into B. abortus 292 and 544 (both  CO2-dependent), the 
 pRH001Ba2308WCAII constructs were able to grow in 
a normal atmosphere (Figure  3). Then, to circumvent 
any gene dosage artifacts associated with plasmid con-
structs, we introduced a miniTn7 carrying Ba2308WCAII 
 (Tn7Ba2308WCAII) [42] into a neutral site of the genomes 

Figure 1 CAI is dispensable for CO2-independent growth of B. 
abortus 2308W. Growth of B. abortus 2308W and the corresponding 
insertion mutant in CAI were tested under normal atmospheric 
conditions in Peptone‑Glucose. Each point represents the 
mean ± standard error (error bars are within the size of the symbols) 
of technical triplicates. The experiment was repeated three times with 
similar results.

Figure 2 CAI and CAII are functional in B. suis 1330 and 513. Growth of B. suis 1330 and B. suis 513 and the corresponding insertion mutants 
in CAI (B. suis 1330::pJQKm‑CAI; B. suis 513::pJQKm‑CAI) and CAII (B. suis 1330::pJQKm‑CAII; B. suis 513::pJQKm‑CAII) were tested under normal 
atmospheric conditions in Peptone‑Glucose. Each point represents the mean ± standard error (error bars are within the size of the symbols) of 
technical triplicates. The experiment was repeated three times with similar results.
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of B. abortus 292 and 544. We found that, like the strain 
origin of the CAII gene, the two constructs grew in a nor-
mal atmosphere (Figure 3). Then, we did similar experi-
ments with a miniTn7 carrying Bs513CAI (which we had 
proven to be active) and its promoter  (Tn7Bs513CAI). In 
this case, however, we found that the B. abortus 292 and 
544  Tn7Bs513CAI constructs failed to grow without  CO2 
enrichment (data not shown) leading to the conclusion 
that an active CAI was not enough by itself to support 
 CO2-independent growth of B. abortus.

The  CO2-independence mediated by CAI is conditioned 
by nutrient availability
While the above-described experiments show that an 
active CAII but not an active CAI was enough to bypass 
 CO2-dependence in B. abortus, it was not immediately 
obvious why CAI by itself was enough to support growth 
of B. suis 1330 and B. suis 513. However, the B. suis CAII 
(and CAI) mutants were tested for  CO2-independence in 
a medium rich in peptones and glucose, conditions that 
are likely to downplay the role of the anabolic pathways 
where CA activity is important. Therefore, we reasoned 
that, depending upon the metabolic abilities of Brucella 
spp. and biovars, experiments in complex media could be 
not stringent enough to reveal differences between CAI 
and CAII activities. To analyze this, we took advantage 
of the almost prototrophic characteristics of B. suis 513, 
a strain that only requires a few vitamins and grows effi-
ciently with limited C supplies [45]. When we tested B. 
suis 513::pJQKm-CAII insertion mutant on Glutamate–
Lactate–Glycerol (a gluconeogenic medium [21, 45]) or 

Glucose as the only C sources, we found that the mutant 
failed to grow under a normal atmosphere (Figure  4). 
This result, which shows that B. suis 513 CAI cannot 
meet the biosynthetic demands of this strain in simple 
media, strongly suggest that CAI is not active enough in 
less prototrophic species such as B. abortus even in com-
plex media and, therefore, that it adds little to the role 
of CAII. In keeping with this, we found that a B. abor-
tus 2308 W construct carrying Bs513CAI and its parental 
strain did not differ in growth rates (Figure 5).

An active CAII reverts the  CO2-dependence of B. ovis PA 
and does not alter its multiplication in the mouse model
Among the brucellae, B. ovis is notorious for its 
 CO2-dependence and fastidious nutritional requirements 
caused in all likelihood by its comparatively genome deg-
radation [46]. Since the above-described experiments 
not only proved the chief role of CAII in the B. abortus 
and B. suis biovars tested but also provided molecular 
tools for relieving  CO2-dependence in B. abortus, we 
introduced  Tn7Ba2308WCAII into the B. ovis PA chromo-
some and examined the construct for  CO2-dependence. 
As can be seen in Figure 6A, B. ovis PA  Tn7Ba2308WCAII 
grew under normal atmospheric conditions. Then, we 
used the  Tn7Ba2308WCAII construct to test whether the 
 CO2-dependence and/or this genetic manipulation 
would alter the virulence of B. ovis in the standard mouse 
model. We found that the introduction of a functional 
CAII into B. ovis PA did not affect the multiplication 
(acute phase) and permanence (chronicity) of the bacte-
ria in the spleens of BALB/c mouse (Figure 6B).

Figure 3 B. abortus 292 and 544 carrying a functional CAII become CO2-independent. Growth of B. abortus strains 292 and 544 and the 
derivative strains carrying plasmid  pRH001Ba2308WCAII or a stable  Tn7Ba2308WCAII insertion in the genome were tested under normal atmospheric 
conditions in Peptone‑Glucose. Each point represents the mean ± standard error (error bars are within the size of the symbols) of technical 
triplicates. The experiment was repeated three times with similar results.
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Discussion
The metalloenzymes generically designated as CAs 
catalyze the reversible hydration of  CO2 into bicarbo-
nate, the substrate of key anaplerotic and biosynthetic 
enzymes [23]. Many aerobic microorganisms can obtain 
enough bicarbonate from ambient air (about 0.04%  CO2) 
and not surprisingly CA mutants of at least Ralstonia 
eutropha, Streptococcus pneumoniae, Escherichia coli, 

Pseudomonas aeruginosa and Corynebacterium glutami-
cum are unable to grow under these conditions [25–30]. 
All these observations made very likely the existence 
of a relationship between CA deficiencies and the 
 CO2-dependence that is characteristic of some Brucella 
biovars and species, a hypothesis proved in this work. 
If we define CA inactivity as that not high enough to 
make the bacteria able to grow in a normal atmosphere, 
we have demonstrated that while B. suis 1330 and 513 
genomes encode two active CAs (CAI and CAII) only 
CAII is active in B. abortus 2308W and none in repre-
sentative strains of the  CO2-dependent B. abortus biovars 
or in B. ovis PA. Indeed, the fact that the gene encoding 
CAII is conserved in B. abortus 2308W is in agreement 
with previous in vitro enzymatic analysis that show that 
B. suis 1330 CAII is a better catalyst for the conversion 
of  CO2 to bicarbonate (with an enzymatic activity 1.85 
times higher) than Bs1330CAI [32].

It has to be stressed that the functional definition of 
activity used here pertains to the particular physiology 
of each strain. Although the number of strains tested was 
necessarily limited, we found evidence supporting the 
hypothesis that CAI is insufficient to support growth of 
Brucella when the medium is limited to simple C sub-
strates, or even in rich media for those brucellae that 
display comparatively reduced biosynthetic abilities. 
Indeed, whereas growth on the minimal media used here 
requires bicarbonate being incorporated by the reactions 
catalyzed by enzymes such as phosphoenolpyruvate car-
boxylase, pyruvate carboxylase, carbamoyl phosphate 
synthetase, 5-aminoimidazole ribotide carboxylase and 

Figure 4 The CO2-independence mediated by CAI is conditioned by nutrient availability. Growth of B. suis strain 513 and the CA insertion 
mutants (B. suis 513::pJQKm‑CAI; B. suis 513::pJQKm‑CAII) were tested under normal atmospheric conditions in Glutamate–Lactate–Glycerol and 
Glucose. Each point represents the mean ± standard error (error bars are within the size of the symbols) of technical triplicates. The experiment was 
repeated three times with similar results.

Figure 5 Insertion of the gene of a functional CAI in B. abortus 
2308W does not increase growth rates. Growth of B. abortus 
2308W and its derivative strain carrying B. suis 513 CAI in the 
genome (B. abortus 2308W  Tn7Bs513CAI) were tested under normal 
atmospheric conditions in Peptone‑Glucose. Each point represents 
the mean ± standard error (error bars are within the size of the 
symbols) of technical triplicates. The experiment was repeated three 
times with similar results.
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enoyl-CoA carboxylases/reductases, growth on rich 
media does not entail an intense biosynthesis of amino 
acids and nucleic acid precursors and, therefore, most if 
not all of the linked pathways should pose no stringent 
demands for bicarbonate. In the context of this hypothe-
sis, B. suis, the fast-growing B. suis biovar 5 (strain 513) in 
particular, on one hand, and B. ovis, on the other, would 
respectively represent two opposite situations. The exist-
ence of Brucella strains carrying inactivated CAs strongly 
suggests that this enzymatic activity is not necessary for 
the persistency in nature of at least B. abortus and B. 
ovis. Indeed, the presence of mutations inactivating the 
metabolic genes may result from the absence of a positive 
selective pressure, reflecting an adaptation during which 
the cognate functions become dispensable because of 
the nutritional environment. Such a Brucella adaptation 
would not be a novelty in intracellular parasites because, 
while a majority of the genome-sequenced Proteobacte-
ria retain a CA gene, intracellular genera such as Buch-
nera and Rickettsia contain CA-defective representatives 
[47]. It remains to be investigated whether such a CA dis-
pensability represents a high  CO2 tension in their niche, 
as described for Symbiobacterium thermophilum [48], 
the exploitation of host CAs or the presence of nutrients 
bypassing metabolic steps connected to CA activity.

It is important to highlight the practical implications 
of this work. Unraveling the genetic background of Bru-
cella  CO2-dependence allowed us to construct a B. ovis 
 CO2-independent mutant with practical implications on 
the diagnosis and control of B. ovis infection. Because of 
the non-zoonotic nature of B. ovis, this disease may not 
always deserve the attention of official programs and it is 

often overlooked. Control and eventual eradication of B. 
melitensis brucellosis of small ruminants is based on the 
use of diagnostic tests detecting antibodies to the S-LPS 
[49] and vaccination with B. melitensis Rev 1, a vaccine 
that also protects against B. ovis. However, Rev 1 may 
interfere in serological diagnosis [49] and it is virulent 
for humans [50] and resistant to streptomycin (an antibi-
otic of choice to treat human brucellosis). Owing to these 
drawbacks, Rev 1 vaccination is discontinued and finally 
banned in those regions or countries where B. meliten-
sis prevalence is considered low enough to implement 
an exclusively test and slaughter strategy. Withdrawal 
of Rev 1 vaccination leaves animals unprotected against 
B. ovis, thus favoring the emergence of the disease in 
areas where B. melitensis is almost or totally eradicated. 
Moreover, B. ovis has remained endemic in many areas 
where B. melitensis is not present and Rev 1 vaccination 
was never implemented [51, 52]. Accordingly, research 
on B. ovis-specific vaccines is an area of increasing inter-
est as these vaccines would neither pose risk of zoonotic 
infection nor interfere in those B. melitensis serological 
tests detecting S-LPS O-polysaccharide antibodies (i.e., 
rose bengal and complement fixation tests) [53–56]. The 
 CO2 requirement represents a significant obstacle in 
the development of a B. ovis live attenuated vaccine for 
large-scale production. We have demonstrated that the 
B. ovis PA  Tn7Ba2308WCAII described here not only grows 
under normal atmospheric conditions but also retains 
the virulence in at least the accepted laboratory model, 
thus representing an appropriate tool for the develop-
ment of such  CO2-independent attenuated vaccines. For 
instance, B. ovis PA  Tn7Ba2308WCAII can be used as the 

Figure 6 An active CAII reverts the CO2-dependence of B. ovis PA and does not alter its multiplication in the mouse model. A Growth of 
B. ovis PA and its derivative strain carrying B. abortus 2308W CAII in the genome (B. ovis PA  Tn7Ba2308WCAII) under normal atmospheric conditions in 
Peptone‑Glucose‑Yeast Extract‑Serum. Each point represents the mean ± standard error (error bars are within the size of the symbols) of technical 
triplicates. The experiment was repeated three times with similar results. B Bacterial loads of B. ovis PA and B. ovis PA  Tn7Ba2308WCAII in the spleens of 
BALB/c mice at 3 and 8 weeks post‑infection. No statistical differences were found (Student’s t‑test).
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background to apply the strategy proposed by Conde-
Álvarez et al. [57] based on the deletion of LPS core gly-
cosyltransferases that results in a truncated structure that 
by uncovering innate immunity targets triggers a potent 
protective Th1 response. In fact, Soler-Lloréns et al. [56] 
recently demonstrated that deletion of two of such gly-
cosyltransferases in B. ovis PA results in attenuation and 
suitable vaccine properties in the mouse model. Simi-
larly, the B. ovis PA  Tn7Ba2308WCAII construct could be 
used to produce the R-specific antigen currently used in 
B. ovis serological tests. This antigen is made of vesicles 
rich in outer membrane proteins and R-LPS, and both 
types of components have been shown to be important 
for optimal sensitivity [58, 59]. Currently, this R antigen 
is obtained from B. ovis REO198 taking advantage of 
the unusual  CO2-independence of this strain (Table  1). 
Yet, B. ovis REO198 LPS carries a core oligosaccharide 
defect that damages the diagnostic epitopes of the R LPS 
and it is thus likely to yield suboptimal results in sero-
diagnosis [60]. If this is confirmed, it could be advanta-
geously replaced by B. ovis PA  Tn7Ba2308WCAII. Research 
is in progress to evaluate the attenuation and protection 
against B. ovis of B. ovis PA  Tn7Ba2308WCAII core glyco-
syltransferase mutants as well as the diagnostic proper-
ties of R antigens obtained from this strain. In summary, 
the evidence presented in this work not only clarifies the 
biochemical basis of an important Brucella phenotype 
but also provides a tool for large-scale production of B. 
ovis diagnostic antigens and vaccines.
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