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Background.  A recent mathematical optimisation problem investigates the topic of decomposing a given matrix into its  
low-rank and sparse components [1, 2, 3]. While these papers mostly focus on theoretical aspects – in particular, whether  
it is possible to exactly recover the unobserved low-rank and sparse components from the observed matrix – Candès et  
al. [3] have shown practical use of the decomposition in video surveillance and face recognition. In medical imaging, Gao 
et  al. [4]  have  recently  incorporated  this  separation  model  into  the  conventional  inverse  problem  in  Computed 
Tomography and were able to reconstruct better images with fewer measurements than state of the art techniques.   
Objectives.  We investigate the potential usefulness of this separation process in dynamic Magnetic Resonance Imaging  
(MRI). More specifically,  motivated by experiments on real data, we are interested to know if this method (a)  could 
separate the global (or respiratory) motion from the local motion, and (b) could detect local changes of intensity.
Methods.   Mathematically,  the decomposition process  can  be posed as  the following convex optimisation problem,  
minL,S ||L||*+λ||S||1 subject  to  X=L+S,  where  ||L||* and ||S||1 denote respectively  the nuclear  norm of  L (the sum of the 
singular values) and the l1 norm of S defined as the sum of the absolute values of all entries (i.e. l1 norm of S viewed as a 
vector). λ is a trade-off parameter between low-rank and sparse components. X is the observed data matrix, X=[x1...xM], 
X∈RN×M,  with  temporal  image  i of  the  M-sequence  as  its  column vectors  xi.  Minimisation  of  the  problem can  be 
performed by various optimisation techniques but the Alternating Direction Method (ADM) appears to be the best choice, 
especially when it comes to large-scale problems. ADM, an improvement of the Augmented Lagrangian method, exploits 
the favorable structure appearing in both the objective function and the constraint [2, 3]. Both MATLAB implementations 
of the algorithm in [2, 3] have been made available online at  perception.csl.uiuc.edu/matrix-rank/. Although λ is set to 

max(N,M)-1/2  in [3],  justified  by  a 
theoretical  analysis  and  a  no  tuning 
parameter approach, it is in our case a 
parameter  we  tune  by  visual 
inspection. Based on the Shepp-Logan 
phantom,  we  generate  a  20  frames 
sequence  with  time  varying  intensity 
and  a  mixture  of  global  and  local 
motion  (figure 1) to understand how 
the separation works in this context.

Results.  We show in figure 2 the resulting decomposition of the entire Shepp-Logan phantom sequence for a choosen 
value of the trade-off parameter equal to 2.max(N,M)-1/2. We first 
note that  local  motion is clearly  reflected  in every  sparse frame 
yielding  a  straight  forward  segmentation  of  the  moving  local 
ellipses. We also remark the respiratory-like motion appears only in 
the low-rank frames, although edges of the outer ellipse do appear 
in  the  sparse  frames.  Perhaps  more  interestingly  is  the  intensity 
varying ellipse which is distinctly represented in the sparse matrix 
in  the  last  few frames  of  the  whole  sequence.  This  could  yield 
applications in Dynamic Contrast Enhanced MRI since this method 
gives  a  direct  segmentation  of  the  varying  local 
intensity change. Figure 3 shows the sensitivity of the 
method to isolating peristalsing small bowel motion in a 
healthy  individual  undergoing  small  bowel 
enterography. (A cine MRI sequence of 20 frames with 
both large-scale respiratory motion and local motion of 
the  small  bowel.) This  could  be  useful  for  clinicians 
since  motion  detection  is  becoming  an  increasingly 
useful diagnostic parameter for assessing disease status 
non-invasively. Finally, we think it is also important to 
notice that processing the Shepp-Logan sequence or the 
real  data (both of size 512x512x20) takes only a few 
seconds on a simple desktop computer using algorithms 
[2] or [3] thanks to the use of the ADM approach.
Conclusions. We have proposed to apply the low-rank and sparse separation problem to dynamic MRI sequences as an 
image post-processing method. Using a simple simulation and a specific value of the trade-off parameter, we have shown  
this method can detect local motion and local intensity changes in the sparse frames, as well as isolating the respiratory 
motion in the low-rank frames. Through application to real data, we hope to have convinced the reader that this method 
could lead to a better understanding and/or interpretation of the images from a clinical perspective.
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Fig.3:  Decomposition on small  bowel  MR data.  Respiratory  
motion appears largely in the low-rank time frames whereas  
peristaltic motion appears in the sparse frames.  (Left)  Data 
(Middle) Low-rank component. (Right) Sparse component.

Fig.1: Global (respiratory) motion is simulated by slightly and slowly changing  
size of the main ellipse. Local motion is simulated by three small ellipses at the  
bottom. Intensity change from 0 to 1 is visible on the right side ellipse. (Left) y-t  
profile  of  the  generated  sequence.  (Right) Extracted  frames  from the  whole  
sequence at time {1, 4, 7, 12, 16, 20}.

Fig.2: Low-rank and sparse components resulting  
from  the  decomposition.  (Left)  y-t  profile  of  the  
whole sequence  (Right) Frame 20.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1885966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	Conclusions. We have proposed to apply the low-rank and sparse separation problem to dynamic MRI sequences as an image post-processing method. Using a simple simulation and a specific value of the trade-off parameter, we have shown this method can detect local motion and local intensity changes in the sparse frames, as well as isolating the respiratory motion in the low-rank frames. Through application to real data, we hope to have convinced the reader that this method could lead to a better understanding and/or interpretation of the images from a clinical perspective.

