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Abstract

The spi calculus is a process algebra used to model cryptographic protocols. A process

calculus is a means of modelling a system of concurrently interacting agents, and

provides tools for the description of communications and synchronizations between

those agents. The spi calculus is based on Robin Milners pi calculus, which was

itself based upon his Calculus of Communicating Systems (CCS). It was created by

Martin Abadi and Andrew D. Gordon as an expansion of the pi calculus intended

to focus on cryptographic protocols, and adds features such as the encryption and

decryption of messages using keys. The Coq proof system is an interactive theorem

prover that allows for the definition of types and functions, and provides means by

which to prove properties about them. The spi calculus has been implemented in Coq

and subsequently used to model and show an example proof of a property about a

simple cryptographic protocol. This required the implementation of both the syntax

and the semantics of the calculus, as well as the rules and axioms used to manipulate

the syntax in proofs. We discuss the spi calculus in detail as defined by Abadi and

Gordon, then the various challenges faced during the implementation of the calculus

and our rationale for the decisions made in the process.
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Chapter 1

Introduction

In today’s society, there are countless computer programs being used to do countless

tasks, ranging from as mundane as entertainment to as important as financial man-

agement or missile guidance. When dealing with applications of the latter sort, there

exists an inherent need for guarantees that software will do what is intended to do

without error. Even in entertainment this can be the case; the accuracy of a braking

system for a roller coaster suddenly seems much more important when it is hurtling

passengers over hills at nigh-on unsafe speeds. Just as computer programs can bene-

fit from (and often require) verification to ensure they meet certain standards, it can

be vital for communication protocols used by computers to be guaranteed safe. The

spi calculus was proposed by Martin Abadi and Andrew D. Gordon for exactly this

purpose [1]. However, such proofs always contain a potential for human error when

crafted by hand. As such, it would be beneficial to anyone looking to verify their

protocol to be able to generate their proofs in a strict automated proof environment.

To do this, we need a system for modelling and reasoning about protocols. Since

protocols are essentially just a series of instructions, a process algebra is suitable for

our purposes. A process calculus is a type of calculus that focuses on representing the

interactions between concurrent entities, such as two computers communicating over

a network. Process calculi also provide rules for the manipulation of these models.

CSP, developed by C.A.R. Hoare, is one of the earliest examples of a process calculus

[7]. We want to use a process calculus that is specialized toward the modelling of

cryptographic protocols, known as the spi calculus. The spi calculus is heavily based

on Robin Milner’s CCS [11], another early process calculus, as well as its successor pi

calculus [12], while incorporating aspects of the chemical abstract machine developed

by Gérard Berry and Gérard Boudol [3] and ideas from the work of De Nicola and
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Hennessy [5].

There has been previous work done in the area of formal verification of cryptographic

protocols prior to the creation of the spi calculus. A method of machine-aided protocol

verification was presented by R. A. Kemmerer utilizing theorems and state invariants

[8]. Other works include that of Gray and McLean, which utilizes temporal logic [6],

and of Lampson et al. [9] and Liebl [10] which discusses reasoning about authority

based on relations and channels in the context of various security mechanisms.

The intention of this thesis is to produce an implementation of the spi calculus as it

is defined the original paper by Abadi and Gordon, show that the implementation

works for the purpose of modelling and proving properties of protocols, and discuss

the work done so that anyone can use it to perform protocol verification. The im-

plementation involved several stages and required several major readjustments of the

basic definitions of the syntax and semantics of the calculus. The overall methodol-

ogy of the work and individual motivation for each of these major adjustments will

be covered, with the intention of explaining why all the parts of the implementation

have been designed the way they have. In general, an attempt was made to produce

a version of the spi calculus that is usable in a proof system and also leverages the

strengths of the Coq proof system wherever possible.

1.1 Terminology

There is a significant amount of terminology inherent to working with any calculus,

as well as with regard to the spi calculus specifically and to the Coq proof system in

which the implementation was written. This section will attempt to cover all of the

terminology necessary for understanding the spi calculus and its implementation in

the system.

General Concepts

One of the most basic concepts that must be considered is variables. Variables,

whether in math, computer science or elsewhere, are identifiers that stand for other

values. In the spi calculus a variable does just this, existing as a placeholder to be

replaced later via a substitution. Substitution is the replacement of a variable with

some other element. In the spi calculus, this element is a term. While this term

could (based on the spi calculus definition of a term) be another variable, generally
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the value substituted in is more meaningful than this.

One exception to this is the case of renaming conflicting variables. A variable is

considered free if it has no ties to any syntax around it, and is considered bound

otherwise. In the simple case of a mathematical function f(x), any occurrences of the

variable x would be bound within the body of the function f , as whatever input is

provided to f must replace the occurrences of x within the body. To put it another

way, a bound variable cannot be changed individually; all occurrences of a bound

variable must be changed within the context it is bound in. Bound variables also

cannot be substituted for terms as they are tied to their binding operation. Free

variables are essentially the opposite, and can be substituted for at any time. In the

case of f(x), substitution can occur for the bound x when a value is provided because

substitution only considers the body of the function, in which the binding operation

f(x) is not present. This lengthy explanation of free and bound variables ties sub-

stitution to the concept of renaming, in which a term contains a bound variable as

a free variable and is substituted in. In this case, the currently bound variable must

have all instances replaced with some new identifier, hence it is renamed.

Relations

Relations are another simple but necessary concept that pertains to the spi calculus.

A relation is an abstract connection between elements; the elements can be said to

be related if their pairing fulfills whatever condition the relation represents (which

could be entirely arbitrary). Relations are usually defined on specific types, such as

the set of natural numbers. “Less than” is a common relation, and the pair (1, 2) is

within that relation assuming we interpret the pair as “1 is less than 2”. In the spi

calculus, the elements being related are terms, processes and agents, the three main

types in the calculus.

Two other concepts that appear frequently in the thesis are closedness and stuck-

ness, for lack of a better term. Closedness applies to terms, processes and agents,

while only processes are capable of being stuck. Closedness will be discussed in de-

tail as part of the implementation, but having defined free variables above, it can be

defined as the state of having no free variables. All the relations defined in the spi

calculus are for closed constructs. When a process is stuck, it has reached a state

where it can no longer perform any actions. This could be because it has executed

until reaching a nil process (which does nothing by design) or because a deterministic
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process such as a term match or case contains invalid or unexpected input.

Coq

It is also necessary to consider some terminology of the Coq proof system. Com-

mon keywords in the system include Definition, Fixpoint, Lemma, and Proposition.

Definition and Fixpoint are used to declare non-recursive and recursive functions re-

spectively, while Lemma and Proposition are used to indicate the declaration and

subsequent proving of a fact. When the system is in proof mode, we refer to the

current fact being proven as the goal (there can be multiple goals, called subgoals)

and the information above the goal as assumptions. Also common are the keywords

Proof, Qed, and Defined. Proof is a statement that a proof is beginning (generally

after a Lemma or similar), while Qed and Defined are used to end a completed proof.

Defined tells the system that the internals of the proof are relevant while Qed discards

them and simply accepts the proven fact as true. There are some intricacies to these

keywords, such as the fact that Lemma and Proposition have the same effect and so

only differ aesthetically, but their meanings as have been stated are sufficient for the

purposes of this thesis.

Another commonly-used and important keyword in Coq is Inductive. An inductive

declaration can be colloquially seen as a data type declaration, but can be considered

more literally as the ability to define a series of constructors for that new type in the

sense that each constructor takes in some other types (or nothing at all for terminal

forms) and produces an element of the stated inductive type. Examples of induc-

tives in the implementation of spi calculus include the simple Name (containing one

constructor N that takes string and produces a Name) and the multi-faceted Term

(which has six different constructors representing the six kinds of terms).

In Coq, it is possible to define a type which is all the elements of a given type

such that they fulfill a given property. These types are called dependent types. The

implementation makes use of these dependent types to define closed versions of terms,

processes and agents, though this results in some complications. Coq is very strict

about the proof component of a dependent type (that is, the proof that the property

is met by the element) and does not always consider two proofs of the same fact

equal. It is important to take this into account when discussing the implementation,

particularly regarding the topics of setoid equivalences and the calculus rules.
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Coq also possesses type classes, a means of defining a set of properties that a type

of that class should satisfy. A good example of this is the Equivalence class, which

requires that the provided type is a relation on some other type, and that the relation

is reflexive, symmetric and transitive. A type can be stated as a member of a class

using the Instance keyword, at which point the system requires a proof that the type

possesses all the properties of that class. We use the Equivalence class several times

in the implementation, and the Proper class as well.

Tactics

When proving facts in the implementation, we make use of many different proof tac-

tics available in the Coq system. It is important to have a general idea of what these

tactics are doing to be able to understand the proofs themselves. The descriptions

of these tactics will not be representative of every possible usage, but should give

some indication of what is happening when they are used. The first tactic commonly

seen at the start of a proof is intros. This tactic strips off any instances of a forall

quantifier at the start of a goal and converts them into assumptions, along with any

premises stated prior to the final implication. The intros tactic is used any time we

have an assumption in the goal that needs to be “moved up”. It is almost universally

used at the start of proofs in the implementation, but is sometimes used elsewhere

when new assumptions are produced in the goal. It may also be used after an induc-

tion, so that an important variable remains general in the induction.

As its name implies, the induction tactic performs an induction on a target vari-

able or assumption assuming it is of an inductive type. This amounts to a case

analysis with the addition of an induction hypothesis for non-terminal constructor

cases. There are several other tactics for case analysis: case, case eq, destruct, and

inversion. Case is a very basic form of case analysis; proofs in the implementation

tend to use destruct for simple case distinction or when no induction hypothesis is

needed. Case eq is used in place of destruct when we want to guarantee the addition

of the current case to our assumptions. Destruct often achieves this on its own (for

example, when used on a decidability function), but not in all cases. Inversion is used

for case analysis on an inductive assumption; it produces a case for each constructor

of the inductive that fits based on the values in the current instance. In layman’s

terms, it is a means of analyzing “how we got here” with regard to an inductive.

Other common tactics in Coq include apply, rewrite, and simpl. These tactics allow
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us to transform the goal based on already proven facts, assumptions, and definitions.

Apply is used in the context of one-way lemmas (ie. P → Q) to move in the appropri-

ate direction based on whether we apply the lemma to an assumption (P becomes Q)

or the goal (Q becomes P). Rewrite is similar, but is bidirectional. It is used in the

case of equalities and equivalences. This includes logical equivalence, or if-and-only-if

(also represented as iff or↔). If we have the fact P = Q we can use rewrite to turn P

into Q, or rewrite← to do the converse. Simpl is a very useful tactic; it simplifies any

syntax by referencing the definition of functions and lemmas. If the parameter of such

a definition can match a case of the implementation, it will replace the current syn-

tax with the appropriate case. One use of simpl will perform as much simplification

as possible, but in the event this is not desired we can specify the definition to simplify.

When we have used the above tactics and others to reach our stated goal, there

are several tactics that can be used to close the goal. Akin to simpl, trivial will

finish the current goal if it simplifies to an assumption or a reflexive equality. It will

not close a reflexive equivalence; for any goal in which both sides match, we can use

reflexivity as long as the relation is proven to be reflexive. Equality, equivalence and

if-and-only-if have this property by default. These are the most common tactics for

closing a goal, but there are a few specialized tactics such as tauto and contradiction.

The former closes a goal if it is a logical tautology (like ¬False) while the latter

checks for the presence of a contradiction in the assumptions. It is a rather strict

check, generally requiring that the contradictory assumptions simplify to P and its

exact negation ¬P . Inversion can also be used to close a goal in a manner similar to

contradiction. If an inductive constructor in the assumption contains an impossibil-

ity, inversion will end the current goal but produce no new cases as it is impossible

to get to this assumption from any previous assumptions.

This concludes the discussion on tactics in Coq. Any tactics present in the imple-

mentation that have not been discussed here can be referenced at the Coq website’s

extensive tactic index, which contains explanations of every tactic in the system along

with their parameters and optional extensions.

1.2 Structure

The structure of the thesis is as follows: we begin with a brief primer on terminology

regarding the Coq proof system and other basic concepts, followed by an outline of the
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works that led to the development of the spi calculus. We will proceed to outline the

spi calculus as created by Abadi and Gordon, then address the syntax, semantics and

rules of the calculus in detail to give context to our discussion on its implementation.

After all of this background information, we will provide an in-depth discussion on the

features of the implementation, how they were developed, and the challenges we faced

in doing so. We will then provide and discuss an example of the implementation’s

usage, and conclude with the major lessons learned over the course of this work. The

completed work can be found online at the address provided at the end of this thesis

[16].
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Chapter 2

Background

While the focus of this thesis is on the spi calculus developed by Abadi and Gordon,

it was developed with pi calculus as a base. In this chapter we will discuss pi calculus

and its predecessor CCS, both developed by Robin Milner. An understanding of these

systems is necessary to highlight what the spi calculus introduces, as well as what it

inherits from Milner’s work.

2.1 CCS

CCS was originally created by Robin Milner in the early 1980s [11]. It is a process

calculus centered around communications between processes in a system, whether

those processes are true computer processes or simply another type of actor in a

system of related agents. The calculus can be viewed as a set of processes (i.e.

P1, P2, P3, etc.) connected to each other through actions or “ports” that correspond

to what each process can do. Actions are generally labeled as lower case letters (p,

q, r, etc.) and belong to the set of all names in the universe of discourse. Variables

are also used in CCS (and are labeled as x, y, z, etc.). The set of names also has

a complement: the set of co-names (denoted by the same action with a bar over

it) indicating a reaction to the initial action. The nameless action τ (tau) is also

important, denoting an action internal to the process that possesses no name (and

thus no connection to another process). In addition to these symbols, the syntax also

features five combinators that can be used to model these systems on a low level.

These combinators are shown in Table 2.1. Prefix is a basic operation, indicating

that the system can take action a and then continue with process P1. Summation

and composition indicate that the involved processes can be chosen between or are

running simultaneously, respectively. Renaming is the action of replacing all instances
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of action x with action y, and restriction internalizes the action a to the process P1,

changing the free name a into a bound name within that context. Free names can

be used anywhere in a definition, while bound names are restricted to the scope they

have been limited to. Beyond these symbols and combinators, CCS also includes a

null process 0, which indicates that nothing is to be done.

Table 2.1: CCS Syntax

Operation Syntax
Prefix a.P1

Summation P1 + P2

Composition P1 |P2

Renaming P1[y/x]
Restriction P1\a

As a simple example of CCS, we could define a process with two actions p and q and

further subprocesses A and B. A process with these components could look like this:

S
def
= p.A+ q.B (2.1)

This system definition can execute by performing action p then running A or by

performing action q and then running B. It is noteworthy that this choice is non-

deterministic; no mechanism exists to decide which action is performed. By abstract-

ing out components of a system and defining them separately in this manner, much

more complex interactions can be modeled at a very low level. As a side note, while

CCS and pi calculus both use
def
= for definitions, spi calculus instead uses ,. The rules

of CCS can be seen in Figure 2.1 [11].

2.2 Pi Calculus

The pi calculus is largely based on the previous definition of CCS [12]. It was de-

veloped by Robin Milner a decade later, with the intention of being a more accurate

model of modern systems by taking mobility of connections into account. This notion

of mobility is the focus of pi calculus, taking CCS and introducing the ability to pass

process connections, or channels, as a fundamental part of the calculus. Put simply,

this allows a static CCS model to not only pass messages, but also pass a connection

9



Figure 2.1: CCS Rules

like the action p to alter the topography of the model. This adjustment to the calcu-

lus results in several changes to the syntax.

Most importantly, the syntax p(x) represents a reception of the message over the

channel p, with the result being bound to variable x. For example, p(x).A receives

the message on p and then runs process A with all instances of x in A replaced by

the message contents. To complement this new use of the syntax, p̄〈x〉 now denotes

the sending of what is contained within x on the channel p. Similarly to with CCS,

the syntax P |Q indicates the running of P and Q simultaneously. Prefix, summa-

tion and renaming operations are also carried over from CCS. Restriction has new

syntax, creating a new channel x bound to P and then running P . Replication is a

new operation that will repeatedly spawn copies of P . It was added to allow for the

defining of parametric processes using recursive equations without the use of
def
=. The

new syntax for the pi calculus is shown in Table 2.2.

Table 2.2: New Pi Calculus Operations

Operation Syntax
Send p̄〈x〉.A

Receive p(x).A
Restriction (new syntax) (new x)P

Replication !P

A simple example of pi calculus provided by Milner involves three agents P , Q, and

R, with P connected to Q by channel x and to R by channel z [12]. Initially z is
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exclusive to the involved agents P and R, thus the system can be defined as:

S
def
= new z (P |R) |Q (2.2)

To illustrate the passing of channels, we can define P as x̄〈z〉.P ′, meaning that running

P will send z along x and leave P in new state P ′. Continuing with this idea, we

can say that Q is defined as x(y).Q′, and so Q will receive the channel z sent by P

and thus become capable of communicating with R in any further operations. If P

does not contain any other means of using z, it loses access to the channel following

this exchange. Thus, it can be said that the channel z was passed from between P

and R to between Q and R. This basic system exemplifies one of pi calculus’ most

notable features. To conclude the example, the transfer of channel z results in the

new system

S ′ def
= P ′ |new z (R |Q′′) (2.3)

where Q′′ is the result of replacing all instances of y (a variable in Q) in Q′ with z

(the actual “value” received by Q).

There are several means of testing equivalence in both CCS and pi calculus, with

each one implying a differing level of equivalence. Milner speaks at length on the

concept of observational equivalence, the idea that two agents are essentially equiv-

alent if all their external interactions with the rest of the system are identical. For

the purposes of these calculi, the idea of observational equivalence is realized through

bisimulation. Two agents are equivalent in their external functions if for each state of

each agent, there exists a state in the other agent that simulates it (i.e. has at least as

much capability) [15]. A bisimulation can be represented by a binary relation contain-

ing a set of pairs of states. However, on its own this is only a simulation (one-way);

a bisimulation must also be a valid simulation if all the pairs are reversed. Beyond

this, there are also two types of bisimulation: strong and weak. Strong bisimulation

states that for two agents P and Q, each result of using action α with P must map

to an equivalent result using the same action on Q. As stated before, all capabilities

of P must be matched by Q, as must the converse. Weak bisimulation loosens this

requirement, allowing for the use of silent actions (τ) to achieve a simulation.

There are rules in pi calculus for reaction and for transition; these rules can be seen

in Figures 2.2 and 2.3 [12].
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Figure 2.2: Pi Calculus Reaction Rules

Figure 2.3: Pi Calculus Transition Rules
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Chapter 3

The Spi Calculus

This section will explain the spi calculus as it pertains to the previous works of Robin

Milner, as well as basic facts about the calculus which are important for covering its

implementation later. Spi calculus expands on pi calculus, adding new capabilities

that make it better suited to modelling cryptographic protocols [1].

3.1 Additions

The main new feature of the spi calculus is the ability to encrypt and decrypt mes-

sages. Encryption and sending of a message M using a specific key K is performed

using the syntax p̄〈{M}K〉. Decryption is performed similarly, but utilizes a syntax

new to the calculus. q(x).case x of {y}K in F (y) will receive the encrypted message

on q and substitute it into {y}K . If the key K successfully decrypts the message,

then the process F will run using the decrypted message. Otherwise the process is

stuck. The new syntax caseM of 0 : P will run process P if M is 0, and is stuck

otherwise. Other comparisons to M can be included following the first one; for ex-

ample, caseM of 0 : P suc(x) : Q. Although the syntax’s lack of separation makes

this a bit unclear, the case statement now also has the option of running Q if M

is suc(x). Regarding suc(x), spi calculus also adds constructs for pairing and num-

bers. Specifically, (M,N) indicates a pair and 0 and suc(x) are used when working

with numbers. It is important to note that the number 0 and the nil process 0 are

different, but identifiable based on the context. A pair splitting operation is also

introduced; it functions as P [N/x][L/y] if M = (N,L), substituting the left and right

members of the pair in place of x and y in P . Finally, a syntax for matching is pro-

vided: match [M isN ]P runs P if M and N are the same and does nothing otherwise.

Abadi and Gordon treat this operation as part of the base pi calculus, although it is
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not used in the version originally introduced by Milner [12]. All other operations are

the same as was defined by Milner, although restriction has again been adjusted to

use the symbol ν (nu) instead of the word new. Table 3.1 lists the syntax that differs

from pi calculus.

Table 3.1: New Spi Calculus Operations

Operation Syntax
Encryption {M}K
Decryption caseL of {x}K in P

Restriction (new syntax) (ν x)P
Matching [M isN ]P

Pair Splitting let (x, y) = M inP

The first examples provided for spi calculus demonstrate a simple sending and receiv-

ing of an encrypted message from A to B, with B then performing a function F using

the decrypted message. From this, two important properties can be obtained. For

the definition of these properties, it is important to note that ' indicates something

similar to but not identical to bisimilarity, and means that both sides of the equation

behave identically to an outside observer. Specifically, it means that P (M) behaves

identically to P (M ′) where pi calculus’ bisimilarity would distinguish them.

The secrecy property is the guarantee that the message M cannot be intercepted

by a third party in-transit, while the authenticity property is the guarantee that an

attacker cannot force B to perform F using anything other than what is sent by A

[14]. The secrecy property can be represented as such: if F (M) ' F (M ′) for all

M and M ′, then secrecy is guaranteed. Authenticity is slightly more involved, and

requires the introduction of a “magic” version of the system in which B knows the

message M from A in advance. If inst(M) is the initializing process that sets up the

channel for A and B to communicate, as well as A and B themselves, then instspec(M)

is the “magic” version. The key difference between them is the latter providing M

to both A and B, rather than just A. With these two versions defined, authenticity

can be guaranteed if inst(M) ' instspec(M) for all M . The property shows that

the whole system’s performance in the specification is the same as in the original.

In other words, nothing suspicious can occur between the version that must send M

over a channel and the version that provides it directly to B.
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Spi calculus functions similarly to pi calculus, so it is more effective to demonstrate

its use by modelling a pre-existing cryptographic protocol as is provided by Abadi

and Gordon [1]. The Wide-Mouthed Frog protocol is a means of communication fa-

cilitated through a central server. Clients send the server the key which they will

use to communicate with another client. The server then provides that key to the

intended recipient of the forthcoming communication. In the spi calculus, the clients

A and B and server S can be represented as follows:

A(M) , (ν KAB)(cAS〈{KAB}KAS
〉.cAB〈{M}KAB

〉) (3.1)

B , cSB(x).case x of {y}SB in cAB(z).case z of {w}y in F (w) (3.2)

S , cAS(x).case x of {y}KAS
in cSB〈{y}KSB

〉 (3.3)

Put simply, A creates a new key to communicate with B, sends that key to S using the

pre-existing client-server key, and then sends its message to B using the sent encryp-

tion key. S receives the key sent by A, attempts to decrypt it using the pre-existing

client-server key and passes the decrypted key on using the separate client-server key

known to S and B. Finally, B receives the encryption key sent by S, decrypts it using

the appropriate key and then receives the message from A, attempting to decrypt it

using the received key. If all keys were correct, B will finally run F using the sent

message. Although the syntax can seem complex, it allows for very specific low-level

representation of protocols where precision is of the utmost importance.

The main construct in the spi calculus is the process, with terms serving as data.

For the most part, process equality is determined based on whether two processes

are composed of the exact same subprocesses and terms. There is one caveat to this:

since bound variables (such as the x in c(x).P ) serve only as placeholders for later

results of computation, the exact symbol does not matter so long as it occurs in all the

same positions. In this respect, the processes p(x).p〈x〉.0 and p(y).p〈y〉.0 are equal,

as they both receive a message on channel p and then send that message back on the

same channel. What the placeholder is called does not matter, since x and y are both

bound variables that appear in all the same places.

The spi calculus also possesses two different kinds of semantics: one which is based

on the notion of reaction, and one which is based on a labelled transition system akin
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to Milner’s previous works. The former is introduced first and relies solely on terms

and processes, while the latter is introduced as a supplemental semantics and utilizes

an extra construct known as an agent. While terms and processes are defined recur-

sively, agents are all made up of exactly one process at minimum with no recursion.

The distinction between these semantics will be further addressed later on during

discussion of the implementation.

3.2 Rules

The spi calculus has many rules for manipulation of its syntax. These rules fall under

six categories: reduction, structural equivalence, reaction, barb, convergence, and

commitment. We include these rules in Figures 3.1, 3.2 and 3.3, 3.4, 3.5, 3.6, and 3.7

respectively [1]. We will discuss these rules in detail in Chapter 6.

Figure 3.1: Reduction Rules
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Figure 3.2: Structural Equivalence Axioms

Figure 3.3: Structural Equivalence Rules

Figure 3.4: Reaction Rules
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Figure 3.5: Barb Rules

Figure 3.6: Convergence Rules

Figure 3.7: Commitment Rules
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Chapter 4

Syntax

The syntax of the spi calculus consists of terms, processes, agents, and various rela-

tions. In this section we will outline the syntax for the basic constructs of the calculus

and briefly cover the symbols used for the relations on those constructs; the relations

themselves will be discussed later. It is important to keep in mind that the spi calcu-

lus is based off a process calculus intended to model interacting systems in a mainly

non-deterministic manner. The syntax of the spi calculus builds on this to model

deterministic protocols and bears some resemblance to a programming language as a

result. All of the basic constructs and relations in the implementation are defined as

inductives; we will first discuss the original syntax proposed by Abadi and Gordon

[1]. Their actual definition and usage in the implementation will follow. Notation

choices and discussion will be deferred to Chapter 8.

4.1 Terms

Terms in the spi calculus act as data values. They are the elements that are sent

and received by channels, and can be encrypted before transfer. The set of terms is

defined by the grammar in figure 4.1. Consequently, the syntax of terms is fairly sim-

ple. There are three terminal kinds: names, variables, and zero. There are no visual

distinctions between names and variables as they are both represented as strings of

characters. The zero term appears as the numeral 0. Regarding the natural number

representation of the calculus, the successor term suc(M) can build up further terms,

and the pair term bundles two terms together with a standard syntax of parentheses

and a comma. Encryptions are represented as a target term within curly braces and

a shared-key term in subscript beside.
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Figure 4.1: Spi Calculus Terms

Terms are defined inductively in the implementation and by default do not mirror

the syntax of the actual calculus. As with any inductive type in Coq, they are rep-

resented as a specific constructor for that inductive followed by the parameters for

the type. The constructors for a term are, in order: TName, Pair, Zero, Suc, TVar,

and Encryption. Names and variable constructors are more specific as names and

variables can exist in contexts where other terms are invalid. These constructors em-

phasize that the values are treated as terms when they appear as such. Outside the

context of a term, names and variables are aliases for the string type. As an example

of constructor usage, a pair of two terms M and N would be represented as PairMN .

We define notations for each of these constructors to better resemble the original

syntax. Our choices for term notation can be found in Table 8.4.

4.2 Processes

Processes in the spi calculus, as their name implies, are the various operations that

can be performed on terms (data) using the calculus. Terms can be sent from place

to place, used for branching and matching, or for other purposes. Processes can also

be used to arrange parallel composition (processes that run at the same time). The

set of processes is defined by the grammar in Figure 4.2.

As stated previously, the process syntax resembles that of a programming language.

Operations can be done in sequence (or parallel) and each process executes in series so

long as it is capable of doing so. Hence, all processes except for the nil process require

a further process to run after they complete; this is reflected in the syntax for pro-

cesses. Each process takes the information it needs to perform the task and a process
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Figure 4.2: Spi Calculus Processes

to run afterward. Figure 4.2 does a reasonable job outlining the ten kinds of processes,

so we will skip the discussion of individual syntax as defined by Abadi and Gordon [1].

The inductive constructors for a process in the implementation are mostly identical

to the names of the kinds of processes. The only differences are in the pair splitting,

integer case and shared-key decryption processes, which have constructors Split, Case

and Decryption for brevity’s sake. The parameter order for process constructors re-

flects the left-to-right appearance of elements within processes (for example, output

is OutputMNP ) except for the Split and Decryption constructors. A pair split is im-

plemented as SplitM x y P and a decryption is implemented as DecryptionM N xP

to better represent the fact that the variables are being used in the next process.

We define notations for each of these constructors to better resemble the original

syntax. Our choices for process notation can be found in Table 8.1.

4.3 Agents

The last kind of spi calculus construct is an agent. Agents are represented by three

syntactic forms: abstractions, concretions, and processes. Agents are used alongside

a semantics which is different from the main semantics of the calculus, but can be

used in reasoning about processes as well. The set of agents is defined by the gram-

mar in Figure 4.3. Note that agents are not defined recursively. An agent contains
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at minimum a process, and no agent is made up of other agents.

Figure 4.3: Spi Calculus Agents

Abstractions and concretions are semantically analogous to input and output pro-

cesses, and as a result they are represented with a similar syntax. Abstractions are

input processes without the channel preceding the variable in parentheses, while con-

cretions drop the channel and also include a list of names where it would be. The

list does not replace the channel semantically because it is required for use with the

alternate semantics of agents while channels are not. In the implementation, abstrac-

tions and concretions can exist on their own as well as in the context of an agent. We

define the single-constructor inductives for these types as Abs and Con. For agents

the constructors are AAbs, ACon and AProc to represent their being considered as

agents instead of as their own type.

Composition and restriction are also defined for agents. We use the same syntax

for agent composition and restriction as we do for processes. The only unique opera-

tion for agents is interaction between an abstraction and a concretion. We denote an

interaction by an infix @ symbol.

We define notations for each of these constructors to better resemble the original

syntax; our choices for agent notation can be found in Table 8.3

4.4 Relations

There are many relations in the spi calculus. We outline the syntax for them in

Table 4.1. All of the relations in the calculus are written infix, between the related

constructs. Most of these relations are defined for closed processes. The exceptions

are barb and convergence which relate a closed process and a name, and commitment

which relates a closed process and a closed agent as well as the action bridging them.

Regarding the latter, the label α above the commitment arrow stands for a general
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action and may change depending on the commitment. Reaction and commitment

both use a right arrow symbol because they have similar meaning but are part of

separate semantics. A commitment can always be distinguished by the action label

above the arrow.

Table 4.1: Relation Symbols

Relation Symbol
Reduction >

Structural Equivalence ≡
Reaction →

Barb ↓
Convergence ⇓

Testing Equivalence '
Commitment

α−→
Strong Bisimilarity ∼s
Barbed Equivalence ∼̇
Barbed Congruence ∼
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Chapter 5

Semantics

This section will provide a general understanding of the meaning and intent behind

the constructs of the spi calculus. As stated previously, the spi calculus is designed

around the ability to model and prove properties about cryptographic protocols. As

a result, the constructs of the calculus are intended to allow for the definition of

logical agents (in the sense that they act autonomously, rather than as agents per

the calculus definition) that operate in parallel and communicate via channels. Of

course, it is also possible to model a single logical unit operating on its own and

communicating only with its internals, but this would be ignoring the capabilities the

spi calculus offers. A detailed examination of the different kinds of constructs in the

calculus follows.

5.1 Terms

Now we will outline the purpose of each kind of term. Names are a basic form of data

that can represent channels (the connections between nodes in a system) but also

pure data, as a name is just a string of characters. They are used as part of input and

output operations to indicate which channel a piece of data is being transmitted on.

Pair terms are self-explanatory; they are used to package two separate terms into one

logical unit. Zero is necessary for the use of a natural number system as the terminal

value, and suc(M) (successor of M where M is any term) is used in conjunction with

Zero to complete the natural number representation in the calculus. With this in

mind, it follows that any term can be provided as the parameter for suc(M), but

ostensibly the only terms that fit with this construct are Zero and recursive uses of

suc(M). Any other kind of term inserted in this construct would be valid syntax, but

would not make semantic sense. The next kind of term is a variable. Variables work
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like they do in any mathematical or computational context. Variables can be sub-

stituted for any other term at appropriate times during calculus operations. Finally,

encryption takes a term M and a term N , and uses N to encrypt M . This would

usually be a name (which would function as a shared key), but as with the successor

term any other term is a valid option.

Terms in the calculus serve as data to be passed around via processes or agents,

but there are some intricacies to their usage. As stated previously, the term suc(M)

is intended to be used as a natural number representation in concert with the term

Zero. However, the statement suc(n) (where n is a name) is valid syntax. It is not

meaningful in any way, and such cases are not considered in the implementation even

though they are possible. Encryption terms can also have odd possibilities, such as

trying to encrypt a term M (which is meaningful regardless) using Zero, a pair, or

another encryption. These usages are less outlandish than the previous example and

could have some real applications, since decryption succeeds as long as the term used

for decryption matches the term used for encryption. However, it can be said for

certain that encrypting a message with Zero is not a secure approach.

5.2 Processes

Now we will outline the purpose of each kind of process. An output process takes

two terms M and N and a process P , and sends the term N using term M before

running P . Obviously, the term M should be a name (channel) or a variable that

can be instantiated to a name. Input works analogously, but the payload must be a

variable, which becomes bound in P as the actual value of the received term. Parallel

composition takes two processes and sets them to run concurrently. Restriction binds

a name n within a process P . Replication takes a process P and spawns a theoret-

ically infinite number of copies of it. Matching takes terms M and N and runs P

only if the terms are identical; the matching operation becomes stuck otherwise. 0

(henceforth known as Nil) is the process that does nothing. Pair splitting binds x and

y in process P as the left and right element of term M assuming M is a pair term; the

process is stuck otherwise. A case statement works directly with the natural number

representation: given a term M and processes P and Q, the operation runs P if M is

Zero and Q if M is suc(x) (a successor term). The case operation is stuck otherwise,

and in the successor case the variable x is bound in Q as the subterm of the successor.

Finally, decryption takes terms L and N as well as a variable x and process P . The
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decryption succeeds if L is an encryption of some term M that was encrypted using

N . The process P is then run with x bound as the result of the decryption. The

decryption is stuck if any of these requirements are not met.

Processes also have some cases of valid syntax with invalid semantics. The sim-

plest case is that of input and output processes. The first parameter of an input or

output is a term indicating the channel to send the message on. A channel is indi-

cated by a name, but the parameter indicating the channel can be any term. This

is due to the potential for a channel to be represented by a variable which will later

be instantiated to a name via substitution. As a result, any term that is not a name

or variable would result in invalid semantics here. As with invalid term semantics,

nothing is done in the calculus to address these possibilities. It is expected that the

user will not attempt to prove things about semantically invalid processes just as one

would not prove things about meaningless programs.

There are several other cases of processes that are invalid semantically, but these

cases are addressed in the rules in the calculus. Match, Case, Split and Decryption

processes are used to do checking or branching on specific kinds of terms. Match looks

for two identical terms before continuing, Case branches based on whether a term is

Zero or suc(M), Split takes a pair term and separates the left and right elements in

a further process, and Decryption will decrypt an encrypted term (ie. Encryption M

N) using the provided term as a key before continuing. In each of these cases only

specific terms make sense. A Match can only proceed if the terms are identical, a

Case can only proceed if the term is Zero or suc(M), a Split can only proceed if the

term is a pair, and decryption can only proceed if the first term is an Encryption and

the second term matches the term used to encrypt it. These situations are addressed

by the Reduction relation, which has rules that can only be applied if the terms in

these processes are as the processes expect. Otherwise, no rules can be applied and

the processes are considered to be stuck.

5.3 Agents

The process form of agent is identical to the previously defined process; in other

words, all processes are agents. This is why agent semantics will work for reasoning

about any process as well. An abstraction can be seen as an alternate form of input

operation. Where an input operation can be written as c(x).P , an abstraction is
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written as (x)P . The obvious difference between abstractions and inputs is that the

channel is dropped from an abstraction. Concretions are similar, but expand more

so upon output operations. An output operation can be written as c{M}.P , while

a concretion is written as (νn){M}P . In addition to dropping the channel from the

syntax, a concretion also includes a restriction on a list of names. It is important

to note that this construct restricts a list of names, where a normal restriction only

restricts a single name. Multi-name restrictions only occur in agent-related aspects of

the calculus, and necessitated the definition of such a function in the implementation

of the calculus. Composition and (single) restriction, originally defined as process

constructs, are also defined for agents with some side conditions on a per-agent form

basis (ie. abstractions and concretions each have their own unique side conditions

while processes do not have such side conditions).

Agents do not have any situations in which their valid syntax does not make se-

mantic sense, aside from in the case that an agent is a process. Abstractions and

concretions omit the channel that input and output processes use, so they do not

have any general terms as parameters. There are side conditions on agent composi-

tions and restrictions that can invalidate such constructions, but these cases would

have to be evaluated based on the specific side conditions of each operation. In the

implementation, these side conditions are automatically handled by the system.

Composition and restriction, initially defined for processes, can also be used with

agents. Since agents are not defined recursively and all have an internal process,

these operations generally apply to the internal process as long as no side conditions

are broken. Additionally, we do not compose agents with other agents but instead

compose agents with processes only. For compositions on the left and the right, we

compose the internal process of the agent with the incoming process. The incoming

process cannot contain any names or variables free that are bound in the agent. Re-

striction of agents is simple for abstractions and processes, but since concretions have

an inherent list of bound names, it is necessary to consider this list when restricting

a new name. If the new restricted name occurs free in the term of the concretion, the

name is added to the concretion’s list. Otherwise, it can be ignored by the concretion

and passed into the internal process as a normal restriction. Restriction of names

which are bound within the agent already is allowed, but is not meaningful.

Interactions are also possible with agents, since they act as the labelled transition
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semantics equivalent of reaction between an input and an output process. The re-

sult of two agents interacting is a process, and the process is restricted by the list of

bound names of the concretion. As such, the abstraction cannot contain any of the

concretion’s bound names free. This would result in a different process semantically.

It may be confusing as to what the difference is between abstractions and concre-

tions versus input and output processes. It ultimately comes down to a choice of

semantics. It is possible to prove facts regarding spi calculus constructs using either

the reaction based semantics, or the labelled transition semantics. Abadi and Gordon

discuss some of these differences in their introduction of the commitment relation (the

labelled transition semantics). Structural equivalence is stated to make proofs more

awkward, so the labelled transition semantics uses commitment and agents without

appeal to structural equivalence to allow for a different approach to these proofs [1].
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Chapter 6

Rules

In this section, we will discuss the rules of the spi calculus and how they have been

implemented. The rules of the spi calculus are divided into six kinds: reduction,

structural equivalence, reaction, barbs, convergences, and commitment. Each set of

rules can be said to constitute a relation, except for barbs and convergences which are

essentially predicates. Regardless, each set of rules relates elements to other elements

and they will be generally referred to as relations from here on. All the relations in

the calculus are defined only on closed constructs if such a property exists for that

type. Reduction, structural equivalence and reaction are relations between two closed

processes, while barbs and convergences are relations between a closed process and

a name. Commitment is a relation between a closed process, a closed agent, and an

action.

All of the relations in the spi calculus are implemented as inductives with a type

signature reflecting the relation. For example, structural equivalence is of the type

ClosedProcess → ClosedProcess → Prop. Each relation has a set of constructors

that accept the specific forms (of processes, terms, etc.) that the rule requires. Some

rules are more general and only require that elements be part of a relation. An ex-

ample of the former rule is StructNil, which states that the process P | 0 is equivalent

to P . In Coq, this rule would be implemented as:

StructNil : forall P, Structural (CompositionP Nil)P (6.1)
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An example of the latter rule is StructSymm, the symmetry property for structural

equivalence. It would be implemented as:

StructSymm : forall P Q, Structural P Q → Structural QP (6.2)

It is important to note that due to the nature of dependent types in Coq and their

usage in the work for requiring closedness of terms, processes and agents, the actual

implementation of these rules is slightly more complex than is shown here. Barring

treatment of closedness, the rules would look as they do here.

Taking into account the definition of a closed process as a dependent type, the rules

of the calculus must be adjusted slightly to compensate. A closed process in the

implementation is the pair of a process and a proof that that process is closed (no

free variables). In Coq, two proofs of the same fact are not necessarily equal, creating

the situation that a rule may be applicable but cannot be applied due to the rule

inductive’s proof not matching the proof of the process in the goal or assumptions.

Semantically we do not care about the proof, but due to Coq’s strict rules regarding

dependent types and proofs we are unable to use traditional equality to determine

whether two closed processes are equal. We instead use a user-defined equivalence

class via a setoid to state that two closed processes are equal if the internal processes

are equal, bypassing the proof. This approach will be covered in detail later, but

is necessary at this point to understand the final implementation of a rule such as

StructNil:

StructNil : forall P QR, Q == P | 0 → R == P → Structural QR (6.3)

A double equal sign is Coq’s syntax for an equivalence, which we use instead of

equality. This rule now states that two closed processes Q and R are structurally

equivalent if they are themselves equivalent (per our definition) to the original left

and right sides of the structural equivalence. With this consideration, any closed

processes purportedly related by structural equivalence can have this rule applied,

after which it remains to show that the internal process of the process/proof pair is

of the correct form without appeal to whether it is closed or not. All rules in the

implementation follow this convention to allow for ignoring of the closedness proof,

and subsequently allow the proving of a series of lemmas stating that any relation

in the calculus can have a closed process or closed agent replaced by an equivalent

element.
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6.1 Reduction

The reduction relation is intended to allow for certain processes to be “executed”

and simplified to reach a point where a reaction can occur between input and output

processes [1]. Such processes include replications, matches, pair splitting, case dis-

tinctions and decryptions. Reduction is a one-way relation between closed processes,

and the resulting process is the act of reflecting the semantic meaning behind the pro-

cess. For example, RedRepl turns the process !P into !P |P , as replicating a process

spawns a new parallel instance. The other rules are similar. RedMatch completes the

match comparison as long as the two terms are identical, and the rules regarding pair

splitting, case and decryption substitute the involved terms into the next process if

the conditions are met. In RedSplit, this condition is simply that the term given to

the split must be a pair term; the process does not make semantic sense otherwise.

The other conditions are similar. RedZero involves no substitution, as the semantics

of a zero case process indicate that the left process runs without any changes.

It is worth noting that, on paper, all of the rules of reduction are axioms. Their

implementations in Coq are not technically axioms due to accounting for closedness,

but semantically the rules are all still axioms.

6.2 Structural Equivalence

The rules regarding structural equivalence allow us to consider two closed processes

equivalent even if they are not equal, as long as they will function identically when

executed. Structural equivalence focuses mainly on parallel composition and restric-

tion as a result. By the definition of the word, processes composed in parallel all run

at the same time, so two processes that have the same subprocesses arranged in a

different parallel order will perform the same. For restriction, as is the case in the

declaring of new variables in a programming language, the order of declaration does

not matter so long as none of the new identifiers are used in between the declarations.

Hence, structural equivalence rules allow us to consider two processes with differently-

ordered compositions or restrictions to be equivalence. There are also rules to allow

such operations on the nil process to be ignored. For example, StructDrop states

that (ν n) 0 ≡ 0. Obviously the processes (ν n) 0 and 0 will perform identically, so

they are considered structurally equivalent. Colloquially, structural equivalence can

be seen as having identical functionality when looking at the internals of two systems.
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It is a similar idea to the concept of testing equivalence (which is covered later), but

is a stronger statement about two processes. A relationship can be inferred between

these equivalences through parts four and five of Proposition 7, namely that strong

bisimilarity implies barbed congruence and barbed congruence implies testing equiv-

alence [1].

Structural equivalence also has a rule StructRed, which states that any two processes

related by a reduction are also structurally equivalent. This holds with the semantic

intention behind structural equivalence; both sides of a reduction will perform the

same since the left process of the reduction (the “before” state) is a check for some

condition before the right process runs. The exception to this is RedRepl, which is

structurally equivalent because it spawns infinite copies of the same process which

will always do the same thing. Consequently, any fact proven about structural equiv-

alence must also be true for reduction. This is important to consider when proving

something about structural equivalence. Reduction may be a “one-way” relation, but

when considered as a structural equivalence it becomes reversible via StructSymm.

This means that any fact about reduction that is only true from left to right becomes

untrue in the context of structural equivalence.

6.3 Reaction

The reaction relation represents a core aspect of the spi calculus. It relates the before

and after states of a communication between closed processes. The notion of reaction

was present in Milner’s previous works, but was not represented in the same way; the

commitment relation more closely resembles Milner’s approach. The main focus of

reaction is the result of an input process and an output process executing in paral-

lel. The output process sends a message which is received by the input process, and

this translates into the single axiom of the reaction relation, ReactInter. Aside from

this axiom, there are three other simple rules. They allow for dropping of parallel

processes and restrictions, as well as the replacement of the components of a reac-

tion with structurally equivalent processes. ReactInter works exactly as reaction has

been described: an output process and an input process communicating on the same

channel in parallel interact to become a new parallel process composed of the output

subprocess and the input subprocess, with the sent term substituted into the latter.

Aside from adjustments for consideration of closedness, reaction has a fairly straight-
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forward implementation.

6.4 Barb

The barb relation functions as a predicate which indicates whether a process can

communicate on a given channel. This check occurs via two axioms for the input and

output processes, which are the only processes that perform actual communication.

We can use these axioms to show that for a given closed process and name, the pro-

cess is capable of communicating immediately via that named channel. When this is

the case, it is said that the process exhibits a barb for that channel. The barb rules

work similarly to those of reaction, allowing for the dropping of parallel processes

and restriction, as well as the replacing of the process in the barb with one that is

structurally equivalent.

There is an alternate version of the Barb predicate in the implementation known

as BBarb, or “basic barb”. This version arises from an issue with the Coq definition

of Barb that prevents the closing of contradictory instances via inversion. Since the

BarbStruct rule states that any structurally equivalent process can be substituted for

the process in a barb, an attempt to do inversion on an impossible barb will result

in the possibility that the process was structurally equivalent to some other process.

Of course, the hypothesis was inherently contradictory so this is impossible, but the

system cannot infer this. BBarb is defined as a separate logically equivalent predi-

cate to Barb which keeps its version of BarbStruct separate from the rest of the rules.

Consequently it is necessary to include versions of the Reduction rules in the context

of Barb, since reduction implies structural equivalence and we want to continue to

take these cases into account when dealing with barbs. However, this approach avoids

the possibility of an infinite cycle of barbs in the event of a contradiction that requires

an inversion.

6.5 Convergence

Convergence works very similarly to the barb predicate, being based entirely upon it

with one addition. The convergence predicate holds if the closed process exhibits the

barb after some reactions. Hence, if the process under a convergence was obtained

via a reaction, we can instead consider the state of the process prior to that reaction.

This is the only new rule of convergence. The other rule states that any barb is also
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a convergence.

6.6 Commitment

The commitment relation exists almost entirely separate from the other aspects of

the calculus. It is an alternate semantics relative to the previous relations, but is

essentially equivalent and can be used in proofs about the previous semantics as well.

Commitment is based on the concept of a labelled transition system instead of the

notion of reaction, focusing on the idea of closed processes becoming closed agents

via some action. While actions can be viewed as channels, they are not the same as

names (which suffice to represent channels in the previous semantics). An action can

be one of three things: a name, a co-name (indicated by a name with a bar above it),

or the distinguished action τ (tau) [1]. Names and co-names are used for receiving

and sending, respectively, when an external communication occurs. τ is used when

the communication is internal to the system. In the implementation, names and co-

names are not distinguished because there is no need to do so. It is possible to infer

from the context what kind of name is involved and doing so is unnecessary. As a re-

sult, in the implementation an action is an inductive type which is either a name or τ .

Since commitment is an alternate form of the semantics given by the other five rela-

tions, it follows that its definition is fairly involved even on paper. The rules contain

axiomatic cases for abstractions (input agents) and concretions (output agents) as

well as the common rules for dropping of parallel elements and restrictions. Apart

from these, there are two rules that represent the agent equivalent of ReactInter:

CommInter1 and CommInter2 serve to produce an interaction between an abstrac-

tion and a concretion. Finally, there is a rule that allows the process of a commitment

to be reverted to a pre-reduction state, if such a state exists. This rule is necessary

to account for the intentional absence of structural equivalence in commitment, and

is the only reference to the previous semantics in commitment. This also means that

structural equivalence is not considered in the definition of commitment, which is an

intentional design decision [1]. Structural equivalence is considered separately using

the concept of bisimulation. It is inherent to the definition of bisimulation, and by

proving that structural equivalence is a strong bisimulation, we can incorporate struc-

tural equivalence when considering the process of a commitment. Abadi and Gordon

prove a lemma for this in the original paper [1].
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Chapter 7

Equivalences

In the spi calculus, there are several different notions of equality on processes. These

multiple notions arise from a desire to consider processes equal beyond a perfect

matching of terms, names and variables. For example, if two processes differ only

by the messages being sent, they still execute the same subprocesses to do so and

could both be considered as the same protocol. This section will outline the different

notions of equality in the spi calculus as defined by Abadi and Gordon [1].

7.1 Basic Equivalences

The spi calculus has three core types of constructs: terms, processes, and agents.

While traditional equality suffices for a significant portion of our definitions on pro-

cesses, Abadi and Gordon define a slightly weaker notion of equality on processes:

we identify processes up to the renaming of bound names and variables. Since bound

names and variables can be renamed at any time without changing the inherent se-

mantics of the process, it does not matter if two processes are identical but have

different bound elements. This notion of equality is implemented as a function Pro-

cessEquiv, which checks that two given processes are made up of all the same con-

structors and terms with bound names and variables in one process substituted for

those of the other process.

While we discuss basic equivalences, it is also relevant to cover the notion of equal-

ity for closed elements in the calculus. In the original paper, there is no distinction

between a process and a closed process (or other such types); some definitions are

only for closed elements, but there is no separate consideration of equality for closed

elements. In the implementation, we have defined such notions not with a semantic
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intent, but instead as a means of circumventing the strict nature of Coq’s dependent

typing. Since dependent types are a pair made of an element and a proof that the

element possesses a certain property, the definition of equality for closed elements in

the implementation simply takes the left members (the element) from the dependent

pairs and considers whether they are equivalent.

Since agents are based on processes, we can convert any relation on closed processes

to also apply to closed agents. Abadi and Gordon define an agent version of a closed

process relation for each kind of agent. For abstractions, we consider if the internal

processes of the two abstractions are related by the given relation after the bound

variable of each abstraction is filled with the same arbitrary term M . For concretions,

we consider whether the lists of bound names for the concretions are permutations of

each other, and whether the internal processes are related by the given relation. For

processes, we simply consider if they are related by the given relation. This definition

is called ARelation in the implementation. Representing this definition in the imple-

mentation requires some amendments. We discuss this in further detail in Chapter

8.

7.2 Testing Equivalence

Testing equivalence is the core equivalence relation of the spi calculus. The idea for

testing equivalence comes from the work of De Nicola and Hennessy [5]. It is intended

as a weaker relation than strong bisimulation, which is used as a central relation in

both CCS and pi calculus. The problem with strong bisimulation is that it distin-

guishes two processes which perform identically aside from their messages. The spi

calculus requires two processes to be considered equivalent if they function the same

but for the messages [1]. As such, testing equivalence works by running each process

in parallel with an arbitrary third process. If both processes’ interactions with the

arbitrary third process are identical, then the two processes will behave identically in

any context and are exchangeable [4].

The convergence predicate is the foundation for testing equivalence, and with it Abadi

and Gordon define the notion of a test. A test consists of any closed process R and

barb (name) n, and can be used to test some closed process P . If P in parallel with

R satisfies the convergence predicate with n (ie. if P |R can communicate on channel

n) then P is said to have passed the test. Process testing is intended to resemble the
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experiments an attacker might perform to gain an understanding of a system’s be-

havior. With testing, Abadi and Gordon define a testing preorder v (ie. for P v Q,

if P passes the test then Q passes the test) and use this to define testing equivalence

' as P v Q ∧ Q v P .

7.3 Strong Bisimilarity

To understand strong bisimilarity, it is necessary to first discuss the base concept of

simulation. A simulation relation is one in which one construct “simulates” another

in terms of their capabilities. For a fairly literal example, a modern computer could

most likely perform all the functions of a computer from the early 1990’s with signif-

icant ease. In this situation, a modern computer simulates all the capabilities of an

older machine. Focusing specifically in terms of process calculi like CCS, a system

A is said to simulate another system B if every state transition (called an action

in CCS) in B is matched by a transition in A. In this respect, A has at least as

much capability as B [11]. Robin Milner utilizes both strong and weak simulation

for CCS. Strong simulation requires the simulation to be composed of named actions

for state transitions while weak simulation allows a simulation to make use of the

silent action τ . A bisimulation of any kind is a relation in which A simulates B in

some specific manner and B simulates A via the converse of that simulation. If the

simulation is represented as a set of pairs of states, the set obtained by reversing the

pairs must also be a simulation. It is not sufficient for A to simulate B in one way

and for the reverse to happen in some other manner. We say that two constructs are

strongly bisimilar if a bisimulation relation exists that relates them. In other words,

strong bisimilarity (represented as ∼s) is the union of all strong bisimulations. For the

spi calculus, we only consider strong bisimilarity with no reference to the weak variety.

In the spi calculus strong bisimulation is used in conjunction with the commitment

relation, which is intended to act as a labelled transition semantics for the calculus.

Consequently, the definition of simulation makes direct use of commitment as the

mechanism for state transitions. A simulation is a relation R such that when it re-

lates some closed processes P and Q, and P transitions (commits) to some agent A

via an action, then there exists a corresponding transition from Q to some agent B

via the same action and R relates A and B as well. From this definition we say that

R is a strong bisimulation if both R and its converse are simulations. Finally, we

define strong bisimilarity as relating two closed processes P and Q if there exists an
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R which relates them and meets the criteria for being a strong bisimulation.

As stated previously, strong bisimilarity is not suitable as the core notion of equiva-

lence for processes in the spi calculus since it distinguishes two processes that differ

solely by the messages being sent. In other words, it is too strong a relation for our

purposes.

7.4 Barbed Equivalence

If strong bisimilarity does not suffice due to distinguishing processes with different

messages, it stands to reason that one possible solution would be to consider only the

channels used and not the messages being sent while still keeping with the idea of

strong bisimilarity. This gives rise to the concept of barbed simulations, bisimulations

and bisimilarity. The concept was previously introduced by Milner and Sangiorgi us-

ing CCS as an example [13]. A barbed simulation draws on the previous definition

of simulation: it is a relation R such that for all processes P and Q, if R relates P

and Q then any barb for P is matched by Q and if P reacts to some P ′ (ie. P → P ′)

then there exists some Q′ such that Q reacts to Q′ and R relates P ′ and Q′ up to

structural equivalence [1]. To elaborate on the latter part of the definition, P ′ and

Q′ are related by R up to structural equivalence if there exist some P ′′ and Q′′ such

that P ′ ≡ P ′′, Q′ ≡ Q′′ and R relates P ′′ and Q′′.

Barbed bisimulation is analogous to strong bisimulation: a relation is a barbed bisim-

ulation when both the relation and its converse are barbed simulations. Barbed bisim-

ilarity is referred to henceforth as barbed equivalence, and two processes are barbed

equivalent (represented as ∼̇) if there exists a relation which relates them and is a

barbed bisimulation. Abadi and Gordon also define a version of barbed simulation up

to barbed equivalence. Where barbed simulation normally considers up to structural

equivalence, this version instead considers up to barbed equivalence. Going further,

there is also barbed simulation up to barbed equivalence and restriction. These sim-

ulations also have bisimulation and bisimilarity (equivalence) definitions analogous

to those previously discussed, and all of these definitions are represented and can be

referenced in the implementation.
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7.5 Barbed Congruence

Barbed equivalence is still insufficient as a relation; there exist processes which are

barbed equivalent but not strongly bisimilar or testing equivalent, and barbed equiv-

alence is also not closed under composition. It is necessary to strengthen the relation

in a manner that resembles testing equivalence: two processes are barbed congruent

(represented as ∼) if their respective compositions with an arbitrary third process R

are barbed equivalent [1]. The definition for barbed congruence is as follows:

P ∼ Q , ∀R, (P |R ∼̇Q |R) (7.1)

Barbed congruence suffices as an equivalence relation on closed processes for the

purposes of the spi calculus, and actually implies testing equivalence. As a result,

demonstrating barbed congruence is sufficient to show testing equivalence.

39



Chapter 8

Implementation

Up to this point we have outlined how the spi calculus works, along with a minor

commentary on how some of these pieces (syntax, semantics, rules, etc.) work within

the implementation when it was relevant to the topic. In this chapter, we will focus

entirely on the process of implementing the spi calculus. Specifically, we will cover how

the calculus was implemented as well as the rationale for the wide variety of design

decisions that had to be made. We begin with a brief discussion of the Coq proof

system in which the implementation was written, and move from there to the many

different parts of the calculus and the various challenges encountered and decisions

made.

8.1 Coq

Coq is an interactive theorem prover that allows for the definition of types and func-

tions, and provides means by which to prove properties about these constructs. It

is able to check the correctness of a proof and extract a certifiably correct program

from a verified proof in a number of functional programming languages. Programs

and proofs are treated as interchangeable, and the system requires guaranteed termi-

nation of all functions. Proofs can be constructed using various tactics which can be

applied in a manner akin to a sequential program, adding to the notion that programs

and proofs are equal in the eyes of the system.

The Coq proof system has a number of features suitable for the implementation of

the spi calculus. Dependent types (elements that satisfy a specific property) appear

fairly often in the implementation; Coq provides a built-in definition of these depen-

dent types. As has been mentioned, the system is incredibly strict about such types
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to the point of differentiating two proofs of the same fact. The calculus has been

implemented with this in mind. As a result, this strictness adds a degree of rigor to

the implementation that helps guarantee accuracy of both the implementation itself

and any usage by other parties.

Even without inclusion of dependent types, the word “rigor” does an admirable job

describing the system as a whole; a large motivator for the use of Coq was the unyield-

ing nature of the system. Barring the assumption of additional axioms (which the spi

calculus implementation does not do) or programmer error (which was unfortunately

far more common in this case), it is very difficult to make mistakes in defining or

proving functions and facts in the system. Utilizing the spi calculus in a strict system

such as Coq should help to guarantee the accuracy of any definitions or proofs made

using it.

8.2 Methodology

There is a significant body of pre-existing work done in the Coq proof system, includ-

ing some on CCS and pi calculus. This implementation was done from the ground

up with no reference to these packages; the only pre-existing libraries used will be

discussed here, and are included in the imports section at the beginning of the imple-

mentation file [16]. We use the List and ListNotations packages to deal with lists and

more convenient syntax for those lists. The String package contains the data type of

the same name which is used as the internal representation for names and variables.

The Relations, Setoid, and SetoidClass packages are used for dealing with relations

and the defining of them, mainly for creating instances of the Proper and Setoid

classes. Finally, we use the Sorting and Permutation packages for the Permutation

predicate used with the Sets package, the latter of which was created for this thesis.

All other code was newly written for this thesis.

8.2.1 Basic Definitions

The absolute basics of the spi calculus implementation involve the definition of the

syntax of the calculus. This includes the representations of names and variables, as

well as terms, processes and agents. Names and variables are defined separately from

terms because they must be considered both as themselves (like in restriction, which

needs a name specifically) and generally as a possible form of a term (in most in-
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stances such as for the payload of an output process). Internally, names and variables

are implemented as strings of characters. As names and variables are simply text

identifiers, this approach is sufficient and also allows for the definition of decidable

equalities for them. This in turn allows for the use of names and variables with the

many functions and predicates Coq provides for decidable types.

Terms are defined inductively, with the six kinds (Name, Variable, Pair, Zero, Suc-

cessor, Encryption) each having their own constructor. Since names and variables

are already defined, the term versions of these types are called TName and TVar.

Other term constructors are consistent with what the original paper defines them as

(for example, Pair M N where M and N are terms). Processes are defined in the

same way, with the ten constructors Input, Output, Composition, Restriction, Repli-

cation, Match, Nil, Split, Case, and Decryption. Each constructor corresponds to

one of the kinds of process shown in Figure 4.2. Agents are defined similarly, but

abstractions and concretions are referred to specifically in the same manner as names

and variables. As a result, abstractions and concretions have their own inductive

type defined, and the agent constructors have the prefix A prepended to the expected

name to indicate whether the element is being considered as itself, or as one possible

kind of agent (ie. Abstraction is defined as its own type with constructor Abs, while

the agent constructor for abstractions is called AAbs). As the third kind of agent, a

process, is already defined (ie. any process is an agent), the constructor for an agent

which is a process follows the same convention but is shortened to AProc for brevity.

For each construct in the spi calculus, we also define free name and free variable

functions fn and fv. These functions return the set of all free names or variables of

the construct. Coq does not allow for overloading of function names, so we use the

aforementioned function names for the process version of the function and append t, a,

Abs, and Con to the function name (ex. fvt) for terms, agents, abstractions and con-

cretions, respectively. The fna and fva functions for agents leverage the pre-existing

functions for its constituent kinds.

8.2.2 Substitution

Substitution is a vital component of any calculus with free variables, and in the spi

calculus pertains to the substituting of a term for all instances of a given variable

in a term, process, or agent. Aside from the actual substitution functions, there
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are numerous lemmas that have been proven regarding substitution for dealing with

occurrences of substitution in proofs. We define the functions TSub and Sub for

substituting into terms and processes respectively. Although a traditional type sig-

nature for a substitution would involve a term, a target variable and a construct to

substitute within, the substitution functions in the implementation are slightly more

involved. We follow the same approach of substituting a term for a variable so long

as the variable is not bound, but we do so not for a single term and variable but

for an entire general list of term and variable pairs. Specifically, the implementation

uses a list of pairs in which the variable is the first element and the term is the sec-

ond. The necessity for this “queue” of substitutions stems from Coq’s requirement

for well-foundedness of functions.

Coq requires guaranteed termination of all functions. If it cannot automatically

deduce that a function is defined in a manner that will always reach a base case,

it will complain accordingly. We see this issue if the substitution function is imple-

mented naively: when an incoming term contains a free variable matching a bound

variable in the process, standard procedure is to rename that bound variable leaving

the semantics of the process unchanged. To do this in a single substitution function,

we must perform a variable-for-variable substitution of the new identifier before per-

forming the original substitution. By trying to perform the original substitution on

the renamed process, we are no longer calling substitution recursively on a smaller

process; we are calling substitution on the result of another substitution. As a result,

Coq cannot infer that the function will terminate even though a variable renaming

ostensibly will not change the size of the original process. We could go through the

ordeal of demonstrating to Coq that this is okay and will not affect termination, but

it becomes infinitely easier to adopt a queue approach to substitution.

With our queue approach, we define a function lookupDefault for searching the queue

of variable/term pairs and returning the first existing match based on a given variable

“key”. If nothing is found, we return a default value given when the lookup is called.

Although it only returns the first hit in the queue, substitution queues should only

ever contain the original variable/term pair and any renaming events added to the

queue, so queues will never contain duplicate keys. Using this lookup, we go through

the process and check any free variables within it using the lookup function, replacing

them with the term if they are found and leaving them alone via the default value

otherwise. To avoid variables which are bound, when recursing into a process with
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a bound variable we remove all pairs in the queue that target that bound variable.

The removal always takes place, so if the bound variable is not a substitution target

then the removal will not change the queue.

In many proofs, often involving closedness, we encounter substitutions within a free

name or variable function. To deal with occurrences of substitution in such situations,

we prove lemmas indicating the general outcome of such occurrences. Given the use of

a list as a substitution queue, we first prove general list versions of these lemmas and

then a trivial version for a substitution of a single term. We call the latter versions of

these proofs fnt TSub, fn Sub, fvt TSub, and fv Sub. The free variables of a substi-

tution are a subset of the union of two sets: the free variables of the original term or

process with all targets removed via difference (as they either did not exist or will be

replaced) and all of the free variables present in the terms to be substituted in. The

free name version of this lemma is simpler; since substituting for a variable cannot

result in the loss of any free names, it is only a subset of the union of the free names

of the original term or process and the free names in the terms to be substituted in.

These lemmas should suffice in the event that substitution occurs within a free name

or variable check (most commonly during proofs of closedness). It is worth noting

that these lemmas consider subsets. If the goal is a set equality, Coq will not allow

rewriting using these lemmas. It is necessary to first use the antisymmetry tactic

defined in the set package; this will separate the set equality into two goals showing

that both sides are subsets of each other.

8.2.3 Setoids

In the implementation, we define our own notions of equivalence for several types,

which are known as setoids in Coq. Here we will discuss why these notions are

necessary and give a general idea of how they work in the system. The first major ap-

plication of setoids as mentioned above is their usage for equating closed constructs.

We can circumvent strict proof equalities by using our own setoid equivalence and

incorporating it throughout the implementation. Closedness is significant enough to

warrant its own section however, so we will leave its discussion for elsewhere and focus

on the other setoids used.

There are two other setoids in the implementation, used for sets and processes. Con-

ventional sets do not care about ordering of elements, but since sets are implemented
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as a dependent type of list we need a setoid for this. The setoid itself is simple: two

sets are equivalent if their internal lists are permutations of each other. This covers

the requirement that ordering of sets does not matter. The process setoid is far more

involved.

In the spi calculus, Abadi and Gordon state that processes are considered equal up

to renaming of bound variables. This makes sense, as bound variables can always be

renamed without changing the semantics of a process. Hence, two processes that are

identical save for choice of bound variable identifier should be equal. Implementing

this consideration is non-trivial. One possible approach is to substitute the bound

variables of one process for those of the other and check traditional equality. This is

a valid approach but tedious in the context of proving other facts about it in Coq.

We opt instead to use a function that takes two processes and builds lists of cor-

responding bound names and variables respectively. If the processes have matching

constructors that bind variables, we pair the bound identifiers together and add them

to the list of name pairs or list of variable pairs according to the type being bound.

When we encounter a terminal name or variable in both processes, we consider the

lists of name and variable pairs to determine if the elements are equal and return an

appropriate result. Of course, if at any point the two processes do not have matching

constructors, the processes are not equal.

8.2.4 Closedness

Closedness of elements, as was covered briefly in the introduction, is the state of hav-

ing no free variables. Closedness is important in the spi calculus, as all the relations

defined by the calculus are defined solely for closed processes and agents. Unclosed

elements can be created, but are generally not considered in the source paper. Hence,

it is important to be able to determine closedness of these constructs and also of the

type constructors and functions the constructs can be used with, to ensure that these

transformations of closed constructs also result in closed constructs. To do this, every

constructor of the three main syntactic constructions in the spi calculus is shown to

preserve closedness when provided with closed elements. Significant consideration

has been given to representing closedness in the implementation. We use dependent

types to do so, in conjunction with the free variable functions for each type. We will
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use processes as an example. In Coq, we define a closed process as follows:

DefinitionClosedProcess : Type := {P : Process | fv P == ∅} (8.1)

Although this makes ClosedProcess a pair of an element and the proof that it has no

free variables, we do not create an element of a dependent type with the same syntax.

To do this, the constructor exist is used. Assuming we have a process P and some

proof that it is closed, we can create the closed process as follows:

exist (funP => fv P == ∅)P proof (8.2)

The first parameter of the exist constructor is a function taking the element and in-

serting it into the predicate, while the second and third parameters are the element

and the proof that it satisfies the property. In almost all cases, the first parameter

can be left as an underscore. An underscore represents a field that Coq will fill in

automatically by inference, and it can do so here since only one dependent type is

defined for processes resulting in one possible predicate.

Utilizing dependent types presents its own issues, however. Since two proofs of the

same fact are not equal, two equal processes with differing proofs are also not equal.

We must define our own notion of equality between closed elements which takes two

such “pairs” and equates the left element of each pair. We define this for terms, pro-

cesses, abstractions, concretions, and agents. Extracting the left and right elements

of a dependent type can be done with the functions proj1 sig and proj2 sig. We alias

these functions for improved readability. The former is aliased per-type (getTerm,

getProc, getAgent, etc.) while the latter is universally aliased as getProof. We include

type-specific aliases for proj1 sig for typing convenience when equating the results.

Since proofs are rarely equal and are never considered as such in this implementation,

a universal alias of proj2 sig suffices.

This notion of equivalence does not immediately solve the problem of proof inequality,

however. If we attempt to apply a rule of the calculus to some related closed pro-

cesses, we may encounter a situation in which an assumption and the goal have the

same internal processes but different proofs. In these cases, we cannot close the goal

and we cannot show that the proofs are equal. To account for this, we have to include

our notion of equivalence in every rule of the calculus. Put simply, the process or

agent that results from application of the rule can be substituted for some equivalent
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process. Our equivalence states that the internal processes must always be equal, so

this does not change the semantics of the calculus and allows us to bypass differing

proofs in all aspects of closedness. Adjusting the rules in this way complicates their

application slightly: Coq has a much harder time inferring obvious parameters of

rule applications since it does not know which closed process we want to consider

equivalent. We must almost always provide these equivalent closed processes and

subsequently show that they are equivalent, but doing so should be trivial if the rule

is applied properly.

8.2.5 Sets Package

In the spi calculus, the free names and free variables of a process are represented as

sets with no duplicates. The Coq library contains a lightweight implementation of

sets based on lists, but is not sufficient for our purposes. We have implemented a

robust package for sets based on dependent types, defining sets as lists that contain

no duplicates. The various operations on sets are also defined, partially utilizing the

operations from the lightweight library implementation. While the set package is used

often in the implementation, its contents strongly resemble that of conventional set

theory so we will forgo an in-depth discussion of its development.

8.2.6 NewVar Package

Substitution of a term for a variable with a process can result in the requirement

that a bound variable be renamed to avoid conflicts with incoming variables. When

similar conflicts occur in the Coq system, a number is appended to the name of the

identifier to create a unique new identifier, starting at zero. For example, if an iden-

tifier x exists already, a new distinct x will be renamed to x0, then another to x1,

and so on. We elected to follow this simple convention when performing conflicting

substitutions and so required a function that would create a unique identifier based

on an old identifier and a context of other identifiers that exist already.

This is easier said than done in Coq, which relies entirely on recursion. We require a

function that continually tries higher numbers until one results in a unique string, but

recursion requires that the function decrease towards a base case. It was necessary

to come up with a structure in which there was a decreasing parameter to recurse

on. This required the definition of several functions, resulting in the function newVar

which takes a string to rename and a list of strings that exist already (a context).
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The function removes all numerals at the end of the target string before finding the

first number it can append that creates a unique string based on the context.

8.2.7 Calculus Rules

Implementation of the rules of the calculus was fairly simple. The initial version of

the rule inductives was a virtually identical reproduction of the rules as defined in

the paper. Complications arose when closedness was formalized, as was discussed

previously. This necessitated adjustment of the rules to incorporate a means of ig-

noring proofs of closedness that were essentially never equal. An initial attempt was

made to show that closedness was irrelevant to the relations. In other words, after

the initial relating of two closed processes, the closedness aspect could be dropped

entirely to simplify proofs. This would allow for consideration of closedness with

minimal adjustment to the rule inductives. However, this did not work in some cases.

For example, StructTrans required a guarantee that the middle element was closed

when we only knew that the first and last processes were. This was not possible to

prove without additional assumptions. It was also necessary to show some consistent

property regarding the free variables of processes related by reduction, but since re-

ductions imply structural equivalence and structural equivalence is symmetric, this

would require proving that the free variables of the processes in a reduction are equal.

This is not the case, and so based on these issues this attempt could not succeed.

We instead opted for the method used at present: we augment the rules in the

implementation such that any process in the conclusion of a rule can be swapped

for an equivalent closed process. In this manner, applying rules to equivalent closed

processes becomes possible in all cases, but also becomes a little more awkward.

Without closedness, rules could almost always be applied with minimal specification

of parameters; Coq was able to infer the parameters on its own. With the equivalences

present in the current rules, it is universally necessary to provide the equivalent closed

processes that the rule will result in, even if they are identical. It is also necessary

to prove that the processes are equivalent, but this is trivial if the rule is correctly

applied. Following an application of a calculus rule with a semicolon and spitrivial

should address the extra subgoals without presenting them to the user. The tactic

spitrivial is a sequence of several fail-proof tactics that attempt to resolve the trivial

equivalences produced by a rule application. Using it after a semicolon applies it to

all subgoals generated by the previous tactic.
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We also prove several lemmas to allow for replacement of equivalent closed terms.

These lemmas mostly follow the naming convention of the rules and are called Red-

Proper, StructProper, ReactProper, BarbProper′, ConvProper, and CommProper.

BarbProper′ is named as such as it clashes with the naming convention for the actual

instances of Proper, which we define to allow for rewriting of equivalent closed ele-

ments within these relations. These instances use the full name of each relation (ex.

StructuralProper).

8.2.8 Basic Barb

Basic barb, or BBarb, is an alternate version of the Barb relation that is logically

equivalent to the original definition. This basic barb arose as a result of attempts

to prove a barb assumption to be contradictory. The resulting inversion (ie. reverse

case-analysis) on the assumption created an infinite loop in which the system always

claimed that there may exist a structurally equivalent process and it was impossi-

ble to show otherwise. BBarb avoids this by separating the BarbStruct rule from

the rest of the Barb relation. This way, we can convert from a normal Barb to the

alternative Barb′ which contains only the BarbStruct rule. This version of the rule

uses BBarb in its premise, so performing inversion on it will not infinitely attempt

to find a structurally equivalent process. Since we separate structural equivalence in

this manner, it is necessary to include new cases in BBarb for each of the rules of

reduction. We do so because reduction implies structural equivalence, and we need

these new rules to cover that implication without direct access to BarbStruct. All

of these reduction-based rules correspond to one of the cases of reduction, but we

adjust them slightly to better facilitate the purpose of a barb check. Specifically,

the RedRepl rule states that a replication reduces to a single copy of the replicating

process in parallel with the original replication. This is not particularly helpful as a

transformation for checking barbs; we would rather consider only the process being

replicated. As a result, BBarbRepl is instead defined as follows.

BBarbRepl : forall P β, BBarb P β → BBarb !P β (8.3)

To implement BBarb and Barb′, it was necessary to prove the latter equivalent to

Barb. We have done so by induction, considering every case of each inductive. The

proof is fairly long due to the many cases for BBarb added by the incorporation
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of reduction-based rules, but since the two predicates are logically equivalent they

each possess an equivalent rule or combination of rules to facilitate a matching trans-

formation of the barb. For the forward implication (Barb → Barb′) we utilize the

BBarb rules corresponding to the original Barb rules, and BarbStruct′ for the case of

BarbStruct. For the reverse implication (Barb′ → Barb), we prove a lemma stating

that BBarb P β → BarbP β. Since Barb′ only has one rule (which uses BBarb), we

perform inversion on Barb′ to get a BBarb and then apply this lemma to finish the

proof. Based on this proof, it is always possible to change a Barb into a Barb′ for the

purposes of demonstrating a contradiction.

8.2.9 Equivalences

The many notions of equivalence present in the spi calculus ended up being fairly

straightforward translations of their definitions in the original paper. Specifically, we

refer to the equivalences discussed in chapter 7. Since these equivalences are mostly

defined in terms of previous relations, they are short and require little in the way of

implementation. The main equivalences are testing equivalence, strong bisimilarity,

barbed equivalence, and barbed congruence. Abadi and Gordon provide many slight

variations on barbed equivalence; we define these but do not use or focus on them

anywhere presently. As mentioned previously, barbed equivalence is analogous to

barbed bisimilarity.

Testing equivalence is based on testing preorder, which is in turn based on the defini-

tion of a test. A test checks if a process exhibits a given barb when placed in parallel

with a given process (generally an arbitrary one). This definition uses the conver-

gence predicate, while preorder uses two tests in an implication. Testing equivalence

subsequently checks that both directions of a preorder pass the test. Strong bisim-

ilarity and barbed equivalence are based on different relations, but follow a similar

buildup. We first define a simulation predicate that determines if a given relation is

that kind of simulation. We then define a bisimulation predicate that checks if the

relation and its converse are both simulations. From this, we define the equivalence

in which there must exist a bisimulation relation that relates the given processes.

Strong bisimilarity requires that all transitions of two processes match, and so uses

the commitment relation to check these transitions. Barbed equivalence checks only

the channels being communicated on, and so uses the barb predicate in conjunction

with the reaction relation. The latter serves as the transition in the same manner
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that strong bisimilarity uses commitment.

Several of the equivalence definitions also use the UpTo relation. We say that two

elements are related by R “up to” some other relation S if we can relate each of

those elements to other elements via S and those other elements are related by R.

Put simply, we can “rewrite” any elements related by S if the result is still related

by R. Barbed simulation uses this; we consider a transition (via reaction) valid if

the elements of the reaction are structurally equivalent to some other element, so we

consider reaction up to structural equivalence.

Barbed congruence is the last major equivalence and is defined largely in terms of

barbed equivalence. It mirrors testing equivalence in the regard that it relates two

processes P and Q by checking them while in parallel with a common process R.

Where testing equivalence uses the convergence predicate at its core, barbed congru-

ence uses barbed equivalence instead. As indicated by the difference in semantics

between the two relations (the former uses the initial semantics based on reaction

while the latter uses the labelled transition semantics of commitment), barbed con-

gruence looks at the barbs as transitions in the same manner as strong bisimilarity.

It is a stronger relation than testing equivalence, and as a result implies it.

8.2.10 Proper and Equivalence Instances

As discussed previously, there are two main tactics in Coq for transforming the goal

and assumptions: apply and rewrite. The apply tactic works based on implications,

so to apply the theorem either the conclusion must appear in the goal or all of the

premises must appear in the assumptions. Rewrite is simpler, allowing for in-place

swapping of equal terms without the need to consider the direction of an implication.

In the case of an if-and-only-if, either tactic can be used. While rewrite can always

be used if one side of an equality appears in a goal or assumption, it can also be used

for the aforementioned logical equivalence (iff) as well as generally for other relations.

However, to use rewrite for relations other than equality and iff, it is necessary to first

prove that it is possible to perform that rewriting via application of theorems. We

do this in Coq by proving an instance of Proper, meaning that the given constructor

or function holds with regard to the indicated equivalences. Once we prove that a

context is proper, it becomes possible to use rewrite when the relation appears in

that context.
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For example, in the implementation we show that structural equivalence (≡) holds

under composition, so if P ≡ Q and P |R, we can rewrite using the structural equiv-

alence to get Q |R without having to apply rules and show they are equivalent. In the

long run, this becomes much more convenient. We prove many different instances of

Proper for different constructors and relations, both for convenience of the user and

convenience proving facts necessary to complete the implementation. We do so for

the setoids in the implementation as well as for the relations defined for the calculus.

For setoids, we have sets, processes, and closed versions of terms, processes and

agents. Sets are a basic data type, but because we need a setoid to judge their equal-

ity we also want to be able to replace equivalent sets in the context of operations

on sets. Therefore, we show that union, intersection and set difference are all proper

with regard to set equality. This helps immensely with proofs of closedness, as we

often have assumptions that certain constructs have no free variables (for example,

fv P == ∅) and goals that are unions of several constructs’ free variables. Rewriting

equivalent sets allows us to replace most or all of the goal with empty sets, which

can be simplified via set rules. Rewriting under intersection and set difference is less

common, but still possible. We prove similar morphisms for processes, but for more

cases. For each constructor (Output, Input, etc.), we show that we can replace equiv-

alent processes within them. Closed processes have similar instances of Proper; these

allow for quick replacement of closed processes which are identical aside from their

proofs. However, we cannot prove direct instances for all closed process construc-

tors. In the constructors that bind variables (like CInput), we provide not a closed

subprocess but a process with at most the bound variable free (to allow replacing

of that variable with a term as the process executes). As a result, the constructors

CInput, CSplit, CCase, and CDecryption do not have Proper instances; they instead

have equivalent lemmas that perform the same function but cannot be used with the

rewrite tactic. These lemmas follow the same naming convention as Proper instances.

We also define several instances of Proper with regard to the relations in the cal-

culus. As in the structural equivalence example above, there are several rules in the

calculus that translate into allowing for replacement of a process with another pro-

cess within a relation. StructRed is one such example: since P reducing to Q implies

that P is structurally equivalent to Q, we can easily prove that any two closed pro-

cesses in a reduction relation can replace each other within a structural equivalence.

52



Similar rules include ReactStruct, BarbStruct, ConvReact, and CommRed, which all

directly allow for the replacement of closed processes which are related by structural

equivalence, reaction and reduction, respectively.

8.2.11 Agent Semantics and ARelation

When discussing agent semantics, Abadi and Gordon define composition and restric-

tion of agents as well as interactions. The latter works analogously to ReactInter but

with an abstraction and a concretion, while the others are defined using their process

counterparts. The key difference with these operations is that they have side condi-

tions in place to avoid conflicts with bound names and variables, which abstractions

and concretions almost always have. The authors continue from here by implicitly

assuming such side conditions are always met. We opt to take a different approach

in the implementation.

Since these side conditions are intended to avoid naming conflicts for bound iden-

tifiers, we can programmatically avoid them through the renaming of those bound

identifiers. In agent restriction, we add the restricted name to the internal process

except in the case of a concretion, where we must consider if it occurs free in the

term. If it does not, we proceed as in the other cases. If it does, we instead add

the name to the list of bound names inherent to the concretion. Essentially, we only

add the element to the list if it matters to do so. Normally agent restriction has the

side condition that the incoming restriction cannot be present in the list already. We

ignore this in the implementation, as multiple instances of such a name in the list

should not affect the concretion.

For agent composition, the bound identifiers in the abstraction or concretion can-

not occur free in the incoming process. This makes sense, as they would become

bound and change the meaning of the process. We avoid this side condition by check-

ing for conflicting identifiers between those bound in the agent and those free in

the process, and based on this list of conflicts create new identifiers and rename the

bound instances in the agent. We can then compose the two elements without conflict.

For interaction, the bound list of names of the concretion is repurposed to cover

the entire resulting process. As such, the abstraction cannot have any of these names

occurring free within it. Similarly to with agent composition, we check for these con-
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flicts between the concretion’s list and the free names of the abstraction and generate

new names accordingly. With these considerations, no explicit side conditions are

necessary for agent semantics.

Since agents are a semantic adjustment of processes, it makes sense that any re-

lation on processes can also work on agents. Abadi and Gordon define a “function”

that converts any relation on closed processes into a relation on closed agents. We call

this function ARelation in the implementation. For a given relation, if the two agents

are abstractions, they are related if for any arbitrary closed term, it can be substi-

tuted in for the abstracted variable on both processes and the resulting processes are

related. For concretions, they are related if their restricted lists are permutations of

one another, the terms are the same, and the processes are related. For processes,

the two must simply be related.

This is how the function is defined in the original paper [1]. However, there is a

minor oversight in how it works. Abadi and Gordon define process equivalence up to

renaming of bound names and variables. All of the names in the list of a concretion

are bound, which means that if process equivalence as a relation is provided to ARela-

tion, it will not accurately determine that two concretions with differing bound names

(in the same positions) are equivalent. As a result, the definition of ARelation in the

implementation is a bit more involved. The abstraction and process cases remain

as they were originally defined. For concretions, we know that the terms must be

equivalent up to renaming of bound names (and variables, but at this point no vari-

ables can be bound). Thus, we define a helper function that takes in two terms and

performs a matching on them, building up a list of name pairs where they occur in

the same position within the terms. From this, we can determine what names should

be equivalent within the concretions’ lists. If the terms are not structurally identical,

the concretions cannot have equivalent terms and the relation returns False. Other-

wise, we perform a renaming within the restriction lists and processes based on the

result of the helper function before checking whether the processes are related by the

given closed process relation. This allows ARelation to take into account renaming

of bound names in concretions when checking relations such as process equivalence.
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8.2.12 Proofs/Propositions

There are close to forty propositions and lemmas included in the original paper [1].

These facts range from relationships between equivalences in the calculus (such as

structural equivalence implying testing equivalence) to important lemmas like struc-

tural equivalence being a strong bisimulation. A significant portion of the appendix

in the paper is devoted to proving these propositions [1]; we include only a small

selection of these in the implementation at present according to necessity. It is im-

portant to note that two versions of the original paper exist; there is a technical report

with a longer appendix including more involved proof discussion [2]. We mention this

because the numbering of propositions and lemmas differs slightly between these ver-

sions for some proofs. For example, the proof that structural equivalence is a strong

bisimulation is Lemma 22 in the original paper and Lemma 25 in the technical report.

While the proofs of some of these propositions are covered by Abadi and Gordon,

these descriptions are not always sufficient to make proving them in the implemen-

tation trivial. Lemma 22 is quite involved, requiring two-way analysis of every single

structural equivalence rule and proofs of structural equivalence rules that work for

agents rather than processes. Work was done on this proof prior to the inclusion of

closedness and process equivalence but has not been updated with the rest of the

implementation; it requires consideration of a massive number of cases. Abadi and

Gordon discuss some but not all of the cases of this proof and do not address any-

where the concept of structural equivalence rules for agents [2]. This and other extra

requirements had to be inferred while attempting to prove the propositions. As a

result, we opted to focus on the functionality of the calculus itself rather than re-

prove all of these propositions in the implementation, many of which would likely

also require proof by hand first.

8.2.13 Notations

Internally, definitions like the process constructors in Coq are represented in a straight-

forward manner with the name of the constructor followed by its parameters. While

in isolated cases this is fine, processes in the spi calculus can become rather unwieldy

with even just three constructors chained together. Abadi and Gordon provide a sim-

ple syntax based on CCS and pi calculus which came before, and Coq supports such

notation replacements as long as it does not interfere with certain reserved symbols

that the system uses. These reserved symbols include various kinds of parentheses,
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and keywords like if, then, else, and match. While notations can often be declared

using such symbols, it causes havoc when the system attempts to parse further def-

initions. We have attempted to implement notation that is faithful to the original

syntax of the spi calculus while also avoiding conflict with Coq’s pre-existing notation.

The best way to avoid such conflicts was to make use of special unicode symbols

wherever the syntax clashed with that of Coq. For example, a composition process

uses a vertical bar, commonly available via the | symbol. However, this symbol is

used frequently by Coq, so we need an alternative. A quick fix comes in the form of

combining symbols to form a single operator, such as : | : (colon-bar-colon). This is

convenient for entering protocols into the system but less so for reading them during

proofs. We choose to use a unicode vertical bar which is visually similar to the com-

mon | symbol, and make similar choices for other syntax. While this does slightly

complicate entry of protocols into the system due to the absence of these symbols on

a conventional keyboard, modelling the protocol is only a small initial portion of the

work. The focus should be on the proving of properties about the protocol. Hence,

we have opted to focus on using symbols that enhance readability. This may make

the initial modelling of the protocols more tedious, but should help when proofs begin

to accrue many assumptions (which they tend to do very quickly).

We will now outline the notations used for each construct in the implementation,

starting with closed processes. We opt to use calculus-accurate notation on closed

processes before general processes since notations cannot be used for multiple defini-

tions and closed processes are far more prevalent in the spi calculus. Note that this

is a visual representation of the syntax and not an exact copy of the unicode sym-

bols used. If the notation looks identical to the original syntax, then it is reasonably

approximated via said symbols.

There are a few immediately noticeable differences from spi calculus syntax. We do

not use the symbol ν for restriction, since the word new is just as readable and easier

to type. The new names l in P notation (and MultiRestriction as a definition) is not

intended for programmer use, but is included as it will appear during proofs. The case

notation uses the word Check rather than Case to avoid conflict with the constructor

of the same name. Decryption is depicted verbally; Abadi and Gordon denote it as

an offshoot of the integer case syntax. However, this both conflicts with the case
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Table 8.1: Closed Process Notation

Constructor Notation
COutput M N P M〈N〉 .P
CInput M x P M(x).P

CComposition M N M |N
CRestriction n P new n inP

CMultiRestriction l P new names l in P
CReplication P !P

CNil 0
CMatch M N P : [M isN ] : P
CSplit M x y P Let (x, y) beM inP
CCase M P x Q CheckM of zero : P suc x : Q

CDecryption M N x P DecryptM using N into x inP

notation and utilizes a subscript notation unavailable to us in Coq.

For the relations between these closed processes, we have the similar issue of an

absence of subscripts and superscripts. Table 8.2 contains the notations for the

corresponding relations from Table 4.1. We represent the arrow for reaction and

commitment as three dashes followed by a right angle bracket; this prevents it from

conflicting with any similar arrow notation used by Coq. Commitment with a process

P, agent A and action α is denoted as P −−− > A via α. We use arrows composed

of the tilde symbol for barb and convergence, as they are larger and more visible than

unicode downward-facing arrows. All other symbols are similar to their originals.

Table 8.2: Relation Notations

Relation Symbol
Reduction >

Structural Equivalence ≡
Reaction −−− >

Barb ∼>
Convergence ∼∼>

Testing Equivalence ∼=
Commitment −−− > viaα

Strong Bisimilarity ∼ s
Barbed Equivalence · ∼
Barbed Congruence ∼
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Agents have notation which is virtually identical to how they are defined in the original

paper. These notations are listed in Table 8.3. We focus on closed elements here for

the same reasons as with processes above. The main difference comes in the distinction

between abstractions and concretions on their own and in the context of agents.

Abstractions and concretions have notation that matches the paper, but the agent

versions of these constructors need a notation as well. We choose to wrap the internal

element (an abstraction, concretion, or process) in curly braces with an identifier to

the right to indicate what kind of agent the element is. The encapsulation does not

matter much, since the internal element will usually be obvious based on its notation.

We also define notations for operations on agents, including composition, restriction,

and interaction. Abadi and Gordon define general infix symbols for composition and

interaction, but the results differ based on what side each operand is on. We denote

these operations by appending L or R to the symbol.

Table 8.3: Closed Agent Notations

Constructor Notation
CAbs x P (x)P

CCon l M P (ν l)〈M〉P
CAAbs F {F}Abs
CACon C {C}Con
CAProc P {P}Proc

CACompositionL P A P |L A
CACompositionR A P A |R P

CARestriction n A AResn inA
CInteractionL F C F @L C
CInteractionR C F C @R F

We use a similar approach for terms. However, we do not have notations for all

terms. As discussed previously, we cannot have a closed constructor for a TVar. We

introduce a notation for it along the same lines as for agents, but it appears less so

than others. Names have the same convention with arbitrary encapsulation that is

mostly irrelevant. We use N and V in these notations to denote whether the internal

identifier is a name or variable, as opposed to agents where we use A in all cases. Pairs

have the expected notation, and we denote encryptions verbally as decryptions were

due to the lack of subscript notation. Since the symbol 0 is used for the nil process,

we let the constructor Zero (or CZero, the closed version) suffice for notation; the

same goes for the constructor Suc and its closed counterpart.
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Table 8.4: Closed Term Notations

Constructor Notation
CTName n {n}N

TVar x {x}V
CPair M N (M,N)

CEncryption M N EncryptM using N
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Chapter 9

Example

In this chapter, we will provide and discuss an example of the spi calculus as it is

represented in the implementation and a proof about that example. A note regarding

channels: while Abadi and Gordon retain the concept of names and co-names from

pi calculus for denoting receiving and sending on channels, the implementation does

not distinguish between them. Name or co-name can still be inferred based on the

context. The discussion below maintains usage of co-name notation for clarity (ex.

c) but the system has no such notation.

The simplest possible example of a proper protocol in the spi calculus is the sending

of a message on a channel; Abadi and Gordon use this as their first example [1]. If

we have a channel c and some message M to send, the protocol would look like this:

(ν c) (c〈M〉.0 | c(x).0) (9.1)

From this process, a reaction can occur between the left and right subprocesses to pro-

duce the process 0 | 0. While this is a valid example, we would prefer to demonstrate

the passing of the message as well. Currently, this protocol sends M and does nothing

with it. We can create a more realistic protocol using an arbitrary process containing

just the variable x free. Such a process is identical in nature to an abstraction, a kind

of agent. We can instantiate an abstraction’s free variable by providing a term, which

makes the abstraction into a process. Instantiation is analogous to substitution, but

the variable to target is that of the abstraction. With an abstraction F , we can create

the new protocol:

(ν c) (c〈M〉.0 | c(x).F (x)) (9.2)
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With this protocol, we can send M on channel c, at which point it will be received

by the right subprocess and replace all further instances of x. At the end of the pro-

tocol, the result will be the process 0 |F (M). This is the first sample protocol given

by Abadi and Gordon. For further simplicity the implementation proof specializes

the arbitrary abstraction F to become (x)0. This has no bearing on the semantics of

the proof, but allows the system to trivially solve some equivalences that arise in the

proof. We still demonstrate authenticity via two protocols, one which must send M

and another which already has M ; they simply do nothing with that message once it

is instantiated from abstraction to process. We will define the processes parametri-

cally with an arbitrary F , then specify when we begin the proof.

To represent this protocol in the implementation, we utilize closed process construc-

tors chained together. We define the left and right subprocesses separately and com-

bine them together via a “bootstrap” process. The sending process A is defined as

follows, and requires a closed term as the message parameter since the process itself

must remain closed.

DefinitionA (M : ClosedTerm) := COutput (CTName “c”) M CNil (9.3)

We could also use notation, but this gives a better idea of the internal representation

of a process. The receiving process B is slightly harder to represent: the input

process binds the variable x below it, but when defining a process used closed process

constructors, we cannot insert variables on their own as they are not, on their own,

closed. The constructor CTName serves this purpose for a name since names are

closed on their own, but we cannot do this for variables. Hence, we cannot use a

closed process constructor like CInput to build B. We must instead define a normal

process B′ and show that it is closed to create B. The unclosed process is defined as

follows (we omit the parameters due to length; B′ takes a closed abstraction F ).

DefinitionB′ := Input (TName “c”) “x” (Instantiate (getAbs F ) (TV ar “x”))

(9.4)

We use getAbs to get just the abstraction and ignore the proof of closedness. We

then state and prove B′Closed, the fact that B′ has no free variables. This is trivial

for a specific process that is actually closed and only requires simplification of the

free variable check and use of lemma fv Sub to consider the free variables of the

instantiation. From this process and this proof, we can make the closed process B
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using the exist constructor.

DefinitionB (F : ClosedAbstraction) := exist (B′ F ) (B′ClosedF ) (9.5)

Finally, we can define the protocol Basic using A and B. We compose the two

processes and restrict the name c within the composition for use as a communication

channel. We also include a closed term M as a parameter to the whole protocol and

pass it into A. Once again we omit the parameters due to length: Basic takes a closed

abstraction F and a closed term M .

DefinitionBasic := CRestriction “c” (CComposition (AM) (B F )). (9.6)

With this, the protocol has been fully modelled and can be used in any relation on

closed processes, such as testing equivalence.

While this protocol does serve as a good example of how to model protocols in the

calculus, the real purpose of the system is to prove properties about protocols. We

will show the authenticity property for this protocol as a demonstration of a simple

proof in the implementation. Authenticity is the guarantee that a message sent via a

protocol is from the expected sender, rather than an attacker substituting their own

message. To prove this, we require a “specification” of the protocol. We will forgo the

incremental construction of this specification and address only the differences from

the original.

The specification of the protocol is a version in which everything happens in the

same way, but the message is already known to the receiving process. This makes the

sending somewhat redundant, but the intention is to show that this protocol is testing

equivalent to the original. In this way, we demonstrate that it is impossible for an

attacker to cause the protocol to use any message other than the one sent by A. We

adjust B accordingly to get the full specification, which only changes the parameter

of F to be M prior to the reaction.

(ν c) (c〈M〉.0 | c(x).F (M)) (9.7)

We call this protocol Basicspec and represent it analogously to Basic, but with M

as the parameter for F . We must create an unclosed version of Bspec and prove it

to be closed before constructing a closed process in the same manner as with its
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original counterpart. With these two protocols, we can now begin to show that

Basic F ' Basicspec F , where F = (x)0. We will leave F alone for syntactic sim-

plicity until it makes sense to consider (x)0.

We opt to emulate the proof given by Abadi and Gordon. They prove these protocols

to be testing equivalent by instead proving the stronger property of strong bisim-

ilarity. Colloquially, testing equivalence demonstrates a matching of all currently

possible barbs as well as all barbs possible after any reactions. Strong bisimilarity

demonstrates a matching of any and all transitions that two constructs can perform

and the states they reach. These simple protocols can make only one transition via

the silent action τ (a reaction between the input and output processes) and they

both result in the same new state 0 |F (M). Hence, we should be able to perform an

exhaustive analysis of their transitions and show that they all match. Strong bisim-

ilarity utilizes the commitment relation for transitions, so we will be using it in this

proof.

To show two processes are strongly bisimilar, it is necessary to show that they are

both members of a strong bisimulation. In a strong bisimulation, a relation and its

converse must possess pairs of states that advance via the same action and reach

states that also simulate each other. In this case, the initial states of Basic and

Basicspec simulate each other via τ , and their next states are both identical and make

no transitions so they simulate each other as well. We begin the proof by breaking

down the definition of strong bisimilarity accordingly: the notation ∼s unfolds to

become the following. As shown previously, Basic and Basicspec have parameters F

(specifically (x)0 in this case) and M ; we will omit their inclusion when discussing

proof terms to avoid cluttering them, but they are still present in the implementation.

When we break down Basic, we will include these parameters again.

existsR, StrongBisimulationR ∧ R Basic Basicspec (9.8)

We must provide a relation and show it is a strong bisimulation. We do so using

a function MakeRelation which takes in a list of pairs of processes and produces a

relation checking whether the two inputs match any of these pairs. We provide the

two pairs (Basic, Basicspec) and (0 |F (M), 0 |F (M)) (we will refer to this relation

as R for simplicity) and proceed to split the goal into the left and right subgoals of

the logical and. The right subgoal is trivial; we will spend most of our time showing
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that R is a strong bisimulation.

Since a strong bisimulation is defined as a relation R and its converse being sim-

ulations, we can again use split to separate the goal into these two subgoals. We

can then break down the definition of simulation based on the following definition

where P and Q are closed processes, Y and Z are closed agents (to avoid confusion

with processes A and B from Basic) and α is an action. We use double arrows for

implications to avoid confusion with commitment arrows here, although Coq utilizes

single arrows for its syntax.

∀P QY α, R P Q =⇒ P
α−→ Y =⇒ ∃Z, Q α−→ Z ∧R Y Z (9.9)

The symbol R indicates a version of the closed process relation R that works equiv-

alently on closed agents. Since our relation only deals with processes rather than

abstractions or concretions, this does not add any complexity to the proof. We first

use intros to move our two premises (some P and Q are related by R, and that P

commits to some Y via α) into our assumptions. With the assumption that P and

Q are related by R, we can begin considering the possible cases. Since R is just

two pairs of specific related processes, we can destruct this assumption into the two

possibilities: either P = Basic ∧ Q = Basicspec or P = 0 |F (M) ∧ Q = 0 |F (M).

There is a third possibility (P and Q are not related), but this results in an assump-

tion of False, whicih is easily discarded by the tactic contradiction. The underlying

definition of this assumption is a logical or, so each of these possibilities is a separate

subgoal. It will provide the former case first, but in both situations we can destruct

this logical and to get the individual facts (which will not produce new cases, as both

are true). We then substitute them into the appropriate places in the assumption

P
α−→ Y and our goal ∃Z, Q α−→ Z ∧ R Y Z. We get the new assumption Basic

α−→ Y

and the new goal:

∃Z, Basicspec
α−→ Z ∧R Y Z (9.10)

To progress from here, we must begin considering the possible commitments of our

assumption. We do this by performing an inversion. From this the system will infer

what each component must be to satisfy each rule of commitment. Due to the setoid

usage in our rule inductives, Coq generally cannot discard absurd possibilities imme-

diately; it falls to us to do so. Since our protocol begins with a restriction, the only

possible case is CommRes. We can discount all other possibilities using further inver-

sions, as in all the other cases we have an absurd setoid equality such as an output
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process being equal to a restriction process. The exception to this is CommRed, in

which case we must rewrite the given equality in the reduction assumption and then

perform another inversion in which every single possible case is absurd. Thankfully,

this can be accomplished easily using a blanket inversion after a semicolon, applying

the tactic to every subgoal’s contradictory hypothesis. We will have to use similar

tactics on further inversions but will not cover these in as much detail since they all

follow the same general approach.

Now that we have determined that our commitment was derived from CommRes,

we have a new commitment based on the inner constructs of the original commit-

ment. Specifically, we know that A |B α−→ Y ′ and α 6= c since c is restricted. Y ′ is

inferred from the original Y , since CommRes tells us that Y = (ν m)Y ′. The name

m is arbitrary and produced by the inversion but will not affect the proof, since we

consider processes equivalent up to renaming of bound identifiers such as these. From

here, we need to consider what Y ′ is via another inversion. Since the left element of

the commitment is a composition, the only rules that apply are CommInter1, Com-

mInter2, CommPar1, and CommPar2. CommRed does not apply since no reductions

deal with an output/input composition. Only one of these four cases actually applies:

CommInter2 deals with an interaction of an input and output composition where the

output is the left process.

From here we have four major cases to prove or disprove, and we begin each one

with a common series of steps. Initially, the previous inversion provided us the fol-

lowing system assumption in each of these cases:

new “c” in (AM |B F ) == newm in (P1 |Q0) (9.11)

The obvious conclusion here is that AM == P1 and B F == Q0. Unfortunately, it

is not that simple. Since these processes are under a name binding, they are instead

equivalent up to considering that “c” and m are equal. This makes things slightly

more complex in the implementation. When dealing with trivial equalities such as

this in Coq, we normally use inversion to conclude each piece on either side is equal

to its counterpart. Coq cannot do this here due to how process equivalence is defined

(via a function). We instead prove a lemma for each process constructor that breaks

such an equivalence down with respect to the process equivalence function. Applying

the corresponding lemma RestrictionInversion gives us the fact that these composi-
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tions are equivalent with respect to “c” == m. From here we can break it apart into

the left and right pieces of the composition, and simplify those process equivalences

as much as possible. This requires some work with destruct and a few possible re-

sults that are handled with try, a keyword which does not stop evaluation of a tactic

upon failure. This hassle is necessary since in cases where we have assumptions like

OutputM N P == Q, the system simplifies this to a case matching where Q is either

an output (which makes sense) or not an output, which produces the assumption

False. We have to manually dispose of all the contradictory possibilities for Q. We

do this here for both sides of the composition equivalence, in all cases of the commit-

ment. Once they have been fully broken down into the various trivial equalities, we

can proceed to reason about each case.

We disprove CommInter1 since it requires that the left process is an input, and

this produces an absurd setoid equality between an input and an output. Comm-

Par1 and CommPar2 require a little more work, but the contradiction arises from

the CommPar rules cutting the two process composition into a single input or output

process. The only applicable cases for these are CommIn or CommOut, but these

rules require that the transition occurs via the channel of the process. The channel of

these processes is c, so α must be c. Since we have the fact that α 6= c from our first

inversion, these cases contradict our assumptions. We are left with CommInter2, so

we have the assumptions A
m−→ C and B

m−→ F ′ as well as the complete interaction

A |B τ−→ C @F ′. We denote the abstraction as F ′ to differentiate it from our initial

abstraction F , and can now conclude that the action α must be the silent action τ .

The name m is arbitrary per the inversion. We perform a further inversion on these

assumptions to flesh out what C and F ′ must be based on CommOut, CommIn, A,

and B. Since the process A sends term M on channel c and then does nothing, the

concretion must be (ν) 〈M〉 0 and occurs via channel c. Similarly, we conclude that

the abstraction must be (x)F (x) on the same channel.

Now, we must provide a matching transition agent Z so that we can apply Com-

mInter2 and deal with the resulting subgoals. Our goal is now the following:

∃Z, Basicspec
τ−→ Z ∧R (ν c) (C @F ′) Z (9.12)
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Though we know what C and F ′ must be, we leave them “folded” here for better

visual clarity until it is important to unfold them (in the implementation, they ap-

pear in full). Our choice of B is almost obvious: we want to use the result of the

interaction 0 |F (M) wrapped in a restriction of c, since the sending occurs within

this context. However, the difference between B and Bspec comes into play at this

point. To be able to apply CommInter2 after this, we need a commitment that uses

an interaction. Thus, we need to frame 0 |F (M) as an equivalent interaction. The

obvious choice is C @F ′, but F ′ has x as the parameter of the instantiation of F .

Basicspec already has M filled in for this x, so we have to provide our own abstrac-

tion with M already present. We choose the concretion (ν)〈M〉0 and the abstraction

(x)(Instantiate F M). In this example F is the abstraction (x)0, so we fill all in-

stances of x with M (in other words, we do nothing). Therefore, we now want to

show the following two subgoals. To differentiate the two very similar agents in the

second subgoal, we encase them in square brackets.

Basicspec
τ−→ (ν c) ((ν)〈M〉0 @ (x) 0) (9.13)

R [(ν c) (C @F ′)] [(ν c) ((ν)〈M〉0 @ (x) 0)] (9.14)

Once again the latter subgoal requires a trivial examination of what R relates; most

of our effort goes into demonstrating the former. Using (x)0 simplifies things greatly

here, as we provide an abstraction containing the nil process which is pre-instantiated

with the message M. Instantiating the nil process will always result in the nil process,

so the instantiation is technically irrelevant. However, since it would be necessary

for a general abstraction, we structure it in this manner anyway. Now, we show the

commitment via the calculus rules.

We begin by applying CommRes; this allows us to drop the restriction from both sides

of the commitment as long as the restricted name is not the same as the commitment

action. We know α 6= c from our work with the assumptions (technically τ 6= c since

α = τ), so the side condition is fulfilled; we finish the subgoal τ <> ActName “c”

using the tactic discriminate, as the two actions are of different base constructors.

We now have the following goal:

A |Bspec
τ−→ (ν)〈M〉0 @ (x) 0 (9.15)
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This fits the rule CommInter2, so we apply it and instead consider the two individual

commits based on CommOut and CommIn. Our two subgoals are A
c−→ (ν) 〈M〉 0 and

Bspec
c−→ (x) (x) 0. These goals fit the commitment axioms CommOut and CommIn,

so we can close these subgoals by applying these rules. Specifically, the channels,

terms and processes must match on either side.

Now we show that our provided agent Z, the “specialized” result with M already

sent is related by R to the non-specialized version which must send M . Per our

relation R, we stated that the process 0 |F (M) was related to itself. If we resolve

these interactions via simplification, we get a composition with a nil process on the

left and F instantiated with M on the right whether it was actually important to

send M or not. Of course, with the nil abstraction here, the interaction will sim-

plify to a composition of nil processes. Hence, the two interactions have the same

result which is related by R. Having closed this subgoal (and having dealt with every

other contradictory case of commitment), we have finished showing that this pair

of states is a simulation. The system now asks us to show simulation for the pair

(0 |F (M), 0 |F (M)), but this comes with the assumption that (ν c) (0 |F (M))
α−→ A.

The composition of nil and a “nil abstraction” cannot make any meaningful commit-

ments, so this assumption is contradictory. We show this using inversion on all of

the absurd cases that appear. If F were arbitrary it is possible that it may produce

another composition of input and output processes, but we would assume it does not

for the purposes of this example.

We have finished showing that our relation is a simulation, and must now show

the converse is as well. This is largely identical to the example up to here, but with

Basicspec and its commitments as our assumptions. It would normally necessitate

a different choice of agent B when demonstrating the commitment: instead of the

pre-filled abstraction (x) (F (M)) in our assumed interaction, we would provide an in-

teraction with an abstraction (x) (F (x)) that has not yet received the message. The

specific case of a nil abstraction does not require this (since both versions simplify to

the same result immediately), but again we format it this way as if F was arbitrary.

Specifically, we provide an instantiation of the nil process that uses the variable x.

Everything else is identical in terms of assumptions and goals, and should match up

to what has been done already. Now that the the converse simulation has been shown,

we finally have to show that the two processes Basic and Basicspec are related by

our relation R. This is mostly trivial, and entirely so in our specific case. With nil as
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the internal process for the abstraction, the system can resolve these subgoals down

to a primitive True immediately. With an arbitrary abstraction, it is necessary to do

some work to show equivalence of the original processes of the protocol and the new

arbitrary ones produced by inversion. This is a primary reason for the use of nil in

the abstraction, as it greatly simplifies the example proof in a manner that does not

relate to actual application of the calculus.

At this point, we have proven the fact that Basic ∼s Basicspec. We wanted to show

that Basic ' Basicspec. In other words, every barb (external communication) and

reaction (internal communication) of the two protocols is the same while in parallel

with a arbitrary “observer” process. We have done so by demonstrating a stronger

property: every single action taken by Basic is simulated by Basicspec and vice versa.

By the definition of bisimilarity, this means the two protocols are indistinguishable

from the outside [11]. It follows that if Basic and Basicspec were placed in parallel

with any arbitrary process, the process would not be able to detect a difference in be-

havior between the two protocols. This is the intent of testing equivalence, so strong

bisimilarity is sufficient to show testing equivalence [1]. With this, we have shown

the authenticity property for a very simple protocol, and have the guarantee that an

attacker cannot insert their own message for whatever message is sent by A.
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Chapter 10

Conclusion

At the outset of this project, there were two main goals. We wanted to implement

the spi calculus as defined by Abadi and Gordon in a proof system, and we wanted

to use it to model and prove properties about cryptographic protocols. At this point

we consider both of these objectives to be met, with some caveats. We will discuss

these points in detail below, but the main focus is on the depth of the spi calculus and

the definitions necessary to facilitate its full functionality in the Coq proof system.

We can see this depth and complexity in aspects like our process and closed process

setoids, in which cases traditional equality as the system viewed it was not sufficient

for this constructs. As such, it necessitated not only definition of custom notions of

equivalence for these constructs, but also the adjustment of the entire work up to

that point to accommodate these changes. Closed process equivalence required the

inclusion of the setoid in all rules of the calculus. Process equivalence complicated the

use of the inversion tactic on previously equal processes, raising the possibility that

two identifiers were not exactly equal but functionally equal. The constant iterative

nature of our design and development process, requiring consistent re-evaluation of the

existing work, meant that some aspects of the calculus were not as easy to implement

as they first seemed. Given our current understanding of the spi calculus and its

intricacies, much more efficient approaches were possible. Of course, we say this with

the benefit of hindsight.

10.1 Future Work

There are a large number of possible considerations for future work regarding this

implementation. From refinements to the base aspects of the calculus to some less-

used notions introduced later in the original paper, there are many ways that this
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work can be continued. We will address these possibilities in order of importance;

note that any discussion of the volume of work required is purely speculative.

Proof Flow

One of the most evident hurdles present in the calculus at time of writing is the

immense amount of visual clutter that often occurs due to the size of the average

process definition (even with notation) coupled with the presence of sigma types (ie.

closed constructs) that often need to be destructed into larger definitions that also

display the unnecessary proof component. Use of equivalences beyond basic equal-

ity also complicates the use of inversion, preventing the system from automatically

discarding most contradictory cases. This requires the user to demonstrate the con-

tradictions on their own, necessitating the presence of a bulk tactic including at least

one inversion per contradictory subgoal. These problems are only tangentially related

to the actual goal of proving properties about cryptographic protocols. One major

goal for the future would be to put dedicated effort into improving both the visual

and tactical aspects of these proofs to improve the user experience.

The best approach at present is to do a rough proof in the calculus on paper, followed

by a translation of that proof into the system. In this sense it is possible to perform

verification of proofs in the spi calculus which was one of our goals, but it would be

immensely beneficial to be able to better understand and work with the proofs in

the system. Such improvements would likely come in the form of tactics and lemmas

covering common actions in the implementation, but this would require more time

working with proofs of properties about actual protocols.

Minor Functionality

There are many minor definitions and lemmas that can be added for improved func-

tionality rather than for convenience while proving properties. At several points,

Abadi and Gordon use notation indicating restriction of a list of names. It follows

from this that any rules regarding restriction would also apply to a general list of

restrictions. Implementing this in the system required more rigor in the form of the

MultiRestriction definition allowing for an arbitrary list of names to be translated

into a restriction per name, added onto a given process. This in turn necessitated the

proving of lemmas that emulated the single restriction rules used in structural equiv-

alence, but for a MultiRestriction. We have proven equivalent rules for StructDrop,
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StructSwitch and StructExtrusion, but similar lemmas could be necessary depending

on the appearance of MultiRestriction in actual usage of the implementation. In this

case and regarding others in the implementation such as the lemmas regarding free

variables of a substitution, there are many minor improvements to be made that did

not come up in the work up to this point.

Propositions and Lemmas

Abadi and Gordon define and prove approximately forty propositions and lemmas

regarding the spi calculus, many of which have multiple parts. As discussed, we have

only implemented some of the early propositions. Many more remain, and would be

helpful during practical use of the implementation. The proofs of these propositions

are covered briefly in the original paper, but are not comprehensive and so require

some effort to reproduce. It was not our goal to re-prove every property in the paper,

and such a task would likely take significant effort. Hence, we leave it as a future goal

for the implementation.

The Underpinning Relation

Prior to the discussion of proofs using the spi calculus (which comprises most of the

document), Abadi and Gordon introduce the underpinning relation. This relation is

intended to better represent the knowledge of an attacker trying to break a cipher [1].

While a preliminary attempt was made to implement this relation, it is not used in

the base calculus and only arises in proofs of propositions and lemmas from the paper.

Since we have focused only on what was needed from these, no proof work was done

regarding the underpinning relation. As a result, fully implementing the underpinning

relation and doing proofs with it are future goals for the implementation.

Proposed Additions

Abadi and Gordon discuss some possible additions to the spi calculus throughout

the original paper. One such addition is a “mismatch” construct, checking that

two terms are not the same. Similar ideas are proposed for checking that a term

is not a name, not a number, not a pair, or not encrypted with a particular key

[1]. Chapter 7 of the paper also covers extensions to the calculus that go beyond

the initial scope of shared-key cryptography to make use of public-key, hashing, and

digital signature cryptography. They also propose the possibility of compatibility

with Diffie-Hellman techniques and secret sharing. Each of these approaches adds
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more primitives to the calculus, which in turn complicates any proof by induction

on terms and processes. Thus, while these extensions can certainly be added to the

implementation, probably as separate versions, they will likely require a significant

amount of work to incorporate.

10.2 Closing Remarks

While the original intent of this work was only to implement the spi calculus in a

proof system and use it, it is now clear that these tasks are more nuanced than they

first appeared. There is still much to be done to make the implementation as efficient

and as effective as possible for the average user. However, the implementation at

present stands as both a proof of concept for future improvements as well as a lesson

in the amount of work necessary to accurately recreate some fairly simple on-paper

notions in a proof system such as Coq. Process equivalence in particular added a

significant amount of complexity to the implementation, on top of requiring a large

number of definitions and proofs to accurately represent. Closed process equivalence

was simple, but in turn necessitated the adjustment of every single calculus rule to

accommodate the ignoring of the accompanying proofs for these closed processes.

There are quite a few takeaways from this work, some specific to elements of the

Coq proof system and others generally about translation of on-paper calculi and other

works into an electronic format. First of all, although it may be difficult to do so with-

out familiarity with the work, it would likely help development to produce an outline

of all the aspects of the calculus (or other work) and an estimation of the impact and

importance of each part. Having to adjust the many definitions and proofs in the spi

calculus implementation to account for notions of equivalence midway through could

have been avoided with a better understanding of the impact it would have. However,

this was mainly due to a lack of experience on the part of the main programmer in the

area of dependent types in Coq. On the subject of dependent types, it is important to

note that while they are a powerful feature of the Coq proof system, it is vital to plan

around their use due to the nature of Coq’s proof equality. Since proofs are rarely

equal, using a dependent type may often require definition of a custom setoid equiva-

lence to allow for effective reasoning about that type. They are an extremely valuable

tool for representing elements under a specific condition, but are inflexible as a result.

Another Coq-specific point is the importance of notation and other visual aspects
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when designing a system within Coq. At numerous points during development, some

semantically trivial proofs were complicated by the overload of information present on

the screen. Some function applications (newVar especially) could become extremely

complex syntactically, leading to difficulty in continuing the proof based on the infor-

mation given onscreen. This issue can be mitigated somewhat by relying less on the

system, such as by doing “rough” proofs prior to proving them in the system. How-

ever, this raises the possibility of user error and it would be much more convenient to

be able to use the system without being confused by the information presented. As

such, it may also be beneficial to determine notation choices early on in a project and

give more consideration toward what the implementation presents to the user during

proofs, instead of focusing entirely on technical accuracy. The latter is important,

but not so much that the final user experience should suffer.

In conclusion, the process of implementing the spi calculus in Coq has been a valuable

experience in developing for a proof system (and a very strict one, at that) that will

have real world applications as well. Though further work may be necessary to make

the system an attractive option to the average user looking to do proof work regarding

cryptographic protocols, the implementation at present should provide a strong base

for moving forward with any such effort. The spi calculus turned out to be a far more

complex system than expected, and presented many engaging challenges to overcome

over the course of its implementation up to this point. It is our hope that it will be

of use in fulfilling the purpose Abadi and Gordon intended for it, in this version or in

the future.
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