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Microinductors were fabricated using electrodeposition for 

integration on semiconductor substrates. The process was optimised 

through validated models developed to focus on efficiency and 

footprint. Lithographic processing was performed to microfabricate 

Cu coils over a magnetic core. A racetrack design was used to 

maximise the high frequency response, yielding high inductance 

density and low DC resistance. The magnetic core was subsequently 

closed using a magnetic thin film deposition over a dielectric 

deposited on the Cu coils. Homogeneous ferromagnetic alloy, 

Ni45Fe55 of uniform thickness over a high aspect-ratio 3D structure 

has been achieved. Ni45Fe55 was chosen for the fabrication of 

micromagnetic cores due to its relatively high saturation flux density 

(1.6 T), resistivity (48 Ω cm) and anisotropy field (9.5 Oe). The 

rationale, design, microfabrication process and characterisation 

results are presented. 

 

 

Introduction 

 

 

The continuing miniaturization trend for electronic devices is also seen in the development 

and integration of passive magnetic components. Integrated voltage regulators fabricated 

on chip offer the possibility of miniaturisation, improved functionality and mass production. 

The stacked approach to power-supply-on-chip (PSOC) offers an enhanced monolithic 

solution for integrated passive components. High efficiency inductors-on-silicon for power 

conversion applications have been reported [1-3] ranging in size from 9–36 mm and aimed 

at operation in converters with switching frequencies of 1–5 MHz. To be comparable in 

area with discrete wire-wound or multi-layer ferrite based inductors, and to enable 

integration on chip, micro-fabricated inductors need to be significantly reduced in footprint 

area.  

 

     Since the inductance per unit area achievable for micro-fabricated inductors is typically 

limited by the thin film technology used, the converter switching frequency must be 

increased to the point where small values of inductors are required and hence the inductor 

size is small enough to make integration on chip feasible. High values of inductance density 

may be achieved at the expense of inductor dc resistance and current handling capability. 

However, in power conversion applications for battery operated products such as cell 

phones, the inductor must be capable of handling several hundred milli-amps of dc current 

and maintaining the low losses requires a low dc-resistance. For this reason we have 

focussed on the use of relatively thick Cu windings where the Cu coils are up to 35 m 



high and coil widths up to 66 m.  The other significant functional element in the 

microinductor is the magnetic material. The focus of research on thin film magnetic cores 

can be divided into two major fronts: (a) a quest for improved magnetic materials capable 

of operating at high frequency and (b) suitable integration techniques. (4-7) The aim of this 

work was to fabricate microinductors using electrodeposition for integration on 

semiconductor substrates.  

 

 

Experimental 

 

 

     The authors have developed an analytical model for thin film microinductors [8]. The 

overall model consists of elements dealing with the Cu windings, magnetic core eddy 

currents and core hysteresis. It can accurately predict the inductance, winding resistance 

and sources of efficiency losses within an inductor, such as winding loss, core hysteresis 

loss, and core eddy current loss. The model has been validated by both finite element 

analysis and experiment results and is used in inductor design optimization. Given the 

converter specifications, an optimization program based on the inductor analytical model 

can automatically seek the most efficient inductor design and determine the geometrical 

parameters of the inductor. Electrodeposition of the magnetic material is a low cost and 

high rate deposition technique, capable of achieving good wafer scale uniformity. In a 

fabrication process with 35 m high Cu coils and subsequent dielectric it is also a 

requirement that the magnetic deposition technique be capable of uniform deposition on 

structured substrates. The inductor parameters from the design phase are given in table 1 

with size and efficiency as the key design parameters.  

 

 

Table 1. Inductor parameters 
Inductor Specifications  

Area 3 mm2 

Inductor range 106 nH 

Max. conductor thickness 35 m 

Min. conductor width 

Min. conductor spacing 
66 m 

15 m  

Number of turns 4 

Magnetic core material Ni45Fe55 

Resistivity 45 Ω cm 

Saturation flux density 1.5 T 

Permeability 280 

Convertor Specifications  

Operating frequency 30 MHz 

Input voltage, V in 1.8 V 

Output voltage, V out 1.0 V 

Output current 0.5 A 

 

     A schematic of the fabrication process for the micro-inductors is shown in figure 1 and 

consists of a racetrack shaped Cu coil sandwiched between the magnetic cores. The 

substrate is a Si wafer with a layer of insulation (BCB—Benzocyclobutane, approximately 

5 m thick). A seed layer of Ti/Cu is deposited by sputtering on the insulation. A layer of 



magnetic material (Ni45Fe55) is electroplated and patterned (layer 1) on top of the seed 

layer. This layer is further insulated by a patterned layer of BCB (layer 2). The Cu windings 

are then deposited using electroplated Cu on top of a Ti/Cu seed layer (layer 3). These 

windings are covered by a layer of SU8 (epoxy type photoresist) to isolate them from the 

top magnetic layer (layer 4). Finally, the top magnetic layer is electroplated (layer 5) to 

obtain a closed magnetic path. 

 

 

 
 

Figure 1.  Schematic of the microinductor fabrication process showing the main 

functioning layers. The fabrication process is performed on 4 inch Si wafers. 

 

 

Results and discussion. 

 

 

To minimise the footprint area the conductor width is specified in order to fit the turns into 

the area and maintain the ratio of dc resistance to inductance for smaller footprint areas. In 

order to decrease further the dc resistance to inductance ratio, the minimum conductor 

spacing would need to be reduced, the aspect ratio of the conductors increased or the 

thickness of the magnetic core increased. The conductor spacing and aspect ratio is 

dependent on the photoresist and lithography process limitations. The core thickness is 

limited by the requirement to keep eddy current losses low by limiting the core thickness 

to be approximately equal to the skin depth in the core material at the frequency of 

operation. In the device described in this work the target frequency of operation is 30 MHz, 

so that the core thickness is approximately 3.5 m. An optical micrograph of a cross-

section taken through a microinductor as specified in table 1 is shown in figure 2. This 

image shows 30 m high windings 66 m in width and with 10 m gaps. The Ni45Fe55 core 

above and below the windings is also clearly seen to be highly uniform and the target value 

of 3.5 m. 

 

 



 
 

Figure 2.  Optical image of microinductor cross section for the device specified in table 1.  

 

An example of a microinductor fabricated using this processing is shown in figure 3. The 

bond pads for wirebonding the devices and testing of the electrical performance of the 

device can be seen in this image. To achieve wirebonding at the Cu bond pads an electroless 

Ni and immersion Au process has been developed which is compatible with the topography 

of the devices and the various layer compositions. To ensure the Ni-P deposit forms on the 

Cu bond pads they must first be activated with a dilute palladium chloride + HCl solution 

(9) as the Cu substrate is not a catalytic surface for hypophosphite oxidation and hence the 

electroless Ni-P deposition will not commence on a Cu surface. It will, however, 

commence on Pd nuclei deposited from the chloride solution. Once the Ni-P layer deposits 

on the substrate the reaction can continue autocatalytically as the Ni-P substrate is active 

to hypophosphite oxidation. 

 

 
 

Figure 3.  Optical image of a microfabricated inductor showing the bond pads. 



 

Following Pd activation the wafer is immersed in a commercial Ni-P electroless plating 

solution (Enplate by McDermid) at 85 oC at a pH of 4.6 for 20 minutes followed by 

immersion in a commercial Ormex gold displacement bath (Schloetter) at 90oC at a pH of 

5.2 for 10 minutes which replaces the outer layer of Ni-P with a reliable and wirebondable 

100 nm Au finish. 
 

 
 

Figure 4. Typical Au wirebond on a Ni-P/Au metallised copper bond pad. 

 

The inductance of the fabricated inductor has been measured vs. frequency up to 30 

MHz, using a HP LCR Meter (Model 4285). The graph in figure 5 below shows the results 

for the micro-fabricated inductor with inductance values of 106 nH. It can be seen from the 

graph that the inductance is relatively flat up to 30 MHz with an inductance decrease of 

less than 15 % at 30 MHz. The measured dc resistance is 0.21 Ohm at room temperature.  

 

      



 
Figure 5: Measured inductance of fabricated micro-inductor. 

 

     When used in a power converter the inductor must also be capable of carrying the 

maximum converter dc current while maintaining the inductance level, i.e. without core 

saturation. Fig. 6 presents the inductance (at 1 MHz) vs. dc bias current for the inductor. It 

can be seen that inductance holds up well with bias current and the inductance roll-off is 

relatively gentle. At 500 mA the reduction in inductance value is less than 20 %. 

 

 
Figure 6: Measured inductance at 1 MHz vs. dc bias current of the fabricated inductor. 



 

 

Conclusions. 
 

 

The process described above for micromagnetics integration on Si is compatible with 

standard CMOS fabrication. This is one important factor when considering monolithic 

integration of switching regulator to realize power supply on chip. The developed process 

is particularly aimed at thick Cu conductor fabrication. The thick Cu deposition is critical 

for power magnetics in order to reduce the conduction loss. The magnetic material is also 

electrodeposited which is a relatively faster and more cost-effective solution than 

sputtering. The pulse-reverse plating technique also enables achieving uniform deposition 

of magnetic material on a 3D topography. Finally the bond pad metallisation is achieved 

by electroless Ni-P and immersion Au processing to ensure a reliable surface for wirebon 

connection of the microfabricated device. 
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