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Abstract  

Power-to-Gas (P2G) is a technology that converts electricity to gas and is termed gaseous fuel from 

non-biological origin. It has been mooted as a means of utilising low-cost or otherwise curtailed 

electricity to produce an advanced transport fuel, whilst facilitating intermittent renewable 

electricity through grid balancing measures and decentralised storage of electricity. This paper 

investigates the interaction of a 10MWe P2G facility with an island electricity grid with limited 

interconnection, through modelling electricity purchase. Three models are tested; 2016 at 25% 

renewable electricity penetration and 2030 at both 40% and 60% penetration levels. The 

relationships between electricity bid price, average cost of electricity and run hours were established 

whilst the levelised cost of energy (LCOE) was evaluated for the gaseous fuel produced. Bidding for 

electricity above the average marginal cost of generation in the system (€35-50/MWeh) was found to 

minimise the LCOE in all three scenarios. The frequency of low-cost and high-costs hours, analogous 

to balancing issues, increased with increasing shares of variable renewable electricity generation. 

However, basing P2G systems on low-cost (less than €10/MWeh) hours alone (999 hours in 2030 at 

60% renewable penetration) is not the path to financial optimisation; it is preferential to increase 

the run hours to a level that amortises the capital expenditure. 
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1. Introduction 

The impact of climate change and the harmful nature of fossil fuels are well established. In response 

to this the European commission has set a target of at least an 80% reduction in greenhouse gases 

(GHGs) by 2050 relative to 1990 levels, with the ultimate goal of keeping climate change below 2°C  

[1,2]. It is estimated that achieving such a target will require a 75-80% share of low carbon 

technologies in the power sector [1]. Wind, and increasingly solar, will make up the majority of this 

variable renewable electricity (VRE) generation, as they are the current state of the art technologies 

available at the required scale. The EU have also encouraged the need for sustainably-produced 

third generation (advanced) biofuels, which must hold at least a 3.6% share of energy in transport by 

2030 [3]. Transport is a particularly  difficult sector to achieve emissions reductions in; the EU 

suggest anything from a potential increase of 20%, to a reduction of 9% in transport emissions by 

2030 in their roadmap to a low carbon economy in 2050 [1]. However, heavy goods vehicles and 

captive fleets are especially suited to early adoption of renewable gaseous fuels where growing 

restrictions on particulate emissions, more predictable vehicle usage, stronger influence of policy, 

and increasing deployment of refuelling infrastructure facilitate the uptake of compressed natural 

gas (CNG) vehicles [4,5].  

Increasing shares of VRE in the electricity mix can give rise to issues of grid balancing, stability, 

curtailment, and an increased need for storage, potentially affecting security of supply [6–9]. Large 

scale and flexible energy storage options are seen as a means of reducing these effects [10–12]. 

Presently deployed solutions such as pumped hydro storage are insufficient should significant 

dispatch down of VRE be avoided as they are limited by geography, and currently installed capacities 

are much less than the anticipated future requirements [13–15]. 

Power-to-Gas (P2G) has been proposed as a technology that can provide a storage mechanism for 

VRE and ultimately can produce an advanced transport fuel, that will help satisfy the EU target of 

3.6%. P2G is a process whereby electricity is used to generate hydrogen (H2) via the electrolysis of 

water, and this hydrogen can then be combined with CO2 to produce methane (CH4) via a Sabatier 

reaction (CO2 + 4H2 → CH4 + 2H2O). Thus, P2G changes the energy vector, storing electricity in the 

form of methane, also known as gaseous fuel from non-biological origin. The technology does not 

require the favourable geography of other electricity storage options [10] and offers superior 

storage capacity and discharge times since the gas is of similar quality to natural gas and can be 

injected in to the natural gas grid, where it can access available markets [16]. It is intended that the 

fuel produced be used in the transport sector, and not for heating or power generation, as the 

availability of alternatives or low round trip efficiency of these routes make it inappropriate, 

especially considering the difficulties in decarbonising transport [4]. The ability of P2G to rapidly 



ramp up and down demand allows P2G to utilise difficult to manage electricity that may otherwise 

be curtailed [17–20]. Therefore, it can in theory provide ancillary grid balancing services that enable 

further integration of VRE into the electricity mix [4,21]. It may also receive a fee for this service, 

aiding its economic viability. Furthermore, P2G can be positioned as a novel biogas upgrading 

solution, utilising its CO2 content, increasing the sustainability of biogas plants, potentially offsetting 

some of the capital required, and promoting a circular economy [18,22]. 

Many technology reviews and studies are available which detail the working principles, relative 

advantages and disadvantages, and trends in P2G technologies [18,19]. Wide scale deployment of 

P2G will be largely dependent on the cost of the gas produced and how it compares to competing 

advanced transport fuels. Previous work by the authors found the levelised cost of energy (LCOE) of 

a P2G system to be dominated (56%) by electricity costs and highly sensitive to changes in capacity 

factor (run hours) [23]. This paper aims to demonstrate that the figures for run hours and electricity 

cost are dependent on the market in which the P2G plant is engaged and are largely determined by 

the electricity bid price, that is, the maximum amount the plant is willing to pay for electricity at any 

given time (€/MWeh). To test this, a P2G system will be modelled as a large flexible consumer within 

an electricity market, represented by the Irish grid with limited interconnection, in 2016 and 

simulations of the 2030 market at different penetrations of VRE.  

The relationships between a P2G system, its bid price, and the resultant effect on LCOE will be 

examined. This work advances upon previous research where values for electricity cost and run 

hours were fixed or independent of one another [20,24–26]. The operational impact and effects of 

curtailment on P2G have been studied previously [10,13,27] but not with the intention of observing 

the impact on the financial viability of P2G, as in this study. In this work, the bid price, which the 

facility has control over, will be optimised to minimise the cost of the produced gas. To the best of 

the authors’ knowledge this has not been done before.  

The objectives of the paper are to: 

- Examine electricity market data for trends that will affect P2G viability. 

- Investigate the interactions between the electricity market and the LCOE of a P2G system 

modelled as a large flexible consumer.  

- Examine the theory that P2G can be run economically off otherwise curtailed electricity, at 

different levels of VRE penetration on an island grid. 

- Identify the optimum bid strategy that minimises the LCOE of gaseous fuel from non-

biological origin. 

 



2. Methodology 

 

Figure 1. Inputs and outputs of the model used to calculate LCOE.  

 

2.1 P2G model to calculate LCOE  

In a previous study by the same authors, a model of a P2G system was built in order to calculate the 

LCOE (equation 1) for a range of cost scenarios and time periods [23]. This process or “Model to 

calculate LCOE” is indicated in Figure 1. The LCOE, or breakeven selling price of the gas, was chosen 

as the key metric as it accounts for the project capital and allows for easy comparison with other 

fuels. It is derived using a bespoke discounted cash flow model in MS Excel®. Firstly, the most 

suitable technologies for electrolysis and methanation were identified; details of these calculations 

and explanations of rationale can be found in McDonagh et. al [23]. Secondly, the specifications of 

the chosen technologies (polymer electrolyte membrane (PEM) electrolysis and catalytic 

methanation) were fed into the model such that capital expenditure (CAPEX), balance of plant (BoP), 

operating expenditure (OPEX), maintenance, and other associated costs could be accounted for. The 

model runs for 30 years (including 3 years commissioning, 1 year decommissioning at a cost of 20% 

CAPEX) at a discount rate of 7%, during which time the electrolysis stack and the methanation unit 

are replaced three times and once respectively. Again, a more detailed description can be found in a 

previous paper [23], wherein the model used fixed values for average electricity cost and run hours 

(€35/MWeh and 6500 respectively) analogous to a P2G system operating in the 2020 Irish electricity 

market at a bid price of €50/MWeh. In this paper however, the electricity market data affects the 

LCOE as the average cost of electricity and the run hours are dependent variables fed into the 

model. In Equation 1, “Costs” then consist of the items detailed in Figure 1 and this paragraph.  



𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖

(1+𝐷𝐷𝑖𝑖𝐶𝐶𝑐𝑐𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶 𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦)𝑖𝑖
𝑖𝑖
𝑖𝑖=0

∑ 𝑘𝑘𝑘𝑘ℎ 𝐶𝐶𝑜𝑜 𝑔𝑔𝑦𝑦𝐶𝐶 𝑝𝑝𝑦𝑦𝐶𝐶𝑝𝑝𝑜𝑜𝑐𝑐𝑦𝑦𝑝𝑝 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖
(1+𝐷𝐷𝑖𝑖𝐶𝐶𝑐𝑐𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶 𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦)𝑖𝑖

𝑖𝑖
𝑖𝑖=0

    (1) 

The P2G system then consisted of a 10MWe PEM electrolyser, which was considered more suitable 

than an alkaline electrolysis cell (AEC) and solid oxide electrolysis cell (SOEC). McDonagh et. al [23] 

also contains detailed analysis of the technologies and their applicability to P2G, and concluded that 

given the superior efficiency of PEM in the time period being assessed it would be justified to pay up 

to 46.7% more in CAPEX under base conditions, and still minimise LCOE. Other factors considered 

were the ability to quickly ramp up and down (allowing for grid service provision), OPEX, technology 

readiness level, and purity of hydrogen [18,24,28,29]. Similarly, catalytic methanation (CM) was 

chosen over biological methanation (BM) due to faster rates of production and lower specific energy 

consumption, despite its higher capital cost [18,30,31]. Also included was a small volume of 

hydrogen storage to act as a buffer for the dynamic operation of the electrolysers and methanation 

reactors [19,31,32].  

The effect of incentives or valorisation of the oxygen produced during electrolysis will not be 

considered in this paper, nor will parameters beyond the control of the P2G operator. The 

perspective is that a P2G plant has been built and is operating in the 2030 Irish electricity market 

thus, measuring the effect of changes on the LCOE is sufficient to examine the relationships and 

observe whether optimisation is being achieved. The 2030 base scenario identified in McDonagh et 

al. [23] yielded an LCOE of €105/MWh and is used as the reference scenario in this paper (Table 1). 

In the same scenario, approximately 60% of the LCOE consisted of electricity costs as reported in 

McDonagh et al. [23], therefore changes in the interaction with the electricity market will have a 

large bearing on the LCOE. 

Table 1. Economic assumptions in the model 

 Electrolysis Methanation Note 

CAPEX (€/kWe) 700 140 1. BoP, OPEX, and Component Replacement given as 

decimal fractions of CAPEX. 

2. Plant runs for 30 years. 

3. Electrolysis stack replaced in years 10, 17, and 24.  

4. Methanation catalyst replaced in year 15.  

5. “Land Capital” costs of €(18.7(kWe of electrolysers) + 

331313) for facilities greater than 1MW includes for 

additional costs E.g. H2 storage, planning, etc [23].   

6. Figures are in 2016 euros. 

BoP 0.15 1 

OPEX 0.032 0.057 

Component replacement 0.32 0.8 

Electrical demand  4.66 kWh/m3 H2  0.13 kWh/m3 CH4  



 

 

2.2 Source of carbon dioxide  

The envisaged system is capable of utilising any source of CO2 that has been sufficiently scrubbed of 

impurities and potential catalytic poisons such as chlorine compounds or hydrogen sulphide [18,31]. 

Many potentially low-cost and relatively pure sources have been identified including CO2 from 

industrial processes (including biogenic sources should upgrading already be in place), or biogas 

(mixtures of CH4 and CO2 from biological processes), where direct utilisation avoids the significant 

cost of traditional upgrading. Previous works have investigated the possibility of utilising various 

sources of CO2 such as that from distilleries, wastewater treatment plants, cement production 

facilities, and others, and found them to be suitable and abundant [33,34]. This means that provided 

the facility is appropriately located, and the electrolysers appropriately sized, producing sufficient 

hydrogen is the limiting factor. As P2G costs have been shown not to scale significantly above 1MW, 

the economics of these potentially small facilities do not differ greatly, any increases seen would be 

more than offset by the availability of cheap CO2 [35]. 

The model does not include an explicit cost of CO2 as this would make the LCOE site specific and 

does not affect the results in terms of evaluating whether optimisation is being achieved in the 

systems interaction with the grid, as the paper intends. Further to this, a study from ENEA Consulting 

used a highly conservative figure of €50/ton of CO2 transported at 10 bar and found it added a 

maximum of 4.5% (€8/MWh) to the LCOE. Sensitivity analysis showed that varying this figure 

between €20 and €80/ton resulted in a ±3% change to the LCOE [28].  

The ideal source of CO2 is biogenic and located close to the P2G facility such that the product gas has 

a lower carbon intensity, as would be the case if P2G were used as a novel biogas upgrading method 

for an anaerobic digestion (AD) system [36,37]. It is also relatively pure thus, avoiding the high 

energy penalty associated with direct air capture or capture from flue gases [33]. It is anticipated 

that in the time period analysed, AD systems will become much more prevalent. 

 

2.3 Electricity Market Data 

The system marginal price (SMP) can be considered as the hourly or half-hourly island wide 

wholesale price of electricity. It includes for the cost required to meet the forecast demand and 

additional costs associated with start-up or operating as a reserve that a generator will need to 

recover (costs known as uplift). In general, the SMP is low when there is more than sufficient 



generation capacity online to meet demand. When the amount of generation online to meet 

demand is scarce, the resulting SMP is higher. The SMP is set by the marginal costs of the last 

generator online to meet demand. In Ireland this is often gas fired generation. The SMP is also 

influenced by zero marginal cost VRE which tends to supress the SMP in times of high VRE 

production. In times of excess VRE generation, curtailment may take place. Current electricity 

market rules offer VRE priority dispatch on the electricity grid, therefore curtailment of VRE is often 

a last resort. In analysing the electricity market data, it is proposed that very low SMPs (less than 

€10/MWeh) can be equated with curtailment and high VRE production; strong positive correlation 

has been found between increased shares of VRE and the periodic availability of low-cost electricity 

[38]. For the purposes of this study, information for the half hourly SMP of electricity for 2016, 

available for download from the single electricity market (SEM) operator [39], was collected and 

organised in spreadsheets. 

To determine the SMP in 2030, PLEXOS models of the electricity market were developed. PLEXOS 

Integrated Energy Model is a power systems modelling tool used for electricity market simulations 

[40]. The power systems model develops an hourly SMP for the Irish electricity market based on 

current rules, and it has been benchmarked against historic market data and has been validated by 

the regulator to reproduce realistic results. The model uses deterministic mixed integer linear 

optimisation to minimise the costs of the electricity dispatched including for fuel costs, start-up 

costs, penalties for unserved energy, and a penalty cost for not meeting reserve requirements [41]. 

The model optimises thermal generation (fossil fuel and renewable), VRE, pumped storage, 

interconnection, as well as reserve classes subject to operational and technical constraints [27,42]. 

Also included are constraints on the unit operation of each power plant including minimum and 

maximum generation, minimum and maximum up and down time and the system ramp up and 

down rates, as well as a system level constraint consisting of an energy balance equation ensuring 

supply meets regional demand at each period [27]. Two PLEXOS models were tested, at 40% and 

60% renewable electricity (RE) respectively. Thus, as outlined in Figure 2, three models in total were 

examined.   



 

NG – Natural Gas, RE – Renewable Energy, VRE – Variable Renewable Energy 

Figure 2. Details of the three electricity market models used in this study and the levels of RE and 
VRE in each. 

 

Renewable energy (% RE) is calculated as delivered MWeh of electricity from all renewable sources, 

as a percentage of total delivered electricity. Variable renewable energy (% VRE) then only includes 

intermittent sources (wind, solar, and wave), and not those that are dispatchable and therefore do 

not contribute to the fluctuations in supply that would affect price (CHP, co-firing of biomass, and 

hydropower). The “Other” portion of these charts consists mainly of peat with small volumes of 

heavy fuel oil, both of which are dispatchable thermal generators.  

These represent the current (2020) and future (2030) targets for Ireland [43]. The vast majority of 

this RE will be provided by wind and other intermittent sources. The 40% RE scenario is 

representative of a case where the rate of new installed RE capacity does not increase drastically 

beyond the levels seen today. The 60% RE scenario requires the rate of additional installed capacity 

of RE to substantially outpace that of increasing demand. Both scenarios are feasible and therefore 

their implications on P2G worthy of investigation. 

 

2.4 Calculating run hours and average cost of electricity from the models  

In this study, the envisaged system engages in the electricity market without priority as a large 

consumer, a similar purchaser approach was used to model charging electric vehicles [44]. This 

means that the consumption of electricity is technology neutral and that P2G will compete for 

energy (against storage or interconnection for example) as it would in a functioning electricity 

market. The P2G plants are assumed to be ideally flexible and the model does not include 

constraints or costs for start-up and shut-down. No mechanism or widespread precedence has been 



set that would allow a plant to consume energy, even that which would otherwise be curtailed, 

without engaging in the electricity market. This also means that as of now P2G cannot directly 

benefit from its ability to provide grid balancing services and receive “free” electricity, with some 

rare exceptions [45,46], though this is the subject of much discussion [10,14,47–49]. Thus, the bid 

price of the plant directly informs the number of runs hours. The formulae in equations 2, 3 and 4 

were used to extract figures for run hours and average cost of electricity. 

 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻 (2016) =  ∑  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝐻𝐻𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝐻𝐻𝐻𝐻𝑖𝑖 𝐻𝐻𝑜𝑜𝑜𝑜 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆𝑆𝑆𝑆𝑆<𝐵𝐵𝑖𝑖𝐵𝐵 𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖
2

    (2)  

 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻 (2030) =  ∑𝐻𝐻𝐻𝐻𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻 𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 𝑓𝑓𝐻𝐻𝐻𝐻 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆𝑆𝑆𝑆𝑆 < 𝐵𝐵𝑖𝑖𝐵𝐵 𝑝𝑝𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖   (3) 

 

𝐴𝐴𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝐴𝐴𝑖𝑖 𝐿𝐿𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 𝐿𝐿𝐻𝐻𝐻𝐻𝑖𝑖 =  ∑𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝐻𝐻 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖𝐻𝐻𝐻𝐻𝑖𝑖 𝐻𝐻𝑜𝑜𝑜𝑜 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑆𝑆𝑆𝑆𝑆𝑆 < 𝐵𝐵𝑖𝑖𝐵𝐵 𝑆𝑆𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖
𝑅𝑅𝑖𝑖𝑖𝑖𝑜𝑜𝐻𝐻𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖𝑜𝑜𝐻𝐻𝐻𝐻 𝑅𝑅𝑜𝑜𝑖𝑖 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖

   (4)  

 

3. Results and discussion  

3.1 Electricity market data relevant to P2G 

Figure 3 illustrates for how many hours in the year (2016 or 2030) electricity was available at a given 

price (€/MWeh). As expected there is a significant jump between €30/MWeh and €45/MWeh in all 

three datasets, the approximate range of the marginal cost of the large generators in the system. 

This implies that generation and demand are relatively matched for the majority (>5500 hours) of 

the year, limiting the opportunities for P2G to take advantage of system imbalances. At certain 

times, the SMP was also greater than €300/MWeh (typically less than 0.5% of the year) but this data 

was excluded in order to avoid skewness of the graph. An SMP of over €300/MWeh corresponds to 

times when demand significantly exceeded production. 

 



 

Figure 3. Cumulative number of hours for which electricity is available at a given SMP 

 

Table 2. The average SMP throughout the year for each of the electricity markets tested 

Electricity market  2016 (25%) 2030 (40%) 2030 (60%) 

Average SMP (€/MWeh) 41.83 58.91 56.08 

 

Table 2 gives the average system marginal price in each of the scenarios tested. For a number of 

reasons, the costs in 2016 are lower than those of the 2030 models. Within the 2030 models some 

of the increased electricity costs can be attributed to a projected increase in the use and price of 

natural gas, carbon taxes, and increased uplift costs. Natural gas traded at an unusually low average 

of €2.27/GJ  plus shipping and charges in 2016 [50] and is included in the model at €3.84/GJ. It 

accounts for 43% of generation in 2016, 54% in 2030 (40% renewable penetration scenario), and 

38% in 2030 (60% penetration scenario) [43]. The cost of coal falls from €2.77/GJ [51] to €1.58/GJ 

but accounts for only 3% of generation in 2030 compared to 17% in 2016 [43]. The carbon tax 

increases from €5.34/tonne [52] to €33/tonne whilst the uplift costs increase substantially from 

€3/MWeh to approximately €56/MWeh. These costs are reflected in the SMP, and as the LCOE of a 

P2G facility is a function of the electricity market as a whole, it will also increase. It must also be 

noted that the average SMP is an incomplete measure of whether P2G LCOE will increase as the bid 

price methodology (outlined in section 2.4) aims to take advantage of periods of lower cost 

electricity, and switch off during high cost periods. It is not possible to accurately infer the LCOE 



from an average SMP, hence the need for further examination of the electricity market.  

  

 

Figure 4. Change in average cost of electricity with increasing bid price 

Figure 4 shows that the average price paid for electricity does not vary linearly with increasing bid 

price. At low bid prices there are very few run hours available, consisting of mostly near zero cost 

energy associated with difficulties in balancing the network. This is seen as the low, almost flat parts 

of the graph between €0-20/MWeh. As the bid price is increased the number of hours during which 

the plant will now run increases rapidly. As higher price electricity is incorporated, the average cost 

increases. The large increase is then simply due to the plant moving from consuming a few hours of 

low cost energy, to a much greater number of hours of energy at a significantly higher cost. The 

sharp rise at ca. €30/MWeh corresponds to the jump in cumulative run hours around the average 

marginal cost of generation, noted in Figure 3. However, above ca. €50/MWeh the numbers of 

additional units of electricity purchased now make up a less significant portion of the total and thus, 

despite their high cost do not affect the average to the same extent. 

The exception being the 2016 data whose hourly prices were not so concentrated around the 

average marginal cost of production and where the lower levels of VRE penetration did not lead to 

these periods of low-cost energy resulting from grid imbalances. This leads to a more gradual 

increase in average cost versus bid price. 

 

Similarly, Figure 5 shows that increasing the system bid price increases the run hours non-linearly. 

Again, a sharp rise occurs at ca. €30/MWeh corresponding to the large increase in cumulative run 



hours seen in Figure 3. The available run hours are greater in 2016 (25%) despite the smaller share of 

VRE as the cost of electricity is lower, therefore the bid price will be above the SMP for more of the 

time. Hours with SMP greater than €100/MWeh also occur much less frequently in 2016 (25%) than 

in either 2030 model. Only at bid prices less than €25/MWeh are there notably more run hours in the 

2030 (60%) model than in either of the others. This implies that penetration levels of 60% RE are 

required in order to see substantial periods of low-cost energy due to difficulties in integrating VRE 

[8]. This also suggests that the existence of such low-cost periods (as seen in the 2030 (60%) model) 

does not necessarily increase the total hours a system will run for; an overall lower average cost of 

electricity does this to a greater extent.  

 

Figure 5. Change in run hours with increasing bid price 

This paper attempts to investigate the interactions between the bid price of a P2G system and its 

LCOE by looking at the effect on both run hours and electricity cost (inputs for the discounted cash 

flow model). Previous studies have shown that the electricity cost and run hours are highly sensitive 

parameters in determining the LCOE of P2G system [24,28,53–55]. The author’s previous work 

explicitly identifies them as the two most sensitive process inputs [23]. This leads to the possibility of 

optimising the bid price (the parameter a P2G facility operator ultimately has control over and the 

one under investigation) to minimise the LCOE of a system. Other parameters such as curtailment, 

interconnection, and market rules are reflected in changes in the SMP, and hence the average cost 

of electricity and run hours. Thus, run hours and average price of electricity are sufficient to 

ascertain whether optimisation is occurring with respect to bid price. To the best of the authors’ 

knowledge this has not been examined previously. 

 



3.2 P2G interactions with the electricity market and effect on LCOE 

Figure 6 outlines the increase in LCOE with the increase in average cost of electricity. For instance, 

increasing the average cost of electricity from €10/MWeh to €40/MWeh, a 300% increase, produces 

a 90% increase in the LCOE (from €60/MWh to €114/MWh). This increase in electricity cost is 

considerable and can be equated to an increase in electricity bid price from €28 to €60/MWeh, 

beyond the average marginal cost of generation.  

In Figure 7 a non-linear relationship between run hours and LCOE is illustrated. Increasing the run 

hours from 2000 to 8000, again a 300% increase, produces a 51% decrease in LCOE (from 

€200/MWh to €98/MWh). This jump in run hours is not unrealistic and could be observed with 

modest increases in electricity bid price. Consequently, in many cases, the drop in LCOE associated 

with increasing run hours may potentially outweigh the rise due to increases in the average cost of 

electricity.  

 

Figure 6. Change in LCOE with increasing cost of electricity and fixed run hours of 6500 per year 



 

Figure 7. Change in LCOE with increasing run hours and a fixed cost of electricity of €35/ MWeh 

 

3.2.2 Combined effects on the LCOE of P2G 

The combined effects of the parameters investigated in (Figures 4-7) culminate in the sharp drop in 

LCOE seen in Figure 8. This is a result of the dramatic increase in cumulative run hours between €30 

and €45MWeh (seen in Figure 3) relative to increasing SMP. Thus, it is proposed that it is far more 

economical, in terms of minimising LCOE, to increase the system bid price and hence its capacity 

factor. The drop in LCOE with increasing bid price implies that lower capacity factors will not be 

sufficient to amortise the project debt given the smaller quantities of gas produced. At bid prices 

greater than €50/MWeh the majority of affordable energy has been captured, and so the cost is no 

longer compensated for by additional run hours. At these higher bid prices, the LCOE remains steady 

or begins to rise slightly. The bid price that minimises the LCOE is found to be approximately 

€50/MWeh in this case. 



 

Figure 8. Change in LCOE with increasing bid price including for associated variation in run hours 
and average cost of electricity 

 

 

 

 

 

 

 

Table 3. The LCOE of a P2G system bidding €50/MWeh in each of the three electricity markets 
including its market interactions  

Electricity market 2016 (25%) 2030 (40%) 2030 (60%) 

Resultant 

values of a 

€50/MWeh 

bid price 

Run hours 7080 5714 5756 

Average cost of 

electricity (€/MWeh) 

34.41 38.16 32.39 

LCOE (€/MWh) 100.90 116.85 106.08 

 

The LCOE was 5% higher when using the market data of the 2030 (60%) model, and 16% higher 



when using the 2030 (40%) model as compared to the recorded data for 2016 (25%). As Table 3 

indicates, the 2016 (25%) average cost of electricity was higher than in 2030 (60%), but the run 

hours were much greater, compensating for this. As stated previously this is partially due to the 

lower prices of natural gas, carbon, and uplift compared to the 2030 models, leading to more 

sustained periods of electricity under the bid price.  

Also contributing to this is the volatility of the SMP in the models. As well as increasing shares of VRE 

resulting in more hours of low-cost energy, hours of high-cost energy also become more prevalent. 

The SMP decreases when generation exceeds demand, and increases when demand exceeds supply. 

The frequency of both of these scenarios increases with additional VRE [6]. Defining high-cost as 

greater than €100/MWeh, it is evident from Figure 3 that in 2016 (25%) this occurs for 180 hours, 

1065 hours in 2030 (40%), and 1152 hours in 2030 (60%). 

 

 

Figure 9. LCOE breakdown of a P2G system bidding €50/MWeh in three electricity markets 
including for annual gaseous fuel output 

 

In Figure 9 the variable OPEX, which dominates the LCOE, consists almost entirely of electricity costs. 

At higher production levels of gas, the LCOE falls and the contribution of capital expenditure 

(methanation, electrolysis, and other) diminishes. This again demonstrates that the increased 

capacity factor associated with a higher bid price leads to a more economical system. As capital costs 

fall the economic viability of P2G will still be largely dependent on affordable electricity. Access to 

electricity at a final purchase price of close to €25/MWeh for more than 6,000 hours appears unlikely 

in the Irish electricity market by 2030. Thus, it will be difficult for gaseous fuel from non-biological 



origins to achieve further cost reductions. Charges additional to the SMP (such as grid connection 

and taxes) will add to costs, however, incentives to produce an advanced renewable fuel may well 

more than offset these costs. Biomass sources such as wood chips are already close to competing 

with heating oil on a cost basis and so the environmental credentials can justify the switch; however, 

the same cannot be said for P2G derived gas as a transport fuel. The low market value of natural gas 

hampers the development of P2G and carbon is not sufficiently priced to create an economic 

impetus for change. However, legislation requiring decarbonised bus fleets, directives mandating 

advanced transport fuels, and the requirement to reduce carbon intensity by 2050 to 20% of present 

levels will lead to gaseous fuel from non-biological origin competing with advanced biofuels (which 

at present are not as commercial) and electricity as a source of propulsion, which is not expected to 

be practicable for heavy goods vehicles and inter-city bus fleets [56]. 

The strategy identified here, bidding above the marginal cost of generation, has been shown to 

minimise LCOE by optimising run hours and electricity costs. It has the advantage of also producing 

larger volumes of gas than strategies predicated upon low-cost energy analogous to curtailment. In 

the event that increased gas production becomes more valuable, such as in the event incentives per 

unit of renewable fuel produced become available, this advantage becomes more significant. Scope 

would then exist to further increase the bid price, producing more gas, without considerable 

increases being made to the LCOE. This is true for all three models tested.  

 

3.2.3 Running solely on low-cost or otherwise curtailed electricity  

Previous literature has often assumed that P2G may only operate at times of excess or low-cost 

electricity (defined in this paper as less than €10/MWeh), capitalising on market fluctuations largely 

due to the feed in priority of RE [25]. However, this work has shown that opportunities for P2G to 

take advantage of balancing issues and hence low-cost energy are limited. In the 2030 (60%) model 

999 hours at an average cost of €0.28/MWeh are available, the most of all three models, due largely 

to the increased mismatch between VRE production and demand. This would still result in an 

uncompetitive LCOE of €273/MWh due to the low volume of gas produced (5.62 GWh/a). In the 

2030 (40%) and 2016 (25%) scenarios only 58 and 12 hours of low-cost energy are available at 

average costs of €0.37/MWeh and €3.77/MWeh respectively, making running solely on low-cost 

energy entirely unfeasible in these markets. This highlights that increasing the share of RE to 60% 

increases the availability of low-cost energy (from 58 hours to 999 hours between the 35% and 55% 

VRE penetration scenarios in 2030), but not to the levels required to produce competitive P2G 

derived gas. P2G then can be said to be an increasingly attractive solution as the share of VRE grows, 



but only consuming in times of surplus VRE is not proposed to be a viable business model. The 

availability of large quantities of surplus electricity is symptomatic of an inefficient electricity 

network and thus is a resource that one aims to minimise.  

Real world data may provide somewhat higher quantities than those modelled, as demand and 

generation will not be so well forecast, but not to the point where sufficient quantities become 

available [42]. Operating the plant only during these periods would not allow for amortisation of the 

capital expenditure. Consequently, a compromise must be found between amortisation and running 

the plant only during the cheapest hours. This phenomenon is essentially independent of the size of 

the system. The volume of gas a larger system would produce, in attempting to capitalise on the 

low-cost electricity, would be proportional to the increased capital cost of the system. The 

economies of scale associated with P2G are not sufficient for this to be economically viable due in 

part to their modular nature [24].  

 

4. Conclusion 

The effect on the LCOE of a P2G system when it interacts with the electricity market was examined. 

Three electricity markets at different shares of RE (25, 40, and 60%) consisting mostly of VRE were 

analysed for their interactions with a 10MWe P2G facility. It was noted that the available run hours 

and average cost of electricity do not increase proportionally. Thus, it was found that increasing the 

bid price to beyond the average marginal cost of generation, approximately €35-50/MWeh here, 

minimised the LCOE. Increased shares of VRE led to more hours of both high-cost (greater than 

€100/MWeh) and low-cost (less than €10/MWeh) electricity, but the number of low-cost run hours 

resulting from this was found to be insufficient to sustain a P2G facility alone. The bid strategy that 

minimised LCOE also produced the highest volumes of gas, ideally placing it to take advantage of 

incentives should they become available. Overall it was established that the viability of P2G relies on 

the availability of affordable energy for long periods of time and not positioning itself to take 

advantage of periods of low-cost energy. 

 

Acknowledgements 

This work was funded by Science Foundation Ireland (SFI) through the Centre for Marine and 

Renewable Energy (MaREI) under Grant No. 12/RC/2302. The work was also co-funded by Gas 

Networks Ireland (GNI) through the Gas Innovation Group and by ERVIA. 



 

References 

 

[1] European Commission, A Roadmap for moving to a competitive low carbon economy in 2050, 
(2011). 

[2] Y. Gao, X. Gao, X. Zhang, The 2 °C Global Temperature Target and the Evolution of the Long-
Term Goal of Addressing Climate Change—From the United Nations Framework Convention 
on Climate Change to the Paris Agreement, Engineering. 3 (2017) 272–278. 
doi:10.1016/J.ENG.2017.01.022. 

[3] European Commission, Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF 
THE COUNCIL on the promotion of the use of energy from renewable sources (recast), 382 
(2017). https://ec.europa.eu/energy/sites/ener/files/documents/1_en_act_part1_v7_1.pdf. 

[4] J. de Bucy, Non-individual transport – Paving the way for renewable power-to-gas (RE-P2G), 
2016. http://iea-retd.org/wp-content/uploads/2016/07/201607-IEA-RETD-RE-P2G-final-
report.pdf. 

[5] European Commission, DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on 
the deployment of alternative fuels infrastructure, Off. J. Eur. Union. 12 (2014) 1–38. 

[6] H. Chandler, A Guide to the Balancing Challenge, 2011. doi:612011171P1. 

[7] M. Jentsch, T. Trost, M. Sterner, Optimal use of Power-to-Gas energy storage systems in an 
85% renewable energy scenario, Energy Procedia. 46 (2014) 254–261. 
doi:10.1016/j.egypro.2014.01.180. 

[8] D. Hart, L. Bertuccioli, X. Hansen, Policies for Storing Renewable Energy, 2016. http://iea-
retd.org/wp-content/uploads/2016/08/20160305-RE-STORAGE.pdf. 

[9] E. V. Mc Garrigle, J.P. Deane, P.G. Leahy, How much wind energy will be curtailed on the 2020 
Irish power system?, Renew. Energy. 55 (2013) 544–553. doi:10.1016/j.renene.2013.01.013. 

[10] H.S. de Boer, L. Grond, H. Moll, R. Benders, The application of power-to-gas, pumped hydro 
storage and compressed air energy storage in an electricity system at different wind power 
penetration levels, Energy. 72 (2014) 360–370. doi:10.1016/j.energy.2014.05.047. 

[11] A. Evans, V. Strezov, T.J. Evans, Assessment of utility energy storage options for increased 
renewable energy penetration, Renew. Sustain. Energy Rev. 16 (2012) 4141–4147. 
doi:10.1016/j.rser.2012.03.048. 

[12] P. Bousseau, F. Fesquet, R. Belhomme, S. Nguefeu, T.C. Thai, Solutions for the Grid 
Integration of Wind Farms---a Survey, Wind Energy. 9 (2005) 13–25. doi:10.1002/we.177. 

[13] P. Denholm, M. Hand, Grid flexibility and storage required to achieve very high penetration of 
variable renewable electricity, Energy Policy. 39 (2011) 1817–1830. 
doi:10.1016/j.enpol.2011.01.019. 

[14] A.S. Brouwer, M. van den Broek, W. Zappa, W.C. Turkenburg, A. Faaij, Least-cost options for 
integrating intermittent renewables in low-carbon power systems, Appl. Energy. 161 (2016) 
48–74. doi:10.1016/j.apenergy.2015.09.090. 



[15] M. Gimeno-Gutiérrez, R. Lacal-Arántegui, Assessment of the European potential for pumped 
hydropower energy storage : A GIS-based assessment of pumped hydropower storage 
potential, 2013. doi:10.2790/86815. 

[16] M. Sterner, I. Stadler, Energiespeicher - Bedarf, Technologien, Integration, Springer Berlin 
Heidelberg, 2014. https://books.google.ie/books?id=MFajBAAAQBAJ. 

[17] L. Grond, P. Schulze, J. Holstein, Systems Analyses Power to Gas; deliverable 1: Technology 
Review, DNV Kema. GCS 13.R.2 (2013) 1–70. 

[18] M. Gotz, J. Lefebvre, F. Mors, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, 
Renewable Power-to-Gas: A technological and economic review, Renew. Energy. 85 (2016) 
1371–1390. doi:10.1016/j.renene.2015.07.066. 

[19] F. Graf, M. Götz, M. Henel, T. Schaaf, R. Tichler, Technoökonomische Studie von Power-to-
Gas-Konzepten, (2014). http://www.dvgw-
innovation.de/fileadmin/dvgw/angebote/forschung/innovation/pdf/g3_01_12_tp_b_d.pdf. 

[20] C. Breyer, E. Tsupari, V. Tikka, P. Vainikka, Power-to-gas as an emerging profitable business 
through creating an integrated value chain, Energy Procedia. 73 (2015) 182–189. 
doi:10.1016/j.egypro.2015.07.668. 

[21] E. Kotter, L. Schneider, F. Sehnke, K. Ohnmeiss, R. Schroer, The future electric power system: 
Impact of Power-to-Gas by interacting with other renewable energy components, J. Energy 
Storage. 5 (2016) 113–119. doi:10.1016/j.est.2015.11.012. 

[22] D.M. Wall, S. McDonagh, J.D. Murphy, Cascading biomethane energy systems for sustainable 
green gas production in a circular economy, Bioresour. Technol. 243 (2017) 1207–1215. 
doi:10.1016/j.biortech.2017.07.115. 

[23] S. McDonagh, R. O’Shea, D.M. Wall, J.P. Deane, J.D. Murphy, Modelling of a power-to-gas 
system to predict the levelised cost of energy of an advanced renewable gaseous transport 
fuel, Appl. Energy. 215 (2018) 444–456. doi:10.1016/j.apenergy.2018.02.019. 

[24] G. Benjaminsson, J. Benjaminsson, R. Rudberg, Power-to-Gas – A technical review, SGC Rapp. 
284 (2013) 67. doi:SGC Rapport 2013:284. 

[25] J. Vandewalle, K. Bruninx, W. D’Haeseleer, Effects of large-scale power to gas conversion on 
the power, gas and carbon sectors and their interactions, Energy Convers. Manag. 94 (2015) 
28–39. doi:10.1016/j.enconman.2015.01.038. 

[26] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, D. Stolten, Power to gas: 
Technological overview, systems analysis and economic assessment for a case study in 
Germany, Int. J. Hydrogen Energy. 40 (2015) 4285–4294. doi:10.1016/j.ijhydene.2015.01.123. 

[27] E.P. Ahern, P. Deane, T. Persson, B. Ó Gallachóir, J.D. Murphy, A perspective on the potential 
role of renewable gas in a smart energy island system, Renew. Energy. 78 (2015) 648–656. 
doi:10.1016/j.renene.2015.01.048. 

[28] ENEA Consulting, The Potential of Power-To-Gas, 33 (2016) 51. 

[29] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water 
electrolysis, Int. J. Hydrogen Energy. 38 (2013) 4901–4934. 
doi:10.1016/j.ijhydene.2013.01.151. 

[30] F. Graf, A. Krajete, U. Schmack, Techno-ökonomische Studie zur biologischen Methanisierung 
bei Power-to-Gas-Konzepten, (2014) 61. doi:10.13140/RG.2.1.2001.9366. 



[31] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. 
Bajohr, Review on methanation – From fundamentals to current projects, 166 (2016) 276–
296. doi:10.1016/j.fuel.2015.10.111. 

[32] T. Aicher, M. Iglesias G, G. Schaub, M. Gotz, Arbeitspaket 5: Betrachtungen des 
Gesamtsystems im Hinblick auf Dynamik und Prozessintegration, energiejwasser-praxis 65, 
(2014). 

[33] R. O’Shea, D.M. Wall, S. McDonagh, J.D. Murphy, The potential of power to gas to provide 
green gas utilising existing CO2 sources from industries, distilleries and wastewater treatment 
facilities, Renew. Energy. 114 (2017) 1090–1100. doi:10.1016/j.renene.2017.07.097. 

[34] G. Reiter, J. Lindorfer, Evaluating CO2 sources for power-to-gas applications-A case study for 
Austria, J. CO2 Util. 10 (2015) 40–49. doi:10.1016/j.jcou.2015.03.003. 

[35] D. Parra, M.K. Patel, Techno-economic implications of the electrolyser technology and size for 
power-to-gas systems, Int. J. Hydrogen Energy. 41 (2016) 3748–3761. 
doi:10.1016/j.ijhydene.2015.12.160. 

[36] E.P. Ahern, P. Deane, T. Persson, B.O. Gallachoir, J. Murphy, A perspective on the potential 
role of biogas in smart energy grids, Renew. Energy. 78 (2015) 648–656. 
doi:10.1016/j.renene.2015.01.048. 

[37] T.T.Q. Vo, A. Xia, D.M. Wall, J.D. Murphy, Use of surplus wind electricity in Ireland to produce 
compressed renewable gaseous transport fuel through biological power to gas systems, 
Renew. Energy. 105 (2016) 495–504. doi:10.1016/j.renene.2016.12.084. 

[38] P. Finn, C. Fitzpatrick, D. Connolly, M. Leahy, L. Relihan, Facilitation of renewable electricity 
using price based appliance control in Ireland’s electricity market, Energy. 36 (2011) 2952–
2960. doi:10.1016/j.energy.2011.02.038. 

[39] SEMO, Dynamic Reports, Http://www.sem-O.com/. (n.d.). http://www.sem-
o.com/MarketData/Pages/DynamicReports.aspx (accessed August 21, 2017). 

[40] Energy Exemplar » Energy Market Modelling » PLEXOS® Integrated Energy Model, (n.d.). 
https://energyexemplar.com/software/plexos-desktop-edition/ (accessed August 23, 2017). 

[41] A.M. Foley, B.P. Ó Gallachóir, J. Hur, R. Baldick, E.J. McKeogh, A strategic review of electricity 
systems models, Energy. 35 (2010) 4522–4530. doi:10.1016/j.energy.2010.03.057. 

[42] M. Welsch, P. Deane, M. Howells, B. O Gallachóir, F. Rogan, M. Bazilian, H.H. Rogner, 
Incorporating flexibility requirements into long-term energy system models - A case study on 
high levels of renewable electricity penetration in Ireland, Appl. Energy. 135 (2014) 600–615. 
doi:10.1016/j.apenergy.2014.08.072. 

[43] M. Holland, M. Howley, Renewable Electricity in Ireland 2015, (2016) 32. 
http://www.seai.ie/Publications/Statistics_Publications/Renewable_Energy_in_Ireland/Rene
wable-Electricity-in-Ireland-2015.pdf. 

[44] P. Calnan, J.P. Deane, B.P. Ó Gallachóir, Modelling the impact of EVs on electricity generation, 
costs and CO2 emissions: Assessing the impact of different charging regimes and future 
generation profiles for Ireland in 2025., Energy Policy. 61 (2013) 230–237. 
doi:10.1016/j.enpol.2013.05.065. 

[45] Fuel Cells Bulletin, Denmark turns excess wind power into gas via Hydrogenics tech, Fuel Cells 
Bull. 2014 (2014) 8–9. doi:10.1016/S1464-2859(14)70082-3. 

[46] Audi e-gas - Audi Technology Portal, (n.d.). https://www.audi-technology-



portal.de/en/mobility-for-the-future/audi-future-lab-mobility_en/audi-future-
energies_en/audi-e-gas_en (accessed August 23, 2017). 

[47] A. Keane, A. Tuohy, P. Meibom, E. Denny, D. Flynn, A. Mullane, M. O’Malley, Demand side 
resource operation on the Irish power system with high wind power penetration, Energy 
Policy. 39 (2011) 2925–2934. doi:10.1016/j.enpol.2011.02.071. 

[48] G.L. Kyriakopoulos, G. Arabatzis, Electrical energy storage systems in electricity generation: 
Energy policies, innovative technologies, and regulatory regimes, Renew. Sustain. Energy Rev. 
56 (2016) 1044–1067. doi:10.1016/j.rser.2015.12.046. 

[49] O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Eickemeier, P. Matschoss, G. 
Hansen, S. Kadner, S. Schlömer, T. Zwickel, C. Von Stechow, IPCC, 2011: Summary for 
Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change 
Mitigation, 2011. doi:10.5860/CHOICE.49-6309. 

[50] Bloomberg Markets: NG1 Commodity Quote, (n.d.). 
https://www.bloomberg.com/quote/NG1:COM (accessed August 31, 2017). 

[51] Trading Economics: Coal 2009-2017, (n.d.). https://tradingeconomics.com/commodity/coal 
(accessed August 31, 2017). 

[52] Carbon Emissions Futures Historical Prices - Investing.com, (n.d.). 
https://www.investing.com/commodities/carbon-emissions-historical-data (accessed 
September 6, 2017). 

[53] P. Collet, E. Flottes, A. Favre, L. Raynal, H. Pierre, S. Capela, C. Peregrina, Techno-economic 
and Life Cycle Assessment of methane production via biogas upgrading and power to gas 
technology, Appl. Energy. 192 (2017) 282–295. doi:10.1016/j.apenergy.2016.08.181. 

[54] O.S. Buchholz, A.G.J. Van Der Ham, R. Veneman, D.W.F. Brilman, S.R.A. Kersten, Power-to-
Gas: Storing surplus electrical energy a design study, Energy Procedia. 63 (2014) 7993–8009. 
doi:10.1016/j.egypro.2014.11.836. 

[55] A. Varone, M. Ferrari, Power to liquid and power to gas: An option for the German 
Energiewende, Renew. Sustain. Energy Rev. 45 (2015) 207–218. 
doi:10.1016/j.rser.2015.01.049. 

[56] E. Mulholland, R.S.K. O’Shea, J.D. Murphy, B.P. Ó Gallachóir, Low carbon pathways for light 
goods vehicles in Ireland, Res. Transp. Econ. 57 (2016) 53–62. 
doi:10.1016/j.retrec.2016.10.002. 

 


	Abstract
	Keywords:

	1. Introduction
	2. Methodology
	2.1 P2G model to calculate LCOE
	2.2 Source of carbon dioxide
	2.3 Electricity Market Data
	2.4 Calculating run hours and average cost of electricity from the models

	3. Results and discussion
	3.1 Electricity market data relevant to P2G
	3.2 P2G interactions with the electricity market and effect on LCOE
	3.2.2 Combined effects on the LCOE of P2G
	3.2.3 Running solely on low-cost or otherwise curtailed electricity


	4. Conclusion
	Acknowledgements
	References

