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Abstract  

Power to gas (P2G) is proposed as a means of producing advanced renewable gaseous transport fuel 

whilst providing ancillary services to the electricity grid through decentralised small scale (10MW) 

energy storage. The study uses a discounted cash flow model to determine the levelised cost of 

energy (LCOE) of the gaseous fuel from non-biological origin in the form of renewable methane for 

various cost scenarios in 2020, 2030, and 2040. The composition and sensitivity of these costs are 

investigated as well as the effects of incentives and supplementary incomes. The LCOE was found to 

be €107-143/MWh (base value €124) in 2020, €89-121/MWh (base value €105) in 2030, and €81-

103/MWh (base value €93) in 2040. The costs were found to be dominated by electricity charges in 

all scenarios (56%), with the total capital expenditure the next largest contributor (33%). Electricity 

costs and capacity factor were the most sensitive parameters followed by total capital expenditure, 

project discount rate, and fixed operation and maintenance. For the 2020 base scenario should 

electricity be available at zero cost the LCOE would fall from €124/MWh to €55/MWh. Valorisation 

of the produced oxygen (€0.1/Nm3 profit) would generate an LCOE of €105/MWh. A payment for 

ancillary services to the electricity grid of €15/MWe for 8500h p.a would lower the LCOE to 

€87/MWh. Price parity with diesel, exclusive of sales tax, is achieved with an incentive of €19/MWh.  
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1. Introduction 

The Paris agreement (under COP21) has set a target of limiting the increase in global temperatures  

to less than 2°C. To facilitate this, an 80% reduction in greenhouse gas (GHG) emissions by 2050 will 

most likely be required [1,2]. The reduction in GHG emissions will rely on decarbonisation of the 

energy sector and a push for sustainable energy solutions to meet increasing energy demand 

through leverage of existing and future technologies.  

As transmission system operators (TSO) aim to facilitate targets set under the Renewable Energy 

Directive (RED), renewable technologies will be prioritised [3]. The ensuing decarbonisation of the 

energy system will increase the amount of variable renewable electricity (VRE) on the electricity grid. 

Increasing portions of variable renewable electricity will pose challenges for the grid with regards to 

balancing, stability, and periods where supply exceeds demand [4,5]. Thus, the storage, flexibility, 

and balancing capabilities will need to increase with increased VRE installed capacity, to ensure the 

reliability and safe operation of electricity supply [6,7]. Additional flexibility and grid stability 

requirements to facilitate increasing shares of VRE have been previously discussed in literature 

[4,5,8]. The task of matching supply with demand can lead to periods of curtailment, inefficient 

production, and potentially affect security of supply [7,9,10]. Large scale and flexible energy storage 

options are seen as a means of reducing these effects [11]. 

Storage of otherwise curtailed electricity has typically been achieved through pumped hydroelectric 

storage (PHS) systems. PHS is a mature technology with a worldwide installed capacity of 143 GW, 

but is restricted by geography [12–14]. Other technologies such as compressed air energy storage 

and battery storage have also been mooted as important storage mechanisms in future electricity 

networks. Power-to-Gas (P2G) is an emerging technology that can utilise otherwise curtailed 

electricity and convert it to hydrogen (H2) via electrolysis of water. The hydrogen can then be further 

combined with carbon dioxide (CO2) to produce methane (CH4) via a Sabatier reaction. The ability of 

P2G to absorb excess electricity and remove the requirement to “turn off” electricity power plants or 

“spill” renewable electricity facilitates VRE and allows for the provision of ancillary services [15]. It 

has been proposed as a means of storing excess electricity, adding stability to the electricity grid, 

and producing a substitute for natural gas [11,16,17]. Operating ideally, P2G facilitates higher shares 

of indigenous wind, wave, and solar energy offsetting the need for energy imports and abating GHG 

emissions [18,19]. A significant advantage of P2G as a form of energy storage is the change of the 

energy carrier from electricity to gas (either hydrogen or methane). Converting electrical energy into 

chemical energy allows for large-scale storage through existing gas grid infrastructure [6]. 

P2G systems (when the vector is methane) have superior storage capacities and discharge times to 

that of PHS through use of the natural gas grid [20]. For instance, the French national gas grid alone 



has a capacity of over 100TWh [21]. P2G does not require favourable geography nor large 

infrastructural changes in countries with existing gas networks [11]. Gaseous fuel from non-

biological origin produced by P2G is designated as an advanced third-generation biofuel; such 

advanced biofuels are heavily promoted within the EU framework due to their low land use change, 

potentially low carbon intensity, and waste to energy/circular economy characteristics. Transport 

fuel suppliers are obliged to provide an increasing share of advanced renewable transport (excluding 

first generation biofuels from food crops), rising from 1.5% in 2021 to 6.8% in 2030. At least 3.6% of 

this must be from advanced biofuels (including gaseous fuel from non-biological origin) [22]. 

Gaseous fuel from P2G, injected to the natural gas grid, could thus be used as an advanced transport 

fuel in natural gas vehicles (NGVs) and in conjunction with guarantees of origin provide the required 

70% emissions reduction as compared to the fossil fuel displaced (required by the RED and proposed 

amendments to ensure sustainability of biofuels beyond 2021) [23–25].  

The state of the art in LCOE of P2G (methane) systems may be viewed in Table 1. A number of 

technology reviews of P2G with respect to working principles, relative advantages and 

disadvantages, and trends in technology have been provided in past literature [7,15,26–29]; 

estimates of system costs have also been detailed [15,26,30–33]. However, much uncertainty still 

remains with cost estimates varying substantially [6,28,30,32,34–36] from €75 to €600/MWh CH4. It 

is the view of the authors’ that anticipated cost reductions in the literature have not materialised to 

the extent predicted. The concept that electricity that would have been curtailed being available at a 

low-cost is not reflective of current electricity market data [26,37]. The innovation in this paper is 

that it advances upon previous cost estimates using a discounted cash flow model of the lifetime of a 

plant which accounts for maintenance costs and frequency, commissioning/decommissioning, fixed 

and variable operational expenditure and maintenance (OPEX), and real-world electricity market 

data. It also uses a plant lifecycle that optimises the replacement schedule of the components and 

the latest cost estimates for these. 

 

 

 

 

 

 

Table 1. State of the art in LCOE of P2G systems 

LCOE  

(€/MWh CH4) 

Assumptions (Year of reference) Run 

hours 

Electricity 

cost 

Reference 



(p.a.) (€/MWh)  

600 Integration with a lignite power plant. 

80MWe input. (2012) 

1200 N/A Buchholz et al. [38] 

190 – 316 Heat and O2 utilisation not included. (2014) 3000 25 E&E Consultants [21] 

132 – 245  Biological methanation as novel upgrading. 

Compression and grid injection (2016) 

N/A 50 Vo et al. [39] 

141 – 236  Heat and O2 utilisation not included. (2013) 8600 45 Benjaminsson [26]  

210  Coupled with 5 MW biogas production. No 

heat or O2 valorisation. (2014) 

3000 50 Graf et al. [37] 

185 10MWe input. Tax free electricity. 

Compression and injection included. (2015) 

7800 60 ENEA [31] 

170 10MWe input. Tax free electricity. 

Compression and injection included. (2015) 

8600 40 ENEA [31] 

92 - 113 Heat and O2 utilisation not included. (2050) 3000 25 E&E Consultants [21] 

95 10MWe input. Tax free electricity. 

Compression and injection included. (2015) 

6100 15 ENEA [31] 

75 Revenue of €10/tonne O2 included. (2015) 5000 50 Vandewalle et al. [30] 

 

The objectives of the paper are to: 

- Assess the most appropriate technologies (electrolysis and methanation), and their 

associated specifications for use in a P2G system. 

- Create a bespoke model that calculates the levelised cost of energy (LCOE) for P2G systems 

for a range of inputs, scenarios, and time periods. 

- Investigate the relationships between various parameters and system LCOE through 

sensitivity analysis and examination of the cost composition of these.  

- Calculate the required incentives to reach price parity with diesel as a transport fuel, and the 

effect sale of oxygen (produced through electrolysis) or grid services may have on LCOE.  

 

2. Methodology 

2.1  The Power-to-Gas (P2G) system 

In this study, P2G is defined as the combination of electrolysis, to produce hydrogen, and 

methanation, to generate methane (by reacting carbon dioxide with hydrogen). In the envisaged 

system, the methane could be compressed and injected into the natural gas grid. It was also 

considered that the operation of the P2G plant may require temporary storage of hydrogen. 



Estimates for the variables outlined in Figure 1 and used in the model are based upon an extensive 

literature review and are referenced appropriately. Where several estimates existed, or there were 

large differences in the quoted values, average figures were calculated and used. Similarly, where 

estimates were found for time periods different to those being investigated, figures were 

extrapolated backward or forward. It is postulated that this method of avoiding the use of a single 

set of figures minimises the risk of over or under accounting for costs specific to one piece of 

research, and allows for more accurate approximations of component costs and performance. 

Values in currency other than Euro were converted using a currency converter [40] and corrected to 

2016 euros using inflation calculators [41,42]; as such the results are reported as 2016 Euro. 

 

 
BoP (Balance of plant); OPEX (operational cost); Capex (cost of capital) Replace (replacement of components during plant life). 
Calculation of Land Capital cost (equation 4) is detailed in Appendix 1. 

Figure 1. Inputs and variables included in the model to calculate the LCOE of the produced gaseous 
fuel. 

 

2.1.1 Electrolysis 

Electrolysis is the key enabling technology for P2G. It is a mature technology with commercial 

electrolysers already available on the market. Electrolysis allows for the conversion of electrical 

energy and water, into hydrogen and oxygen (O2), as in equation 1. 

2𝐻𝐻2𝑂𝑂 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯�⇔  2𝐻𝐻2 +  𝑂𝑂2        (1)   

Producing hydrogen through the dissociation of water occurs in the electrolysis cells. Though this 

may vary slightly depending on the technology, each cell generally contains water, electrodes, and 

an electrolyte material crossed by an electric current. Hydrogen and oxygen are produced 

separately, at the cathode and anode respectively. The electrolyte material ensures the transfer of 

ions from one section (typically referred to as a cell) to the other, which are separated by a 

membrane. The cell size is limited by the ability of the membrane to withstand the electric current. 



Electrolysis cells are therefore piled into stacks that make up the core of an electrolyser and hence 

are somewhat modular [31]. Each unit also contains a water pump and cooling system, electrical 

auxiliaries, hydrogen purification, and instrumentation. The removal of impurities damaging to the 

electrolysis cells can be achieved either by systems within the unit or by a centralised system and 

distributed to each electrolyser. More thorough descriptions of the process can be found in past 

literature [26,27,43,44]. 

Electrolysis only accounts for a small proportion of the world’s hydrogen production due to the 

associated high investment and operating costs, and relative low-cost of the steam reforming of 

natural gas [43]. However, for future decarbonised energy systems “green” hydrogen from “surplus” 

renewable electricity is required for sustainability. The three technologies examined further in this 

paper are alkaline electrolysis cells (AEC), proton exchange membrane (PEM) electrolysis, and solid 

oxide electrolysis cells (SOEC). They represent the most suitable electrolysis systems for P2G now 

and in the future. 

 

2.1.2 Alkaline electrolysis cells (AEC) 

As of 2015, AEC was the state-of-the-art electrolyser and the only available electrolysis technology 

suitable for large scale P2G applications with several manufacturers positioning themselves as 

potential providers for the P2G market [31]. AEC can operate at atmospheric or elevated pressures 

and uses an aqueous alkaline solution (NaOH or KOH) as the electrolyte to transfer electrons 

through hydroxide anions as needed to dissociate the water. Depending on the scale and operating 

conditions the efficiency of AEC varies between 66% and 74%; the system can operate at loads of 10-

150% for limited times, and has a restart time of 10-60 minutes [31,35]. High maintenance costs can 

potentially occur due to the corrosive nature of the alkaline solutions [15]. Although continuously 

developing, increases in system performance are likely to be marginal given the existing maturity of 

AEC. Additional cost reductions can come from market growth (with maximum reduction envisaged 

at 10 to 20 % of the final price). Similar reductions can be assumed in the required capital 

expenditure (CAPEX) due to technical innovations [7,15,31]. A more detailed assessment of the 

current and future capabilities of AEC has been outlined in past literature [7,15]. 

 

2.1.3 Proton exchange membrane (PEM) 

PEM electrolysis is a more recently developed technology that is currently used in small scale 

applications in industrial markets. However, PEM electrolyser manufacturers are very active in the 

development of the technology for P2G applications with demonstration units operating up to 2MW 

[7,26,31,37]. The technology uses proton transfer polymer membranes that act as both the 



electrolyte and the separation material between the different cells of the electrolysis stack. PEM can 

operate at atmospheric pressure, and is also capable of operating at higher pressures than AEC [6]. 

The quoted efficiencies for PEM vary between 67 and 82% with future advances beyond this 

expected [7,35]. In terms of suitability to P2G, PEM electrolysis offers very fast shut down and start 

up times from both transient and cold operation, a part load range of 5-100%, and higher purity 

hydrogen [45,46]. Long-term degradation of the cells is a technical barrier to commercialisation of 

this technology, however improvements are expected [7,35]. 

In the choice between PEM and AEC electrolysers there exists a trade-off between system efficiency 

and cost. Given the technological improvements being made and the rates at which they are 

occurring for the respective technologies, for a given specification, a point will be reached where the 

performance of PEM surpasses AEC. PEM electrolysers currently have higher CAPEX than AEC due to 

lower technology readiness level (TRL). However, further development of the technology is expected 

to reduce investment costs significantly, to below that of AEC. It is also expected that PEM will soon 

technically outperform AEC and thus become the more dominant technology for P2G systems 

[6,7,37].  

 

2.1.4 Solid oxide electrolysis cells (SOEC) 

SOEC, also known as high temperature electrolysis, is considered a future electrolysis technology for 

P2G systems. It is still at an early stage of development with the investment costs yet to be 

distinguished. No commitment to producing MW scale units in the medium term has been made 

[26,31]. SOEC operates at high temperature (700-800°C) using ceramic materials for both the 

electrolyte and electrode materials; the high temperature reduces the electrical input required for 

the water to dissociate. The significant advantage of SOEC technology is its high efficiency (typically 

80 to 90%). The high temperatures also limit the systems flexibility as they are not stable against 

fluctuating or intermittent power [15,47]. The biggest challenge to the viability of SOEC is the fast 

material degradation and limited long term stability of operation [48]. 

Future integration with an exothermic reaction (for instance, catalytic methanation) would allow for 

heat recovery to produce steam for the electrolysis stack and could theoretically lead to efficiencies 

above 100% [47]. However, at present, SOEC is considered to be at a low TRL [21,31,49]. 

 

2.2  Methanation 

The methanation phase for P2G refers to the reaction between carbon dioxide and hydrogen, in a 

Sabatier process as described by equation 2.  



𝐶𝐶𝑂𝑂2 + 4𝐻𝐻2  
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯�⇔  𝐶𝐶𝐻𝐻4 + 2𝐻𝐻2𝑂𝑂 (𝑔𝑔)    − 164𝑘𝑘𝑘𝑘.𝑚𝑚𝑚𝑚𝑚𝑚−1 (2) 

The equilibrium of the reaction is influenced by pressure and temperature. In thermodynamic 

equilibrium, high pressures favour the production of methane whilst high temperatures limits 

production. 

The reaction is thermodynamically limited to 74% efficiency (LHV: CH4 (10.494 kWh/m3) / (4 x 

H2(3.543 kWh/m3)) and is highly exothermic; thus there is potential for the utilisation of waste heat. 

Two methods of methanation are possible, biological and catalytic; neither technology can be 

considered mature in the application to P2G. Comprehensive reviews of both can be found in 

literature [15] as well as details of ongoing and completed P2G projects [29]. 

 

2.2.1 Biological methanation  

Biological methanation (BM) is a process whereby methane is produced using hydrogenotrophic 

methanogenic archaea that consume both hydrogen and carbon dioxide. The reaction is anaerobic 

and takes place in an aqueous solution, at atmospheric pressure, at temperatures between 20 and 

70 °C [29,31]. BM has the potential to be a lower cost option due to simple reactor designs, low 

pressures, and low temperatures [21]. BM can be in-situ (using the existing methanogenic archaea 

present in an anaerobic digester) or ex-situ (reaction takes place in an external vessel specifically 

inoculated with methanogenic archaea). For P2G applications the high gas flow rates, mixing 

requirements, required purity, and controllability make the ex-situ process more suitable [26]. 

However, several barriers to higher efficiencies exist for ex-situ BM. The solubility of hydrogen in the 

reaction medium is greatly hindered by the gas-liquid interface. This is addressed by higher mixing 

rates which increases the parasitic energy load [15,26]. BM is also susceptible to undesirable mixing 

of unreacted gases with product gases in the reactor (back mixing) and dilution of the reaction 

medium due to the formation of water in the reaction (Eq. 2) [15].  

There is no biologically dictated minimum load in terms of hydrogen throughput and immediate load 

change from 100 to 0% can be made without effecting the process [37]. Effective resumption of BM 

has been demonstrated after 560 hours of stagnant operation without harmful consequences, 

indicating high flexibility [37]. However, the practical minimum load (approximately 10%) occurs 

when the energy required of the stirrers exceeds that of the methane being produced [37]. A high 

tolerance for impurities and gas composition variation make the coupling of biogas from anaerobic 

digestion with BM particularly suitable [28]. 

2.2.2 Catalytic methanation 

Catalytic methanation (CM) is a thermochemical process which takes place at high temperatures 

(200 - 700°C) and at higher pressures between 1-100 bar [19]. In large-scale and continuous 



operations, the most common technology is the adiabatic fixed-bed reactor; smaller scale or 

intermittent operation (as with P2G) can be achieved with isothermal reactors [21]. The heat 

released must be controlled to avoid catalyst degradation and maintain a forward reaction and is 

also the focus of much research [15,31].  

Operational flexibility is a key issue with CM as load changes may induce runaway heating or cooling 

of the reactors, and a complete shutdown requires flushing with an inert gas or hydrogen. A 

minimum load of 40% or temperature of 200°C to avoid such issues is desired, to prevent the 

formation of catalytic poisons, and to allow for fast restarts [15,37]. CM requires a high purity feed 

gas and thus biogas from anaerobic digestion must be cleaned upstream prior to use [15].  

Much faster rates of production are achieved with CM as compared to BM due to the favourable 

conditions, presence of a catalyst, and absence of a gas-liquid mass transfer resistance [29,50]. CM 

processes also have a lower power requirement per unit of gas produced than that of BM [15].  

Opportunities exist for CM to produce steam from the cooling circuit to pre-heat the feed gases, 

with sufficient energy left to run a steam turbine or use elsewhere, increasing the process efficiency 

and allowing for cost savings [19,26]. However, quantifying this was considered beyond the scope of 

this paper.  

 

2.3 Hydrogen storage  

As the electrolysers can be operated more dynamically than the methanation phase there is a need 

for a minimum volume of hydrogen storage as a buffer. The smaller or less dynamic the methanation 

units, the larger the required hydrogen storage [7,28,29,35]. Suitable methods of storage include 

compressed gas tanks, cryogenic compressed liquid hydrogen tanks and metal hydride storage [15].  

The issues arising from operating a methanation plant intermittently could be lessened by optimising 

the hydrogen storage and methanation reactor volume to minimise the number of shutdowns. This 

would require having the shutdown and start-up costs of the system and a highly accurate 

estimation of the operation schedule of the electrolyser (weather and market dependent). Neither 

of these are readily available. The CAPEX of hydrogen storage is significant, and depending on plant 

setup can outweigh the methanation CAPEX. In a study by Aicher et al. the total investment cost of a 

P2G plant was reduced by 8.4% through dynamic operation of the methanation system lessening the 

hydrogen storage requirement with similar annual productions of methane achieved [51].  

 



2.4 Source of carbon dioxide 

The particular source of carbon dioxide is irrelevant in terms of the overall conversion process 

however BM is much more tolerant of impurities (such as H2S) than CM. P2G could utilise the carbon 

dioxide content of biogas as a novel upgrading system, offsetting significant costs of traditional 

upgrading with the additional benefit of utilising the waste heat. Several industries generate 

relatively pure sources of carbon dioxide that could also potentially be used such as distilleries and 

wastewater treatment plants (WWTPs) [52,53]. Ideally the source of carbon dioxide would be 

biogenic (biogas plants, WWTPs, and distilleries) such that the methanation process is carbon 

neutral. 

 

2.5 Gas quality 

The high selectivity of the methanation process leads to a methane content of approximately 95% in 

the product gases. However, this still results in an energy content less than that of natural gas due to 

the lack of higher hydrocarbons [15]. In smaller quantities, the gas produced by P2G can be 

compressed and injected into the transmission grid without issue but in some instances the addition 

of propane may be required to meet the gas grid specifications, particularly when injecting into the 

distribution network [31,54]. Though it is possible for hydrogen to be injected directly into the gas 

grid several issues would arise since the existing natural gas grids were designed for methane. 

Hydrogen leads to much more permeation and corrosion than methane and for safety reasons the 

maximum hydrogen content is limited to between 0.1 and 10% by volume; depending on the 

country, limits up to 20% have been discussed [55–57]. The amount that can be injected is also 

limited by gas quality regulations, as hydrogen has approximately one third the volumetric energy 

content as compared to methane (12 v. 36 MJ/m3) [54,58]. Therefore, power-to-hydrogen for grid 

injection requires further work to define and standardize the allowable limits and is not feasible in 

the short-medium term. 

 

2.6 P2G modelling: system performance and costs 

The model used in this study does not explicitly differentiate between technologies and instead uses 

input parameters such as cost, efficiency, energy consumption and lifetime of the parts. As 

indicated, in the time periods analysed, PEM electrolysis will have superior efficiency, greater ability 

to facilitate VRE and have greater cost reduction potential than the AEC and SOEC systems. Thus the 

PEM was considered most suitable for P2G [7,15,27,49] and the model proposed herein. Preliminary 

analysis of the likely operation schedule of an electrolyser engaging in the electricity market (as 



represented by the electricity market in Ireland for this study: Appendix 2) showed that annual run 

hours would need to be high to minimise the LCOE. Thus, the high flexibility of BM would be 

somewhat negated, with the higher efficiency of CM being preferred (no stirring required and waste 

heat utilisation). At scales in excess of 5MW, CM technology was also found to be more economic 

[37]. Thus, the envisaged system in the model consisted of 10 MWe PEM electrolysis coupled with 

CM. Ancillary components such as supply water purification, pumps, and electronics are included for 

in the balance of plant (BoP), the operational cost (OPEX) is broken into fixed and variable 

components.  

The requirement for hydrogen storage is largely dependent on the bid strategy of the facility, and 

resultant intermittency of the production of the gas. Thus, a small volume of storage is included in 

the contingency and BoP in order to simply regulate the flow of hydrogen to the methanation 

process. With the high costs associated with hydrogen storage infrastructure it is was considered 

best to minimise this element [61]. The envisaged system for the model can thus operate part load, 

experience down time, and due to its bidding strategy will not go long periods without operating. 

Future models may have the capacity to achieve greater cost savings by integrating more hydrogen 

storage despite the associated high CAPEX. Table 2 illustrates the average specifications of PEM 

electrolysis and CM found in literature and hence used in the model.  

 

Table 2. Electrolysis and methanation energy consumption and efficiency inputs to model 

Time Period 2020 2030 2040 

Electrolysis (kWh/m3 H2) 4.92 4.66 4.43 

 % 72 76 80 

Methanation (kWh/m3 CH4) 0.3 (2020 base value) 0.13 (2030 base value) 0.08 (2040 base value) 

 % 72.5 73.4 73.7 

Overall Efficiency % 52.2 55.8 59.0 

 

The whole stack efficiency of the electrolysis process is listed together with the energy consumption 

of the methanation process, with their corresponding percentage efficiencies for the years 2020, 

2030 and 2040.  The figures in Table 2 attempt to account for pumping, parasitic loads, partial load 

inefficiencies etc. and thus may appear conservative when compared to some past literature 

[8,31,35]. Valorisation of waste heat is not included. Furthermore, the technological advances have 

not materialised to the extent predicted in much of the literature.  



The flexibility and partial load capabilities of the electrolysis and methanation processes are not 

included in the model, however, as the system is not set up to solely take advantage of otherwise 

curtailed electricity this is not of considerable concern. In reality, the run hours and energy 

consumed will be somewhat lower than predicted. 

Table 3 contains the cost estimates for P2G obtained from literature on which the financial model in 

this study was based. Where it was deemed that insufficient data was available, the authors’ own 

data was fitted. Where values were given in kW gas a conversion to kWe was achieved by dividing  

by 0.56, analogous to the 2030 figures for electrolysis and methanation combined efficiency, as 

suggested in Lehner [49]. In addition to those stated in Table 3, several other references were used 

to inform the estimates [6,7,15,30,46,59]. 

The time period costs for CAPEX, BoP and OPEX are shown in Table 4. These conservative cost 

estimates allow for project issues and other hidden costs that would arise on projects of this scale 

[51,60]. Much uncertainty remains regarding such investment costs and future costs. 

Several costs are not explicitly included in the model, either because they were deemed to be 

specific to certain sites, too ambiguous, or already accounted for in BoP. Excluded costs include for 

compression costs in the event of grid injection, the cost of CO2 (site specific), and taxes and fees for 

grid connection. Planning, wages, regulatory issues, and breakdowns beyond that budgeted for are 

also not included. The introduction of other costs increases uncertainty without additional accuracy, 

the conservative BoP yielded similar results without the complexity seen in other works [32]. The 

model also does not account for inflation, nor substantial economies of scale as previous research 

has shown it not to apply with units tending to be modular [26]. In Table 4 the BoP and OPEX costs 

of electrolysis and methanation are presented as decimal fractions of their corresponding CAPEX, as 

are electrolyser replacement and catalyst replaced. 

 

Table 3. Review of literature costs for P2G systems 

Electrolysis 
(€/kWe) 

Methanation 
(€/kWe)  

Project Costs 
(€) 

Other (€)  Note Reference  

1250 (2020) 840 (2016)  
280 (2030) 

   (E&E Consultant 
et al., 2014) [21] 

1000 (2020) 
700 (2030) 
400 (2050)  
  

840 (2016) 
560 (2030) 
390 (2050)  

Inclusive of 
transport, 
installation, and 
commissioning at 
10-20% CAPEX.  

OPEX 1-2% (10MW) 
of CAPEX, more for 
smaller units.  
Cell stack 
replacement 50% 
every 40,000 hrs. 
Additional 50% BoP 
for methanation, 5-
10% OPEX.  

Electrolysis cost 
is turnkey.  
Maximum 10-
20% scale effect.  

(ENEA 
Consulting, 2016) 
[31] 

800 – 1500 
(2014) 

200 – 1000 
(2014)  

 500 – 800/kWe 
Complete cost 

 (Graf, Götz, et al., 
2014) [37] 



including 12hr 
memory is future 
target (2030) 

 160 – 280 
(2014) 

  In agreement 
with Kinger 
2012 and 
Sterner 2009  

(Lehner et al., 
2014) [49] 

500 (2050)  340 (2050)   8% discount rate. 
OPEX of 3%.  

 (Ausfelder et al., 
2015) [61] 

1300 (2011)  100 – 700 
(2011)  

10% CAPEX for 
project, 
construction, and 
unforeseen costs 

5% cost of capital Includes for 
connection and 
design (Proton-
Onsite). PEM 
has reduced 
significantly 
since.  

(Benjaminsson et 
al., 2013) [26] 

  5% Eng. And 
design, 10% 
contingency, 2% 
other.  

5% working capital. 
OPEX is 2%. 
25% of CAPEX for 
replacement cost of 
electrolysis stack 
every 7 years. 

 (Saur & 
Ramsden, 2011) 
[62] 

750 (combined future costs)   6% interest rate. 4% 
OPEX,  

25-year 
depreciation 
period 

(Jentsch et al., 
2014) [8] 

1000 (2016) 
850 (2020) 
710 (2030) 

1650* (2016) 
400 (2020) 
 

 4% OPEX,  *Inclusive of 
BoP, installation 
etc.  

(Albrecht et al., 
2013) [60]  

2490 (2011) 
1200 (2020) 

 10% construction, 
delivery etc 

4% OPEX, 7.5% 
interest rate 

25-year 
depreciation 
period 

(Smolinka et al., 
2011) [35] 

Year of data in brackets. 

 

 

 

 

 

Table 4. Time period costs for CAPEX, BoP and OPEX 

Time Period 2020 2030 2040 

 Low  Base High Low  Base  High Low  Base  High 

Electrolysis  CAPEX (€/kWe) 650 850 1000 500 700 850 400 560 660 

 BoP 0.1 0.15 0.2 0.1 0.15 0.2 0.1 0.15 0.2 

 OPEX 0.03 0.04 0.05 0.02 0.032 0.04 0.02 0.032 0.04 

Electrolyser Replacement  
(Years 10, 17, 24) 

0.2 0.32 0.4 0.2 0.32 0.4 0.2 0.32 0.4 



 

 

Figure 2. Lifecycle of the Plant used in the Cash Flow Model 

Methanation  CAPEX (€/kWe) 135 160 185 110 140 170 100 125 150 

 BoP 0.85 1 1.15 0.85 1 1.15 0.85 1 1.15 

 OPEX 0.05 0.057 0.065 0.05 0.057 0.065 0.05 0.057 0.065 

Catalyst Replacement  
(Year 15) 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Figures for BoP, OPEX, and Replacement as expressed as decimal fraction of respective CAPEX 

 

2.7 Model to calculate LCOE 

A bespoke discounted cash flow model in MS Excel® is used to calculate the LCOE of the methane 

produced and the figures contained in this paper. Calculating LCOE is a standard method and was 

previously outlined by Visser and Held (2014) [63] and frequently referenced in past literature 

[33,64–68]. It allows for intuitive comparison with electricity generators and other storage methods. 

In this study, the LCOE represents the breakeven selling price of the gas produced and is defined as 

per equation 3. 

 

𝐿𝐿𝐶𝐶𝑂𝑂𝐿𝐿 =  
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖

(1+𝐷𝐷𝑖𝑖𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝑖𝑖𝐶𝐶 𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦)𝑖𝑖
𝑖𝑖
𝑖𝑖=0

∑ 𝑘𝑘𝑘𝑘ℎ 𝐶𝐶𝑜𝑜 𝑔𝑔𝑦𝑦𝐶𝐶 𝑝𝑝𝑦𝑦𝐶𝐶𝑝𝑝𝐷𝐷𝐷𝐷𝑦𝑦𝑝𝑝 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖
(1+𝐷𝐷𝑖𝑖𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝑖𝑖𝐶𝐶 𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦)𝑖𝑖

𝑖𝑖
𝑖𝑖=0

    (3) 

 

The timeline of the model is shown in Figure 2. It includes for a 3-year commissioning phase, 30 

years of operation (during which the electrolysis units are replaced three times and methanation 

unit replaced once) and one-year decommissioning. The replacement schedule is optimised such 

that both the methanation plant and electrolysis stack will reach the end of their life in 

approximately the same year, avoiding shutting down the plant with relatively new components in 

place [69]. 

 

 

 

 
 
 
ESR – Electrolysis Stack Replacement 
MCR – Methanation Catalyst Replacement 

 



 

A cost to include land purchase, permits, transport, site preparation, engineering and design costs, 

grid connection as well as contingency was calculated according to the equation 4, derived in 

Appendix 1: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝑚𝑚 = €18.687(𝑘𝑘𝑊𝑊𝑦𝑦 𝑚𝑚𝑜𝑜 𝐿𝐿𝑚𝑚𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) + €331,313  (4)  

 

This would be paid in year 0. The remaining CAPEX is paid in instalments in years 0, 1, and 2 at 20%, 

50%, and 30% of total CAPEX respectively. Decommissioning costs were 20% of CAPEX and paid in 

the final year. A discount rate of 7% was used throughout in line with much of the literature as 

referenced in Table 3; calculating the perceived risk to an investor is beyond the scope of this study. 

The cost of CO2 was not included as this paper was written to examine the financial feasibility of 

locating P2G next to current sources of large quantities of rejected CO2 (distilleries, WWTPs, biogas 

plants etc.). The cost of water was included without consideration of recovery of water in the 

methanation step.  

With respect to electricity price and run hours, preliminary examination of the 2016 Irish single 

electricity market (SEM) indicated that a bid price of €50/MWh yielded run hours of ca. 6500 and an 

average electricity cost of €35/MWh (Appendix 2). Thus, these assumptions were used throughout 

and thought to be analogous to 2020 data.  

 

 

 

 

3. Results and discussion 

3.1 Levelised cost of energy of P2G 

Table 5 contains the results of the model for the low, base, and high cost scenarios specified in Table 

4 for the three selected time periods (2020, 2030 and 2040). Detailed calculations are set out in a 

spreadsheet in Supplementary Data. Taking into account the new electricity market data, updated 

cost estimates, and a full plant lifecycle, the results of the generated model are consistent with many 

found in literature [15,30,37,38,61] but within a smaller range. Comparison can be made to those 

outlined in Table 1.  

 
Table 5. LCOE of the envisaged P2G system under different scenarios 

Scenario 2020 2030 2040 



LCOE of 10MWe plant  
(€/MWh) 
 
- Bid Price of €50/MWeh. 
- Average cost of electricity of €35/MWeh 
exclusive of taxes/tariffs. 
- Run hours of 6500 p.a.  
Analogous of 2020 SEM data. 

Low 107 89 81 

Base 124 105 93 

High 143 121 103 

 

 

3.2 Breakdown of LCOE 

Hypothetically, in the 2020 base scenario, if the electricity was available at zero cost for the same 

number of hours, the LCOE would drop to €55/MWh. At a minimum, exclusive of CAPEX and OPEX, 

the methane generated in P2G systems has a cost as determined in equation 5, assuming positive or 

zero electricity costs.  

𝑀𝑀𝐶𝐶𝐿𝐿𝐶𝐶𝑚𝑚𝑀𝑀𝑚𝑚 𝐶𝐶𝑚𝑚𝐸𝐸𝐶𝐶 𝑚𝑚𝑜𝑜 𝑃𝑃𝐸𝐸𝑚𝑚𝐿𝐿𝑀𝑀𝐸𝐸𝐸𝐸𝐿𝐿 𝐺𝐺𝐿𝐿𝐸𝐸 (€ 𝑀𝑀𝑊𝑊ℎ⁄ ) =  𝐸𝐸𝑦𝑦𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦𝐸𝐸𝐸𝐸𝑦𝑦 𝐶𝐶𝐶𝐶𝑦𝑦𝐸𝐸 (€ 𝑀𝑀𝑊𝑊𝑦𝑦ℎ⁄ )
𝐸𝐸𝑦𝑦𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑦𝑦𝑒𝑒𝑒𝑒𝑦𝑦𝐸𝐸𝑦𝑦𝑦𝑦𝑒𝑒𝐸𝐸𝑦𝑦 × 𝑀𝑀𝑦𝑦𝐸𝐸ℎ𝑎𝑎𝑒𝑒𝐸𝐸𝑎𝑎𝑎𝑎𝑦𝑦𝐶𝐶𝑒𝑒 𝑦𝑦𝑒𝑒𝑒𝑒𝑦𝑦𝐸𝐸𝑦𝑦𝑦𝑦𝑒𝑒𝐸𝐸𝑦𝑦 

  (5) 

If the respective efficiencies of electrolysis and methanation are 72% and 72.5%, as in the 2020 

scenario (Table 2) then the gas can be expected to be approximately double (0.72 x 0.725 = 0.52) the 

cost of the electricity (as per Eq. 5) plus the levelised CAPEX and OPEX costs. This illustrates the 

importance of sourcing low-cost electricity. Figure 3 shows the breakdown of the 2020 base scenario 

LCOE into its components and further highlights the importance of low-cost electricity in producing a 

competitively priced methane end product. 

 
Figure 3. Breakdown of the system LCOE into its components for 2020 base scenario 

 



As seen in Figure 3 the LCOE is dominated by electricity costs (56%) with the remainder consisting of 

electrolysis (25.5%), fixed OPEX (9.9%), methanation (7.4%), and other (1.1%). Thus, it can be seen 

that the conservative assumptions for system CAPEX and subsequent cost reductions (particularly in 

the electrolysis technology) over time do not impact the LCOE as considerably as may be expected; 

this is further demonstrated in section 3.3. Consequently, the benefits of modelling ambitious 

reductions are limited. Equipment being replaced/upgraded during the system’s lifetime will most 

likely be done so at a lower cost and higher specification than when first installed, however this is 

unaccounted for in the model. Only in the event that efficiency improved vastly would it have a 

significant impact on the LCOE. As discussed in 2.1.3, if the PEM system has a 5% better efficiency 

(70 vs 75%) in 2020, for example, than the AEC system, it is justified to pay up to 46.6% more for a 

PEM electrolyser and still reduce the system LCOE under base conditions (Appendix 4). This effect is 

lessened with reduced annual run hours and electricity cost but exacerbated when high capacity 

factor and high energy costs are used.  

Decommissioning is assumed to cost 20% of the CAPEX and is paid in the final year of the project; 

this is a conservative estimate as in reality the recyclability of the system may even command a fee.  

 

Should P2G be used in place of traditional biogas upgrading a portion of the capital will be offset. 

The upgrading plant required to process an equivalent volume of carbon dioxide as the 2020 base 

scenario, in the form of raw biogas (assumed 60:40 methane to carbon dioxide), would cost ca. 

€2.45 million [70]. The model in this paper calculates a 10MWe P2G system would cost ca. €13m in 

2020, and €9m in 2040 but with a better efficiency. This equates to an investment cost of 

€3,018/Nm3
CH4/h for traditional pressure swing adsorption (PSA) upgrading versus €10,236/Nm3

CH4/h 

(2020) and €6,383/Nm3
CH4/h (2040) for a P2G system (Appendix 3). Therefore, the increased 

production of biomethane from P2G upgrading would seem to justify the additional expense when 

compared to PSA. The profitability of this configuration will be determined by the value of the 

additional biomethane produced in P2G versus PSA upgrading (762 vs. 1270 Nm3
CH4/h in 2020), and 

the plant’s ability to extract value from the electrolysers.  

 



3.3 Sensitivity analysis  

Figure 4 illustrates the effect of varying the five most sensitive model parameters by +/-25% on the 

LCOE. The five parameters were electricty cost, run hours, total CAPEX, discount rate, and fixed 

OPEX.  

 

 
Figure 4. Sensitivity Analysis of the 2020 base scenario 

Similar to Figure 3, Figure 4 illustrates that the electricity cost has the most significant effect on the 

LCOE, followed by run hours. Run hours are a function of the bid price and electricity market, and 

hence are closely related to the electricity cost. Results show that a lower capacity factor (lower run 

hours) coinciding with cheap electricity increases the LCOE. It was previously proposed that an 

increased bid price associated with longer run hours may reduce LCOE [17], and this was found to be 

true in this case. The benefits of paying more for the electricity and the associated increase in 

capacity factor outweigh the additional costs, as high run hours are required to produce sufficient 

quantities of gas to amortise the project cost. Thus, there is potential scope to optimise the bid 

strategy of P2G systems to increase the run hours and reduce the LCOE (non-linear relationship), as 

suggested by Vandewalle et al. [30]. 

It is proposed that a business model based upon the sole consumption of otherwise curtailed energy 

may not be viable due to the low capacity factor, even in high VRE scenarios. Considerable value 

would need to be placed on the grid stability function provided with the energy supplied at near 

zero cost. Similar conclusions were found in studies by Gotz et al. [15] and de Bucy [19].  



Reductions in CAPEX and OPEX will make future projects more attractive but without considerably 

affecting the LCOE. Further analysis reveals that for the LCOE to fall by 20%, the total CAPEX of the 

system would need to drop by 76.2%, or the cost of electricity would need to fall by 35.9%. 

 

3.4 Potential for incentivisation  

The LCOE of renewable gas produced from a P2G system, as shown in Table 5, is higher than fossil 

fuel alternatives such as diesel transport fuel (it would be more correct to compare to other 

advanced biofuels but few are at a sufficient TRL to do so). Diesel retails at €105/MWh excluding 

value added tax (VAT) in Ireland (47.3% of which consists of other taxes) [71]. To reduce GHG 

emissions in the transport sector, many countries may look to introduce subsidies to incentivise 

advanced biofuels such as gaseous fuel from non-biological origin from P2G. In this study, the LCOE 

of the 2020 base scenario was calculated at €124/MWh. This would imply that an incentive of 

€19/MWh is required for P2G to reach price parity with diesel (if not subject to similar excise duty 

type taxes). This incentive can be considered modest although it is likely that the product gas will be 

subject to some taxes or other charges and as such the required gas sale price or incentive will be 

higher than quoted. However, scope exists for a modest incentive to make gaseous fuel from non-

biological origin competitive with diesel. Given the low TRL of other advanced biofuels this is 

encouraging. In the longer term, it is highly likely that diesel will not be the competition as its use 

will be prohibited in many cities. Mexico, Paris and, Athens have prohibited diesel use by 2025. In 

essence, the end product of P2G will only be in competition with advance biofuels and electricity as 

a source of propulsion. 

Utilising the by-products of P2G can add financial competitiveness. For example, if valorisation of the 

oxygen (from electrolysis) can be achieved, this could provide a significant additional income [30]. 

Given that there is an established demand for pure oxygen, especially within the medical industry, 

and with the opportunity for it to be marketed as “green” oxygen, this is not unfeasible. In Breyer et 

al. a value of 8c/kg O2 (11.43c/Nm3) was suggested [33]. In this study, if a 10c/Nm3 profit can be 

achieved through the sale of oxygen, the LCOE would fall from €124 to €105/MWh (2020 base 

scenario). 

Modern electrolysers have been shown to have the technical capacity to provide ancillary services to 

the grid delivering benefits to its operation [7,18,33]. In previous literature it has been suggested 

that a fee could potentially be paid by the TSO for the availability to consume energy or provide 

power balancing services through P2G; such a fee would again reduce the LCOE of the system 

[4,6,18,72,73]. In the short term, no great precedence exists for the collection of fees for these grid 

services however future potential has been highlighted and discussed by policymakers [4,5,10,74]. 



Several works have shown that it is essential in order for P2G to become competitive [5,18]. In 

Breyer et al. [33] a grid service payment of €35/MWe was assumed, ultimately making the plant 

profitable in that scenario. This was considered a highly optimistic target given the advantages of 

interconnection and potential increases in the allowable limit of non-synchronous generation (VRE). 

A payment of €15/MWe was chosen as a more conservative estimate for the calculations in this 

study. Assuming 8500 hrs availability per annum (€15/MWe x 8500 hrs/a x 10 MWe = €1,275,000 pa), 

the payment lowered the LCOE to €87/MWh.  

 
Figure 5. Effect of incentives and supplementary income on effective 2020 base system LCOE with 
market prices of diesel and household natural gas ex. VAT for reference 

Figure 5 demonstrates how the competitiveness of gaseous fuel from non-biological origins 

increases with respect to diesel and household natural gas as incentives and supplementary incomes 

are applied. It can be seen that a combination of incentives and valorisations could potentially make 

the gas cheaper than its competitors, again given a favourable tax status.  

 

4. Conclusion 

The LCOE of a P2G system was found for low, base, and high cost scenarios for 2020 (€107-143), 

2030 (€89-121), and 2040 (€81-103). Despite a fall in P2G capital costs, ultimately the economic 

viability of P2G will still be dependent on the availability of low-cost electricity. Curtailed electricity 

alone may not be enough.  Incentives, tax exemptions, valorisation of oxygen, or exemption from 

grid access payments may be required in order to make P2G more financially competitive as a source 

of advanced transport fuel. Since P2G can facilitate additional VRE on the electricity grid it may also 



receive a fee for such services. Combinations of incentives and supports would make P2G potentially 

much more competitive than other advanced biofuels.  
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Appendices 

 

Appendix 1 – Calculation of Land Capital cost (Equation 4) 

 

In reviewing the literature no standard calculation for the costs of land purchase, site 

preparation, planning, permits, etc. was apparent [63][32]. Estimates were found to vary 

from 15% of total CAPEX to 30% of installed CAPEX [31] but did not account for all 

anticipated costs. Other literature used to inform the calculation includes [69][62][36]. A 

minimum of €350,000 for a 1MW plant, up to a maximum of €2.2m for a 100MW plant was 

identified for projects of this nature. This information was used to construct a graph and 

derive an approximate equation for “Land Capital” cost based upon the capacity of 

electrolyser being installed. 

 

 
Figure 6. Land Capital cost as a function of installed electrolyser capacity 

 

A straight-line relationship was assumed between the two points and the equation shown 
was used in the model.  
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Appendix 2 – Derivation of Electricity Market Data (Section 2.8) 

“With respect to electricity price and run hours, preliminary examination of the 2016 Irish single 

electricity market (SEM) indicated that a bid price of €50/MWh yielded run hours of ca. 6500 and an 

average electricity cost of €35/MWh. Thus, these assumptions were used throughout and thought to 

be analogous to 2020 data” From section 2.8.  

 

Data for the 2016 Irish electricity market was downloaded from http://www.sem-o.com/ 

System marginal price (SMP) is the island wide price of electricity at each half hour interval.  

The number of run hours at a given bid price was found using the formula below.  

𝑅𝑅𝑀𝑀𝐿𝐿 𝐻𝐻𝑚𝑚𝑀𝑀𝐸𝐸𝐸𝐸 =  
∑𝐻𝐻𝐿𝐿𝑚𝑚𝑜𝑜 ℎ𝑚𝑚𝑀𝑀𝐸𝐸𝑚𝑚𝐸𝐸 𝐶𝐶𝐿𝐿𝐶𝐶𝐸𝐸𝐸𝐸𝑖𝑖𝐿𝐿𝑚𝑚𝐸𝐸 𝑜𝑜𝑚𝑚𝐸𝐸 𝑤𝑤ℎ𝐶𝐶𝐸𝐸ℎ 𝑆𝑆𝑀𝑀𝑃𝑃 < 𝐵𝐵𝐶𝐶𝐿𝐿 𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸 

2
 

Average cost of the electricity was given by 

𝐴𝐴𝑖𝑖𝐸𝐸𝐸𝐸𝐿𝐿𝑔𝑔𝐸𝐸 𝐿𝐿𝑚𝑚𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸 𝐶𝐶𝑚𝑚𝐸𝐸𝐶𝐶 =  
∑𝑆𝑆𝑀𝑀𝑃𝑃 𝑚𝑚𝑜𝑜 𝐼𝐼𝐿𝐿𝐶𝐶𝐸𝐸𝐸𝐸𝑖𝑖𝐿𝐿𝑚𝑚𝐸𝐸 𝑜𝑜𝑚𝑚𝐸𝐸 𝑤𝑤ℎ𝐶𝐶𝐸𝐸ℎ 𝑆𝑆𝑀𝑀𝑃𝑃 < 𝐵𝐵𝐶𝐶𝐿𝐿 𝑃𝑃𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸

∑𝑁𝑁𝑀𝑀𝑚𝑚𝑁𝑁𝐸𝐸𝐸𝐸 𝑚𝑚𝑜𝑜 𝐶𝐶𝐿𝐿𝐶𝐶𝐸𝐸𝐸𝐸𝑖𝑖𝐿𝐿𝑚𝑚𝐸𝐸 𝑜𝑜𝑚𝑚𝐸𝐸 𝑤𝑤ℎ𝐶𝐶𝐸𝐸ℎ 𝑆𝑆𝑀𝑀𝑃𝑃 < 𝐵𝐵𝐶𝐶𝐿𝐿 𝑃𝑃𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸
 

 

 
Figure 7. Change in LCOE of a P2G system with respect to changing bid price for the 2016 Irish 
electricity market. 

 

When data for run hours and average cost of electricity based upon a given bid price was fed into 

the model and plotted (as in Figure 7) it was found that a bid price of €50/MWh approximately 

minimised LCOE. This corresponded to an average cost of electricity of approximately €35/MWh and 

run hours of 7080. The figure used for run hours was slightly reduced to 6500 to reflect the fact an 

http://www.sem-o.com/


actual plant would not be perfectly flexible and have the ability to ramp up and down to take 

advantage of each half hour at which the SMP was less than the bid price.  

  



Appendix 3 – Investment cost of Upgrading versus P2G (Section 3.2) 

 

10𝑀𝑀𝑊𝑊 𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 @ 72% 𝜂𝜂 
 
→  7200 𝑘𝑘𝑊𝑊ℎ 𝐻𝐻2/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 

 

7200 𝑘𝑘𝑊𝑊ℎ 𝐻𝐻2 @ 3.54𝑘𝑘𝑊𝑊ℎ 𝑚𝑚3 ⁄
 
→  2033𝑚𝑚3  𝐻𝐻2/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 

 

2033 𝑚𝑚3  𝐻𝐻2  
4:1 𝐻𝐻2:𝐶𝐶𝐶𝐶2
�⎯⎯⎯⎯⎯⎯�  508 𝑚𝑚3  𝐶𝐶𝑂𝑂2/ℎ𝑚𝑚𝑀𝑀𝐸𝐸  

 

508 𝑚𝑚3  𝐶𝐶𝑂𝑂2 ℎ𝑚𝑚𝑀𝑀𝐸𝐸⁄  
𝐵𝐵𝑦𝑦𝐶𝐶𝐵𝐵𝑎𝑎𝑦𝑦 @ 60:40 𝐶𝐶𝐻𝐻4:𝐶𝐶𝐶𝐶2
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  1270𝑚𝑚3  𝐵𝐵𝐶𝐶𝑚𝑚𝑔𝑔𝐿𝐿𝐸𝐸 ℎ𝑚𝑚𝑀𝑀𝐸𝐸⁄   

 

Thus, a 10MW P2G system can upgrade 1270m3 of biogas per hour. Traditional pressure swing 
absorption (PSA) upgrading costs ca. €1800/m3 at this scale, ca. €2.3m suitable sized plant here [70]. 
The model in this paper calculates a 10MW P2G system would cost ca. €13m in 2020, and ca. €9m in 
2040 but with a better efficiency. As the P2G system will result in higher volumes of CH4 being 
produced it is fairer to compare them on an investment cost per unit of gas produced basis.  

 

Results: 

 

PSA:    €2.3𝑚𝑚 ÷  762𝑚𝑚3 𝐶𝐶𝐻𝐻4/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 =   €3018/𝑚𝑚3 𝐶𝐶𝐻𝐻4/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 

 
P2G: 

72% η in 2020:  €13𝑚𝑚 ÷  1270𝑚𝑚3 𝐶𝐶𝐻𝐻4/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 =  €10236/𝑚𝑚3 𝐶𝐶𝐻𝐻4/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 

80% η in 2040:   €9𝑚𝑚 ÷  1410𝑚𝑚3 𝐶𝐶𝐻𝐻4/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 =   €6383/𝑚𝑚3 𝐶𝐶𝐻𝐻4/ℎ𝑚𝑚𝑀𝑀𝐸𝐸 

 

 

 

  



Appendix 4 – AEC vs. PEM  (Section 3.2) 

 

“As discussed in 2.1.3, if the PEM system has a 5% better efficiency (70 vs 75%) in 2020, for example, 
than the AEC system, it is justified to pay up to 46.6% more for a PEM electrolyser and still reduce 
the system LCOE under base conditions.” From section 3.2. 

 

Under 2020 base conditions: 

Electrolysis η of 70% (AEC) -  LCOE of €127.27 

Electrolysis η of 75% (PEM) - LCOE of €119.05 

 

Using the goal seek function of Excel we can vary the CAPEX of the electrolyser to match the LCOE of 
€127.27 while maintaining the 75% η of PEM. This gives a value of €1246.8/kW compared to 
€850/kW in the base case, 46.7% higher.  

I.e. A PEM system at 75% η will produce the same LCOE as an AEC system at 70% in the event that 
their CAPEXs are €1246.8/kW and €850/kW respectively.  

 

Thus, the increased η of PEM is preferred provided it is no more than 46.6% more expensive than 
the AEC system, when reducing the LCOE is one’s goal. As the model in this paper calculates BoP as a 
fraction of CAPEX, should BoP remain unchanged between the two scenarios this figure would 
become greater still.  
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