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a b s t r a c t

Categorical data clustering has been adopted by many scientific communities to classify objects from
large databases. In order to classify the objects, Fuzzy k-Partition approach has been proposed for
categorical data clustering. However, existing Fuzzy k-Partition approaches suffer from high computa-
tional time and low clustering accuracy. Moreover, the parameter maximize of the classification like-
lihood function in Fuzzy k-Partition approach will always have the same categories, hence producing the
same results. To overcome these issues, we propose a modified Fuzzy k-Partition based on indiscern-
ibility relation. The indiscernibility relation induces an approximation space which is constructed by
equivalence classes of indiscernible objects, thus it can be applied to classify categorical data. The novelty
of the proposed approach is that unlike previous approach that use the likelihood function of multi-
variate multinomial distributions, the proposed approach is based on indescernibility relation. We per-
formed an extensive theoretical analysis of the proposed approach to show its effectiveness in achieving
lower computational complexity. Further, we compared the proposed approach with Fuzzy Centroid and
Fuzzy k-Partition approaches in terms of response time and clustering accuracy on several UCI bench-
mark and real world datasets. The results show that the proposed approach achieves lower response
time and higher clustering accuracy as compared to other Fuzzy k-based approaches.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is a fundamental problem that frequently arises in a
broad variety of fields such as pattern recognition, image proces-
sing, machine learning and statistics (Haixia and Zheng, 2009; Jain
et al., 1999). It can be defined as a process of partitioning a given
data set of multiple attributes into groups. The k-means algorithm
(MacQueen, 1967) is the most popular among clustering algo-
rithms developed to date because of its effectiveness and effi-
ciency in clustering large data sets. However, k-means clustering
algorithm fails to handle data sets with categorical attributes
because it can only minimize a numerical cost function. As a result,
Huang (Huang, 1998) proposed the k-modes clustering method
that removes the numeric-only limitation of the k-means algo-
rithm. Since then major improvements have been made in k-
modes algorithms including new dissimilarity measures to the k-
modes clustering (He et al., 2005; Ng et al., 2007; San et al., 2004)
and a fuzzy set based k-modes algorithm (Huang, 1999; Wei et al.,
2009). To improve the efficiency of fuzzy k-modes, Kim et al.

(2004) [10] proposed a technique using Fuzzy Centroid (FC)
approach. On the base of a different construction on categorical
data, Umayahara and Miyamoto (2005) proposed another fuzzy
approach for clustering documents data.

The Fuzzy c-mean (FCM) clustering algorithm (Kim et al., 2004)
and its variants for clustering numerical (Khalilia et al., 2014; Leski,
2004), symbolic (De Carvalho, 2007; Dobosz and Duch, 2010) and
categorical data (Huang, 1999, 1998; Parmar et al., 2007; Yang
et al., 2008) are non-parametric approaches which are based on
the least sum of squared errors within-clusters. Yang et al. (2008)
proposed Fuzzy k-Partititon (FkP) algorithm which is a parametric
approach based on the likelihood function of multivariate multi-
nomial distributions. The FkP can also be referred to a Fuzzy-based
clustering algorithm for categorical data. However, almost all fuzzy
categorical data clustering algorithms mentioned above represent
data set in the binary values. Moreover, in FkP algorithm we
observed that the maximized parameter of the classification like-
lihood function in the same categories always have the same
results. Another issue with the aforesaid approaches is that they
tend to have high computational time and low clusters purity. This
indicates that an approach that does not suffer from high com-
putational time and low clusters purity is needed.
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In this paper, we propose a modified Fuzzy k-Partition based on
indiscernibility relation for categorical data clustering. The indis-
cernibility relation induces an approximation space which is
constructed by equivalence classes of indiscernible objects. The
indiscernibility relation is intended to express fact that due to the
lack of knowledge we are unable to discern some objects by just
employing the available information. The indiscernibility relation
induces an approximation space made of equivalence classes of
indiscernible objects. Thus, the indiscernibility relation can be
applied to the categorical data without representing data in the
binary values. In summary, this paper makes the following
contributions:

� A modified Fuzzy k-Partition approach based on indiscernibility
relation for categorical data clustering is proposed.

� A correctness of proof and related algorithm of proposed
approach are presented.

� Theoretical comparative analysis in term of computational
complexity between the proposed approach with others Fuzzy
k-based approaches is presented.

� Comparison from experiment results on bechmark and real
world data sets between the proposed approach with others
Fuzzy k-based approaches in terms of response time and clus-
tering purity are presented.

The rest of the paper is organized as follows. Section 2
describes related works on Fuzzy-based categorical data cluster-
ing. Section 3 describes the proposed approach based on the
indiscernibility and fuzzy set concept, followed by its correctness,
proposed algorithm and its computational complexity. Section 4
describes the experiment results on benchmark and real world
datasets. Finally, we conclude our work in Section 5.

2. Fuzzy-based categorical data clustering

Recently, fuzzy-based clustering has been widely focused by
many scholars and some significant results have been achieved in
the theoretical and practical aspects. In this section, we review
related works of two Fuzzy-based categorical data clustering
approaches i.e. Fuzzy Centroid and Fuzzy k- Partition.

2.1. Fuzzy Centroid

The Fuzzy k-modes proposed by Huang (1998) is the most used
algorithm for numerical data and there are several extensions of
FCM (Yang et al., 2008). For clustering data, hard and fuzzy k-
modes algorithms using simple matching dissimilarity measure
(Huang, 1999). Let Y ¼ y1; y2;…; yI be a set of categorical data and
let each data be defined by a set of attributes A1;…;AJ with yi ¼
yi1; yi2;…; yiJ
� �

; for i¼ 1;2;…; I. Each attribute Aj describes a

domain of values denoted by DOM Aj
� �¼ a1j ;…; aLjj

n o
, where Lj is

the number of categories of the attribute Aj; for j¼ 1;2;…; J. Sup-
pose that vk ¼ ðvk1; vk2;…; vkJÞ is the centroid of the k-th cluster
where each vkj is coded by ðvkj1; vkj2;…; vkjLj Þ for k¼ 1;2;…;K; and
j¼ 1;2;…; J with vkjl ¼ 1 and vkjl0 ¼ 0 for l0a l;1r jr J;1r l0; lrLj if
vkj ¼ alj. The matching dissimilarity measure by Huang (1998,,1999)
is defined as follows

d yi; vk
� �¼ XJ

j ¼ 1
δðyij; vkjÞ; ð1Þ

where

δ yij; vkj
� �

¼
0 if yij ¼ vkj
1 if yijavkj

(

The minimize objective function of fuzzy k-modes (Huang,
1998) is as follows

Hm μ; v
� �¼ XI

i ¼ 1

XK

k ¼ 1
μm
ikdðyi; vkÞ; ð2Þ

subject toXK

k ¼ 1
μik ¼ 1; for i¼ 1;2;…; I;

where m is the fuzziness index. The update equations for hard
k-modes are as follow:

μik ¼
1 if dðyi; vkÞ ¼ min

1rk0 rK
dðyi; v0kÞ

0 otherwise

(
ð3Þ

vkjl ¼
1 if

PI
i ¼ 1 μikyijl ¼ max

1r l0 r L

PI
i ¼ 1 μikyijl

0 otherwise

08<
: ð4Þ

Huang (1999) extended the hard k-mode to Fuzzy k-modes.
Using the objective (2), the update equation for fuzzy k-modes
using objective function (2) is as follows

μik ¼
1

PK
k0 ¼ 1

d yi ;vkð Þ
d yi ;vk0ð Þ
� � 1

m� 1

ð5Þ

vkjl ¼
1 if

PI
i ¼ 1 μ

m
ikyijl ¼ max

1r l0 r L

PI
i ¼ 1 μ

m
ikyijl

0 otherwise

08<
: ð6Þ

The use of hard centroids can give rise to the artifacts. For
example, although the Fuzzy k-modes algorithm efficiently han-
dles categorical data sets, it uses a hard centroid representation for
categorical data in a cluster. The use of hard rejection of data can
lead to misclassification in the region of doubt (Yang et al., 2008).

Kim et al. (2004) improved the performance of fuzzy k-modes
by changing hard centroids to Fuzzy Centroid with ~vkj ¼
~vkj1;…; ~vkjLj

� �
; for k¼ 1;2;…K and j¼ 1;2;…; J; where ~vkjlA ½0;1�

and
PLj

i ¼ 1
~vkjl ¼ 1. The minimize objective function of Fuzzy Cen-

troid is as follows

Hm μ; v
� �¼ XI

i ¼ 1

XK

k ¼ 1
μm
ikdðyi; ~vkÞ; ð7Þ

subject to

XK
k ¼ 1

μik ¼ 1; i¼ 1;2;…; I:

XLj
l ¼ 1

~vkjl ¼ 1:

The distance measure with the centroid updates equations
which are given as following equation:

d yi; ~vk
� �¼ XJ

j ¼ 1

δðyij; ~vkjÞ ¼
XJ
j ¼ 1

XLj
l ¼ 1

1�yijl
� �

~vkjl;

~vkjl ¼
PI

i ¼ 1 μ
m
ik ∙yijlPI

i ¼ 1 μm
ik

: ð8Þ

The update equation of memberships can be obtained as
follows

μik ¼
1

PK
k0 ¼ 1

d yi ; ~vkð Þ
d yi ; ~vk0ð Þ
� � 1

m� 1

: ð9Þ

Both of the Fuzzy k-modes with hard centorid and Fuzzy
Centroid approach are non-parametric approaches. The algorithms
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use the dissimilarity functional based on the least total within
cluster matching dissimilarity. This selection implies, in essence,
the assumption of data organized into spherical clusters (Bryant
and Williamson, 1978; Chatzis, 2011).

2.2. Fuzzy k-Partition

The Fuzzy k-Partition model proposed by Yang et al. (2008) is
another alternative approach for categorical data clustering. It is
based on the likelihood function of multivariate multinomial dis-
tribution. The approach is operated on a data set Y composed of I
observations of J discrete attribute with only one of a finite
number (say Lj) of value categories for the attribute j: The model
uses the indicator function z1; z2;…; zk for each partition P ¼
P1; P2;…; PK of Y into K classes as mutually disjoint sets P1; P2;…;

PK where P1 [ P2 [ … [ PK ¼ Y such that zk yð Þ ¼ 1 if yAPk and
otherwise, zk yð Þ ¼ 0 for all y in Y ,k¼ 1;2; ::;K . This is known as
clustering data into K classes using z and termed a hard k-partition
of Y . The review of the model is given as follows:

For each attribute j in individual i, let the values be represented
by Yijl with a set of Lj binary random attributes where yijl is a
realization of Yijl with

Yijl ¼ yijl; for i¼ 1;2;…; I; j¼ 1;2;…; J; and l¼ 1;2;…; Lj

Thus, yijl has a binary value, that is, yijl has value 0 or 1. Consider
Yi; for i¼ 1;2;…; I to be a random sample of size I from a multi-
variate multinomial distribution f ðy;λÞ. Let P ¼ P1; P2;…; PK be a
partition of Y . A classification joint distribution function Y1;Y2;…
;YI based on the partition can be written as ΠK

k ¼ 1Πyi APk
f k yi; λk
� �

which is co-called Classification Maximum Likelihood (CML)
approach (Bryant and Williamson, 1978; Scott and Symons, 1971;
Symons, 1981). Consider the extension the indicator function zik
¼ zkðyiÞ to be function μik ¼ μkðyiÞ assuming in the interval [0,1]
such that

PK
k ¼ 1 μik ¼ 1 for i¼ 1;2;…; I. In [12], μ is called a Fuzzy

k-Partition of the data set Y that had been used for fuzzy clustering
(Bezdek, 2013; Wu and Yang, 2002; Yang, 1993). By increasing the
power of the fuzziness power of μik to μm

ik , the extension of max-
imizing the log likelihood CML procedure as described in (Leski,
2004) can be written as follows:

Maximize Jm μ; λ
� �¼ XI

i ¼ 1

XK

k ¼ 1
μm
ik lnf k yi;λk

� � ð10Þ

Subject to
XK
k ¼ 1

μik ¼ 1; fori¼ 1;2;…; IwithμikA 0;1½ �;

where m41 is a fixed constant as an index of fuzziness. The
optimization for Jmðμ;λÞ is by choosing a Fuzzy k-Partition and an
estimate λ to maximize Jmðμ;λÞ.

Consider f k y; λk
� �

as a multivariate multinomial distribution
with

f k y;λk
� �¼∏J

j ¼ 1∏
Lj
l ¼ 1 λkjl

� �yjlwhere
Xlj

l ¼ 1
λkjl ¼ 18k; j; ð11Þ

where λkjl is a probability of value l for the jth attribute by indi-
vidual i with the kth extreme profile, i.e PðYijl ¼ 1jYi in k
classÞ ¼ λkjl: By replacing f k y; λk

� �
with the above multivariate

multinomial distribution, the model can be written as

Jm μ; λ
� �¼ XI

i ¼ 1

XK

k ¼ 1
μm
ik ln∏

J
j ¼ 1∏

Lj
l ¼ 1 λkjl

� �yijl
¼
XI

i ¼ 1

XK

k ¼ 1
μm
ik

XJ

j ¼ 1

Xlj
l ¼ 1

ln λkjl
� �yijl ð12Þ

The maximization of the Fuzzy k-Partition objective function
Jm μ; λ
� �

can be obtained by updating the equation as follows:

λkjl ¼
PI

i ¼ 1 μ
m
ik ∙yijlPI

i ¼ 1 μm
ik

ð13Þ

μik ¼
XK

s ¼ 1

PJ
j ¼ 1

PLj
l ¼ 1 ln λkjl

� �yij
PJ

j ¼ 1

PLj
l ¼ 1 ln λsjl

� �yij
0
@

1
A

1
m� 1

2
64

3
75

�1

: ð14Þ

Fuzzy k-Partition is a parametric approach based on the like-
lihood function of multivariate multinomial distribution. It can
improve the accuracy of the clusters. However, since the Fuzzy k-
Partition has more complicated computation, it may spend more
running time than that the Fuzzy Centroid approach. Meanwhile,
in Fuzzy Centroid, the categorical data must be represented as
binary random attributes. Thus, it tends to have high
computational time.

In the following section, we present an alternative Fuzzy-based
categorical data clustering which is based on indiscernibility
relation. We will illustrate how that our proposed Fuzzy indes-
cernibility approach will produce better results in terms of lower
response time and higher cluster purity as compared to Fuzzy
Centroid and Fuzzy k-Partition approaches.

3. Proposed modified Fuzzy k-Partition approach

In this section, we introduce modified Fuzzy k-Partition
approach. Its algorithm is presented along with necessary pre-
liminary information.

3.1. Indiscernibility relation

In this section, we reviewed some definitions with regard to
indiscernibility relation. The concept of an indiscernibility relation
comes from the fact that two instances in an information system
can have similar attribute-value. In rough set theory (Pawlak,
1982), data are often presented as a finite table (later we called an
information system), where columns of which are labeled by
attributes, rows by objects of interest and entries of the table are
attribute values (Pawlak, 1992). Formally, an information system is
defined as a 4-tuple (quadruple) S¼ U;A;V ; fð Þ, where U is a non-
empty finite set of objects, A is a non-empty finite set of attributes,
V ¼ [aAAVa, Va is the domain (value set) of attribute a, f : U �
A-V is a total function such that f u; að ÞAVa, for every u; að ÞAU �
A , which is called information (knowledge) function.

The indiscernibility relation of objects in information system is
intended to express the fact that due to the lack of knowledge, we
are unable to discern some objects employing the available
information. Therefore, we are unable to deal with just a single
object. Nevertheless, we have to consider classes of indiscernible
(similar) objects. The following definition precisely describes the
notion of indiscernibility relation between two objects (Pawlak
and Skowron, 2007).

Definition 1. Let S¼ U;A;V ; fð Þ be an information system and let B
be any subset of A. Two elements x; yAU are said to be B-
indiscernible (indiscernible by the set of attribute BDA in S) if and
only if f x; að Þ ¼ f y; að Þ, for every aAB.

From Definition 1, it is clear that every subset of A induces
unique indiscernibility relation. Notice that, an indiscernibility
relation induced by the set of attribute B, denoted by IND Bð Þ, is an
equivalence relation which is reflexive, symmetric, and transitive.
It is well known that, an equivalence relation induces unique
partition. The partition of U induced by IND Bð Þ in an information
system S¼ U;A;V ; fð Þ denoted by U=B and the equivalence class in
the partition U=B containing xAU,denoted by x½ �B. Based on the
notion of indiscernibility relation above, in the following sub-
section we present the proposed modified Fuzzy k-Partition based
on indiscernibility relation.

I.T.R. Yanto et al. / Engineering Applications of Artificial Intelligence 53 (2016) 41–52 43



3.2. Fuzzy k-Partition based on indiscernibility relation

In this section, we present the proposed approach called fuzzy
indescernibility based (FID), which we refer to as indiscernible set
in every attribute to represent the categorical data Y. The main
proposed approach is replacing the binary data yijl as a realization
of Yijl with the equivalence classes in the indiscernible relation of
the original categorical data Y. In this sub-section, we introduce
several rudimentary used in the proposed approach.

Definition 2. Consider the categorical data Y which can be
represented by the information system S¼ U;A;V ; fð Þ, the row of
data Y represents a finite set of object U ¼ y1; y2;…; yI

� 	
and the

column as a finite set of attribute aj ¼ ½a1; a2;…; aJ �. Suppose that
ajAA;V aj

� �
have l-different values, say γjl for l¼ 1;2;…; Lj. Let X

aj ¼ γjl
� �

be a subset of the objects having have l-different values
of attribute aj. The data Yijl can be represent by

yijl ¼
1 yij ¼ γjl
0 yij aγjl

; for j¼ 1;2;…; Lj

8<
:

Obviously, for i¼ 1;2; ::; I; the above equation is equivalent to
yijl:yiAX aj ¼ γjlð Þ ¼ 1; forj¼ 1;2;…; Lj
and the logarithm value of λkjl in equation (12) can be repre-

sented as follows

ln λkjl
� �yijl ¼

0 i=2X aj ¼ γjl
� �

ln λijk
� �

iAX aj ¼ γjl
� � ; for j¼ 1;2;…; Lj

8>><
>>:

or

ln λkjl
� �yijl :yiA X aj ¼ γjlð Þ ¼ ln λ iAX aj ¼ γjlð Þð Þjk

� �
; for¼ 1;2;…Lj:

We can see that the probability of value λkjl which will give
contribution in the objective function in Eq. (12) is only object in
each the equivalence class in the partition U=aj ; aj � A containing
xAU, that is x½ �aj . Otherwise the result is 0. In other word, it can be
said that the data which have the same category or in the same
equivalence class have the same probability of value λkjl.

Definition 3. Let the information system S¼ U;A;V ; fð Þ. Suppose
ajAA;V aj

� �
have l-different values, say γjl; for l¼ 1;2;…; lj. Let X

aj ¼ γjl
� �

; be a subset of the objects having have l-different values
of attribute aj. The maximize parameter λkjl of the initial cluster k,
for object i belong to the set X aj ¼ γjl

� �
, denotedλkU

aj
, is defined by

λkU
aj
¼ λijk iAX aj ¼ γjl

� �


 o
; forl¼ 1;2;…; Lj

n
The maximization of the objective function Jm μ; λ

� �
can be

rewritten as follows:

Jm μ; λ
� �¼ XI

i ¼ 1

XK

k ¼ 1
μm
ik

XJ

j ¼ 1
ln λkU

aj

� �
ð15Þ

by the contrains

μikZ0;
XK
k ¼ 1

μik ¼ 1; ð16Þ

λkU
aj
Z0;

XJ
j ¼ 1

λkU
aj
¼ 1: ð17Þ

The maximition of the objective function in Eq. (15) is based on
the indiscernibility relation in Definition 1. Only the equivalence
class that has contribution is used to maximize the function. The
optimum can be obtained by setting the first derivatives of the
Lagrangian Jm with respect to the all parameter to be 0.

Proposition 1. Let an information system S¼ U;A;V ; fð Þ. Suppose
ajAA; for V aj

� �
have l-different values, say γjl; for l¼ 1;2;…; lj. If

X aj ¼ γjl
� �

be a subset of the objects having have l-different values
of attribute aj, then μik and λkU

aj
are local maximum for Jm μ; λ

� �
only if

λkU=aj ¼
P

iA fXðaj ¼ γjlÞgμ
m
ikPI

i ¼ 1 μm
ik

; f or l¼ 1;2;… ; lj ð18Þ

and

μik ¼
Xk

s ¼ 1

PJ
j ¼ 1 ln ðλkU

aj
ÞPJ

j ¼ 1 ln ðλsU
aj

2
64

1
CA

2
64

3
75

1
m� 1
3
75

�1

ð19Þ

Proof. The problem occur maximizing Jm μ; λ
� �

with respect to μik
and λkU

aj
under contrains of (16) and (17). Using Lagrangian multi-

plier method, the problem is equivalent to maximizing

Jm μ; λ
� �¼ XI

i ¼ 1

XK
k ¼ 1

μm
ik

XJ
j ¼ 1

ln λkU
aj

� �
�w1

XK
k ¼ 1

μik�1

 !
�w2

XJ
j ¼ 1

λkU
aj
�1

0
@

1
A
ð20Þ

The necessary conditions for this problem are

σii ¼
βiiþS2i �Si

S2i
ð21Þ

∂Jm μ; λ;w1;w2
� �

∂λkU
aj

¼

Pi
i ¼ 1

μm
ik

λkU
aj

�w2 ¼ 0 ð22Þ

∂Jm μ; λ;w1;w2
� �

∂w1
¼
XK
k ¼ 1

μik�1¼ 0 ð23Þ

∂Jm μ; λ;w1;w2
� �

∂w2
¼
XJ
j ¼ 1

λkU
aj
�1¼ 0 ð24Þ

From (21), we obtain

mμm�1
ik ¼ w1PJ

j ¼ 1 ln λkU=aj
� �

μik ¼
w1

m
PJ

j ¼ 1 ln λkU=aj
� �

0
@

1
A

1
m� 1

ð25Þ

Subtituting (25) into (23),

XK
k ¼ 1

w1

m
PJ

j ¼ 1 ln λkU=aj
� �

0
@

1
A

1
m� 1

�1¼ 0

w1

m

� � 1
m� 1 ¼ 1

PK
k ¼ 1

1PJ

j ¼ 1
ln λkU=aj

� �
0
@

1
A

1
m� 1

ð26Þ

Substituting (26) into (25), we get (19)

μik ¼
Xk
s ¼ 1

PJ
j ¼ 1

ln ðλkU
aj
Þ

PJ
j ¼ 1

ln ðλsU
aj
Þ

2
66664

3
77775

1
m� 1

2
666664

3
777775

�1

:

And also, from (22), we have

λkU
aj
¼

Pi
i ¼ 1

μm
ik

w2
: ð27Þ
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Substituting (27) into (24),

XJ
j ¼ 1

Pi
i ¼ 1 μ

m
ik

w2
¼ 1

w2 ¼
XJ
j ¼ 1

Xi
i ¼ 1

μm
ik : ð28Þ

Substituting (28) into (27),

λkU
aj
¼

Pi
i ¼ 1 μ

m
ikPJ

j ¼ 1

Pi
i ¼ 1 μm

ik

: ð29Þ

Based on Definition 3, (29) can be obtained as in (18)

λkU=aj ¼
P

iA fXðaj ¼ γjl Þg
μikPI

i ¼ 1
μik

; l¼ 1;2;…; lj:

The proposition applies the indiscernibility relation to Defini-
tions 2 and 3 to analyze the categorical data. The indiscernibility
relation is intended to express the fact that due to the lack of
knowledge we are unable to discern some objects by just
employing the available information. The indiscernibility relation
induces an approximation space made of equivalence classes of
indiscernible objects. Thus, the indiscernibility relation can be
applied to the categorical data without representing data in the
binary values. Fig. 1 shows the pseudo-code of the proposed
algorithm.

To clearly depict the idea of the proposed algorithm, we illus-
trate an example from a given Boolean data set adopted from
(Pawlak, 1999). The following table is a modified information
system from example 3 as in (Pawlak, 1999).

From Table 1, there are 5 instances with 4 categorical attri-
butes. Based on Definition 1 and each of the attribute, there are
four partitions of U induced by indescernibility relation on each
attribute, i.e.

X a¼Noð Þ ¼ 1;2;5
X a¼ Yesð Þ ¼ 3;4

U
a ¼ 1;2;5f g;3;4f g

X b¼ Badð Þ ¼ 1
X b¼ Goodð Þ ¼ 2;3;4;5

U
b ¼ 1f g;2;3;4;5f g

X c¼ Lowð Þ ¼ 1;2;3;4
X c¼Highð Þ ¼ 5

U
c ¼ 12;3;4f g;5f g

X d¼ smallð Þ ¼ 1
X d¼Mediumð Þ ¼ 3;4
X d¼ Largeð Þ ¼ 2;5

U
d ¼ 1f g; 3;4f g;2;5f g

Given the random initial of membership functions described in
Table 2 as follows:

For j¼ 1 that is attribute a, there are 2 different (Lj ¼ 2) values.
Based on Eq. (16), the maximize parameter λkU

aj
; for k¼ 1 can be

obtained as follows:

λ11;2;5f g ¼
P

iA X a ¼ Noð Þf gμikPI
i ¼ 1 μik

¼
P

iA 1;2;5f gμikPI
i ¼ 1 μik

¼ 0:2þ0:6þ0:4
2:3

¼ 0:5217

λ13;4f g ¼
P

iA X a ¼ Yesð Þf gμikPI
i ¼ 1 μik

¼
P

iA 3;4f gμikPI
i ¼ 1 μik

¼ 0:8þ0:3
2:3

¼ 0:4783;

and the maximize parameter λkU
aj
; for k¼ 2 can be obtained as

follows:

λ21;2;5f g ¼
P

iA X a ¼ Noð Þf gμikPI
i ¼ 1 μik

¼
P

iA 1;2;5f gμikPI
i ¼ 1 μik

¼ 0:8þ0:4þ0:6
2:7

¼ 0:6667

λ23;4f g ¼
P

iA X a ¼ Yesð Þf gμikPI
i ¼ 1 μik

¼
P

iA 3;45f gμikPI
i ¼ 1 μik

¼ 0:2þ0:7
2:7

¼ 0:333:

Following the same procedure, the maximization parameters of
all attribute in Table 1 can be summarized in Table 3 (for k¼ 1) and
Table 4 (for k¼ 2) as follows:

The new membership function of fuzzy k-Partition based on
indescernibility can be obtained by using Eq. (17). If given the
fuzziness index of m¼ 1:4; then the new membership function for
i¼ 1 in the first cluster (k¼ 1) is given below:

μ11 ¼
X2
s ¼ 1

PJ
j ¼ 1

ln λ1U
aj

� �
PJ
j ¼ 1

ln λsU
aj

� �
2
66664

3
77775

1
1:4� 1

2
666664

3
777775

�1

¼ �5:7263
�5:7263þ �3:0896ð Þ

� � 1
1:4� 1

" #�1

¼ 0:0021

Following the same procedure, the new membership functions
are computed. The calculations results are summarized in Table 5.

Based on the membership function in Table 5 (after 17 itera-
tions), the obtained clusters are {1, 2, 5} as the first cluster and {3,
4} as the second cluster.Fig. 1. Proposed algorithm.

Table 1
A modified information system.

U/A A B c D

1 No Bad Low Small
2 No Good Low Large
3 Yes Good Low Medium
4 Yes Good Low Medium
5 No Good High Large

Table 2
The random initial of membership function.

i k¼ 1 k¼ 2

1 0.2 0.8
2 0.6 0.4
3 0.8 0.2
4 0.3 0.7
5 0.4 0.6P

2.3 2.7
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In the next section, we perform experiment with the proposed
algorithm based on benchmark and realworld data. We also
compare the results obtained with two other Fuzzy k-based
approaches in terms of computational time and cluster purity.

4. Experiment results

In this section, we compare the proposed approach with the
Fuzzy Centroid and fuzzy k-Partition approaches based on com-
putational complexity, estimation parameters, response time and
clustering accuracy. The responses time are calculated by the time
needed to execute the algorithm by computer and the clustering
accuracies are analyzed using internal criteria and external
criteria.

In the experiment, the proposed approach and other two fuzzy
k-based approaches are implemented in MATLAB version 7.6.0.324
(R2008a). They are executed sequentially on a processor Intel Core
2 Duo CPUs. The total main memory is 2G and the operating
system is Windows 8. In this section, we have two different
clustering experimentations from real datasets.

4.1. Computational complexity

The computation complexity of the proposed algorithm will be
discussed and compared with two existing Fuzzy k-based algo-
rithms. From the following theoretical analysis, a conclusion can
be drawn that the proposed algorithm achieved lower computa-
tional complexity as compared to (Huang, 1998; Yang et al., 2008).

4.1.1. Computational complexity of Fuzzy Centroid
The time complexity required mainly depends on the updates

of the Fuzzy Centroid vkjl and partition matrix μik in each iteration.
The computational costs of updating the Fuzzy Centroid and par-
tition matrix are O KIMð Þand O KIJð Þ, respectively. Thus, the overall
complexity for Fuzzy Centroid algorithm is OðKI Mþ Jð ÞtÞ, where t is
number of iteration, k is the number of cluster, I is the number of
data, J is the number of attributes, and M¼ PJ

j ¼ 1 Lj. Similary, the
overall computational complexity for Fuzzy Centroids algorithm is
O 2KIMtð Þ.

4.1.2. Computational complexity of Fuzzy k-Partition
The computational complexity of the Fuzzy k-Partition is cal-

culated at each iteration based on two parts, parameters λkjl and
fuzzy partition μik, with OðKIMÞ and O KIMð Þ; respectively, so that
the complexity is O 2KIMtð Þ:

4.1.3. Computational complexity of the proposed approach
The proposed approach need OðIJÞ to contruct equivalence

classes U
aj

based on indicernibility and the complexity at each

iteration from two parts, parameter λkU
aj
and fuzzy partition μik are

OðKMÞ and O KIMð Þ; respectively. Thus, the computational com-
plexity for the proposed approach is the polynomial of
O KM Iþ1ð Þtþ IJð Þ:

The following table presents the comparative analysis result in
terms of computational complexity.

From Table 6, we can see that the proposed Fuzzy indescern-
ibility approach has the smallest computational complexity.

4.2. Parameter estimation

In this section, the algorithms are implemented to estimate the
parameters of multivariate multinomial mixtures where the data
points are assumed from the mixture distribution f ðy; λÞ.

f y; λ
� �¼ XK

k ¼ 1
αkf k y; λ

� �
with f k y; λ

� �¼∏J
j ¼ 1∏

Lj
l ¼ 1 λkjl

� �yjl : ð30Þ

The mixing proposition αk are estimated by αk ¼
PI

i ¼ 1
gik
I ;αk

¼ PI
i ¼ 1

μik
I ; k¼ 1;…;K ; where gik and μik are the final output from

the Fuzzy Centroid, Fuzzy k-Partition and Fuzzy indescernibility,
respectively. We use the numerical data drawn from multivariate
binomial mixtures distribution as in (Yang et al., 2008). The
algorithms are implemented to estimate the parameters of four-

Table 3
The maximization parameter in Table 1 for 1st cluster.

i λ1U
a

ln ðλ1U
a
Þ λ1U

b
ln ðλ1U

b
Þ λ1U

c
ln ðλ1U

c
Þ λ1U

d
ln ðλ1U

d
Þ PJ

j ¼ 1
ln ðλ1U

aj

Þ

1 0.5217 �0.6506 0.0870 �2.4423 0.8261 �0.1911 0.0870 �2.4423 �5.7263
2 0.5217 �0.6506 0.9130 �0.0910 0.8261 �0.1911 0.4348 �0.8329 �1.7655
3 0.4783 �0.7376 0.9130 �0.0910 0.8261 �0.1911 0.4783 �0.7376 �1.7572
4 0.4783 �0.7376 0.9130 �0.0910 0.8261 �0.1911 0.4783 �0.7376 �1.7572
5 0.5217 �0.6506 0.9130 �0.0910 0.1739 �1.7492 0.4348 �0.8329 �3.3237

Table 4
The maximization parameter in Table 1 for 2nd cluster.

i λ2U
a

ln ðλ2U
a
Þ λ2U

b
ln ðλ2U

b
Þ λ2U

c
ln ðλ2U

c
Þ λ2U

d
ln ðλ2U

d
Þ PJ

j ¼ 1
ln ðλ2U

aj

Þ

1 0.6667 �0.4055 0.2963 �1.2164 0.7778 �0.2513 0.2963 �1.2164 �3.0896
2 0.6667 �0.4055 0.7037 �0.3514 0.7778 �0.2513 0.3704 �0.9933 �2.0014
3 0.3333 �1.0986 0.7037 �0.3514 0.7778 �0.2513 0.3333 �1.0986 �2.7999
4 0.3333 �1.0986 0.7037 �0.3514 0.7778 �0.2513 0.3333 �1.0986 �2.7999
5 0.6667 �0.4055 0.7037 �0.3514 0.2222 �1.5041 0.3704 �0.9933 �3.2542

Table 5
The new membership functions.

1st iteration After 17 iterations

i μi1 μi2 μi1 μi2

1 0.0021 0.9979 0.0140 0.9860
2 0.7780 0.2220 0.0055 0.9945
3 0.9906 0.0094 1.0000 0.0000
4 0.9906 0.0094 1.0000 0.0000
5 0.4474 0.5526 0.0051 0.9949
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attribute binomial mixture of two classes using random samples
drawn from the mixture distribution f ðy; λÞ as in (31)

f y; λ
� �¼ X2

k ¼ 1

αkf k y; λk
� �¼ αB 1; λ11

� �
B 1; λ12
� �

B 1; λ13
� �

B 1; λ14
� �

þ 1�αð ÞB 1;λ21
� �

B 1; λ22
� �

B 1; λ23
� �

B 1; λ24
� �

; ð31Þ

where Bð1; pÞ is a Bernoulli distribution. The combinations of three
different mixing α propositions and three different λ values con-
sidered for mixture model (31) are given as follows

α1 ¼ 0:1 0:9ð Þ; α2 ¼ 0:4 0:6ð Þ; α3 ¼ ð0:7 0:3Þ

λa ¼
0:9 0:7 0:4 0:3
0:4 0:3 0:5 0:8

� �
;λb ¼

0:3 0:4 0:5 0:6
0:6 0:5 0:4 0:3

� �

The algorithms are implemented for random sample from
mixture distribution of all combinations under eight different
fuzifiers mA ½1:11:9� and random initial value as gik ¼ μik. The
responses time (RT) and Mean Square Error (MSE) of parameters
between the estimates and true parameters for these eight fuzi-
fiers are computed. Table 7 shows the results and according to
Table 7, the average MSEs of parameters using the Fuzzy indes-
cernibility and Fuzzy k-Partition algorithms were almost lower
than those of Fuzzy Centroid. The average responses times of
Fuzzy indescernibility are also lower than those of Fuzzy k-Parti-
tion and Fuzzy Centroid. These results indicate that Fuzzy indes-
cernibility possesses more accuracy and efficiency than Fuzzy k
Partition and Fuzzy Centroid Table 8.

4.3. Experiment on real datasets

This sub-section explains and discusses the experimental
results of the proposed approach. The main focus of the experi-
ments is on the performance measurement of the proposed
approach in which execution time and accuracy are used as
parameters. For comparisons, the clusters purity is commonly
used as a measure to test the quality of clustering accuracy. The
purity of a cluster as described in Parmar et al. (2007) is defined as
in (32):

Purity ið Þ ¼ the number of data occuring in both the ith cluster and its corresponding class
the number of data in the data set

Overall Purity¼

P# of cluster

i ¼ 1
Purity ið Þ

# of cluster
ð32Þ

According to the above measure, a higher value of overall
purity indicates a better clustering result, with perfect clustering
yielding a value of 100% (Gibson et al., 2000). Other external used
to analyze the cluster is Rand Measure. The adjusted Rand index
(Hubert and Arabie, 1985) is the corrected-for-chance version of
the Rand index that computes how similar the clusters (returned
by the clustering algorithm) are to the benchmark classifications.
The Adjusted Rand Index is as in (33)

RI¼

Pm
i ¼ 1

PK
j ¼ 1

nij

2

� �
� n

2

� ��1Pm
i ¼ 1

ni:

2

� �PK
j ¼ 1

n:j

2

� �

1
2

Pm
i ¼ 1

ni:

2

� �
þPK

j ¼ 1
n:j

2

� �� �
� n

2

� ��1Pm
i ¼ 1

ni:

2

� �PK
j ¼ 1

n:j

2

� �; ð33Þ

where nij represents the number of objects that are in predefined
class i and cluster j, ni: indicates the number of objects in a priori
class i; n:j indicates the number of objects cluster j; and n is the
total number of objects in the data set.

Davies Bouldin index and Dunn index are used to assess the
quality of clustering algorithms based on internal criterion. Davies
Bouldin index attempts to minimize the average distance between
each cluster and the one most similar to it (Davies and Bouldin,
1979). It is defined as in (34)

DB¼ 1
K

XK

k ¼ 1
max
kam

σkþσm

dðck; cmÞ

� �
ð34Þ

where K is the number of clusters, σk is the average distance of all
elements in cluster k and dðck; cmÞ is the distance between cluster k
and cluster m. The clustering algorithm that produces a collection
of clusters with the smallest Davies–Bouldin index is considered
the best algorithm based on this criterion. Dunn's Validity Index
(Dunn, 1974) attempts to identify those cluster sets that are
compact and well separated. The Dunn's validation index can be
calculated with the following formula in (35):

Dn¼ min
1rkrK

min
kþ1rmrK

d ck; cmð Þ
max

1rnrk
d0 nð Þ

0
@

1
A

0
@

1
A ð35Þ

where d ci; cj
� �

represents the inter cluster distance between
cluster k and cluster m. It may be any number of distance measure,
such as the distance between the centroids of the cluster. d0 nð Þ is
called the intra cluster distance of cluster n that may be measured
in variety mays, such as the maximal distance between any pair of
element in cluster n. In the experiment, all distance are calculated
using Hamming distance.

We elaborate the three approaches through the UCI benchmark
datasets as follow:

a. Zoo data set which is comprised of 101 objects, where each
data point represents information of an animal in terms of 18
categorical attributes.

b. Soybean data set contains 47 instances and 35 categorical
attributes.

c. Balloon dataset which contains 20 instances and 4 categorical
attributes.

d. Breast Cancer dataset which contains 699 instances and
9 attributes.

e. Tic-tac-toe dataset which contains 958 instances and
9 attributes.

f. Monk dataset which contains 432 instances and 6 attributes.
g. Spect dataset which contains 187 instances and 922 attributes.
h. Car dataset which contains 1728 instances and 6 attributes.

All approachs are run partially given one initial membership
function μik. The matrix initial membership μik is a random matrix
input for all approaches satisfying the constraint (16). Generally,
the random matrix μik can be obtained by generating a random
matrix I number of object, K number of clusters and then divided
by the sum rows on each column, respectively. From 100 times
implementation of all approaches for the Zoo, Breast cancer, Bal-
lon, Soybean, Tic-tac-toe, Monk, Spect and Car datasets in varying
fuzziness index i.e. mA ½1:1;2:0� and then the average accuracy
rates are calculated. The results show that the best average accu-
racy of Fuzzy k-Partition and proposed Fuzzy indescernibility
approaches in all case is almost the same, and it is better than that
Fuzzy Centroid for Zoo, Breast cancer, Ballon, and Soybean data-
sets. The improvement is summarized in Table 9. All the approa-
ches have no significant difference in term of accuracy rate for Tic-
tac-toe, Monk, Spect and Car datasets.

Table 6
A comparison of computational complexity.

Algorithms Computational complexity

Fuzzy Centroid [4] Oð2KIMtÞ
Fuzzy k-Partition [12] Oð2KIMtÞ
Fuzzy indescernibility OðKM Iþ1ð Þtþ IJÞ
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However, the proposed Fuzzy indescernibility approach has
lower executing time due to less computation required as shown
in Table 10. For example, for Monk dataset, the executing time for
fuzzy indescernibility based is 0.0472 s, while the executing times
for Fuzzy k-Partition is 0.1323 s and Fuzzy Centroid is 0.4959 s.

Thus in this case, the proposed approach improves the executing
time of fuzzy k-Partition on the average up to 49.72%. Figs. 2 and 3
show the average of Index value based on internal evaluation
using Davies Bouldin and external evaluation using adjusted rand
index, respectively. From the graph it is clear that we are getting

Table 7
MSE and response time for tests of all combination of α and λ.

α1 ; λa Fuzy Centroid Fuzy k Partition Fuzzy Indescernible

m λ α RT λ α RT λ α RT

1.1 0.3621 0.0004 0.1880 0.2424 0.0533 0.1710 0.2424 0.0533 0.0470
1.2 0.3000 0.5600 0.2180 0.2308 0.3299 0.2500 0.2308 0.3299 0.0620
1.3 0.1754 0.0011 0.4840 0.2403 0.0920 0.3120 0.2403 0.0920 0.1560
1.4 0.1735 0.5285 0.2660 0.1930 0.3307 0.6240 0.1930 0.3307 0.4050
1.5 0.2141 0.2099 0.4520 0.2058 0.3379 0.5780 0.2058 0.3379 0.3900
1.6 0.2160 0.1600 0.3590 0.2091 0.3478 0.4370 0.2091 0.3478 0.2650
1.7 0.2086 0.1600 0.2660 0.2100 0.0434 0.4360 0.2100 0.0434 0.2660
1.8 0.2075 0.1600 0.2180 0.2170 0.3294 0.4370 0.2170 0.3294 0.2650
1.9 0.2404 0.1600 0.2490 0.2090 0.0188 0.2810 0.2090 0.0188 0.1250
Average 0.2331 0.2155 0.3000 0.2175 0.2092 0.3918 0.2175 0.2092 0.2201
α1 ; λb
1.1 0.3291 0.0009 0.1720 0.2683 0.0156 0.1720 0.2683 0.0156 0.0310
1.2 0.3067 0.6525 0.2030 0.2711 0.4423 0.2030 0.2711 0.4423 0.0620
1.3 0.3043 0.6277 0.2490 0.2748 0.4150 0.2810 0.2748 0.4150 0.1090
1.4 0.2418 0.5922 0.2650 0.2709 0.3861 0.2810 0.2709 0.3861 0.1410
1.5 0.2753 0.0036 0.2650 0.2789 0.0162 0.3430 0.2789 0.0162 0.1720
1.6 0.2739 0.5157 0.2810 0.2486 0.4947 0.2650 0.2486 0.4947 0.1090
1.7 0.3239 0.1595 0.4680 0.2672 0.0093 0.3120 0.2672 0.0093 0.1560
1.8 0.3304 0.1600 0.3900 0.2607 0.5244 0.2650 0.2607 0.5244 0.0940
1.9 0.3147 0.1600 0.2500 0.2838 0.0141 0.3430 0.2838 0.0141 0.1870
Average 0.3000 0.3191 0.2826 0.2694 0.2575 0.2739 0.2694 0.2575 0.1179
α2 ; λa
1.1 0.2027 0.1883 0.1880 0.2108 0.1184 0.2020 0.2108 0.1184 0.0630
1.2 0.3413 0.0560 0.2020 0.2211 0.0011 0.2340 0.2211 0.0011 0.0940
1.3 0.1685 0.1865 0.4050 0.2001 0.0740 0.3280 0.2001 0.0740 0.1720
1.4 0.1942 0.1621 0.2810 0.2337 0.0757 0.6090 0.2337 0.0757 0.4360
1.5 0.1999 0.0111 0.4520 0.1898 0.0693 0.5770 0.1898 0.0693 0.3750
1.6 0.2110 0.0100 0.3120 0.2270 0.0077 0.6240 0.2270 0.0077 0.4210
1.7 0.2286 0.0100 0.2800 0.2576 0.0121 0.3750 0.2576 0.0121 0.2030
1.8 0.2086 0.0100 0.2190 0.2041 0.0088 0.3900 0.2041 0.0088 0.2490
1.9 0.2124 0.0100 0.1870 0.2023 0.0749 0.3770 0.2023 0.0749 0.2210
Average 0.2186 0.0715 0.2807 0.2163 0.0491 0.4129 0.2163 0.0491 0.2482
α2 ; λb
1.1 0.3859 0.2754 0.1870 0.2779 0.1559 0.1870 0.2779 0.1559 0.0310
1.2 0.2752 0.1117 0.2020 0.2700 0.0380 0.2030 0.2700 0.0380 0.0630
1.3 0.3137 0.2418 0.2810 0.2722 0.1116 0.2800 0.2722 0.1116 0.1250
1.4 0.2230 0.2480 0.2500 0.2567 0.1241 0.3280 0.2567 0.1241 0.1720
1.5 0.2748 0.2569 0.2180 0.2725 0.1874 0.2500 0.2725 0.1874 0.0940
1.6 0.2994 0.1125 0.4530 0.2622 0.1487 0.3430 0.2622 0.1487 0.1720
1.7 0.3275 0.1358 0.4370 0.2714 0.2045 0.2650 0.2714 0.2045 0.1090
1.8 0.3240 0.0100 0.2810 0.2571 0.1679 0.3280 0.2571 0.1679 0.1560
1.9 0.3522 0.0100 0.3120 0.2677 0.2073 0.2970 0.2677 0.2073 0.1250
Average 0.3084 0.1558 0.2912 0.2675 0.1495 0.2757 0.2675 0.1495 0.1163
α3 ; λa
1.1 0.2119 0.3185 0.1870 0.2043 0.1480 0.1870 0.2043 0.1480 0.0470
1.2 0.3658 0.3002 0.2180 0.2570 0.1090 0.2500 0.2570 0.1090 0.0930
1.3 0.1658 0.2907 0.3590 0.2453 0.0683 0.3900 0.2453 0.0683 0.2030
1.4 0.1963 0.2365 0.2810 0.2317 0.1179 0.5770 0.2317 0.1179 0.3900
1.5 0.2091 0.0864 0.4680 0.2182 0.1381 0.4210 0.2182 0.1381 0.2180
1.6 0.2266 0.0400 0.4990 0.2357 0.1761 0.4220 0.2357 0.1761 0.2340
1.7 0.2391 0.0400 0.2970 0.2217 0.0008 0.4210 0.2217 0.0008 0.2340
1.8 0.2128 0.0400 0.2490 0.1945 0.1587 0.3590 0.1945 0.1587 0.1870
1.9 0.2245 0.0400 0.2340 0.2181 0.1703 0.3280 0.2181 0.1703 0.1710
Average 0.2280 0.1547 0.3102 0.2252 0.1208 0.3728 0.2252 0.1208 0.1974
α3 ; λb
1.1 0.3770 0.3656 0.1720 0.2814 0.2025 0.1870 0.2814 0.2025 0.0150
1.2 0.3772 0.3757 0.2020 0.2731 0.2116 0.2810 0.2731 0.2116 0.0630
1.3 0.2418 0.3752 0.2960 0.2652 0.2104 0.2650 0.2652 0.2104 0.1100
1.4 0.2552 0.3304 0.2960 0.2763 0.1895 0.4210 0.2763 0.1895 0.3120
1.5 0.2566 0.3132 0.2190 0.2545 0.2312 0.2810 0.2545 0.2312 0.1090
1.6 0.2955 0.0009 0.4990 0.2832 0.0041 0.4060 0.2832 0.0041 0.2180
1.7 0.3106 0.0400 0.5000 0.2959 0.2253 0.3270 0.2959 0.2253 0.1560
1.8 0.3292 0.0400 0.4360 0.2782 0.2696 0.3120 0.2782 0.2696 0.1410
1.9 0.3326 0.0400 0.3160 0.2748 0.0157 0.2980 0.2748 0.0157 0.1410
Average 0.3084 0.2090 0.3262 0.2758 0.1733 0.3087 0.2758 0.1733 0.1406
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best performance using fuzzy indescernibility in terms of the
Dunn's Davies Bouldin index and Rand index.

In the following section, we present further on applicability of
the proposed Fuzzy indiscrnibility approach on other real world
dataset. The first data set is studies anxiety dataset and the second
data is supplier management dataset.

4.3.1. Studies anxiety dataset
The nature, degree, and persistence of stress are particularly

important in anxiety disorders and other related psychiatric con-
ditions (Bystritsky and Kronemyer, 2014). In this case, the studies
anxiety refers to anxiety condition during study. High level of
anxiety is perceived to relate to the low performances in academic.
Such anxiety can interfere with students’performance on exam
(Harris and Coy, 2003; McCraty, 2003). The study's anxiety data
used were taken from a survey aimed to identify cause of study
anxiety among university students. The respondents are 770 stu-
dents which consist of 395 males and 375 females (Yanto et al.,
2012). We take two results of studies anxiety from (Yanto et al.,
2012) i.e. mathematic anxiety and social anxieties. There are five
attributes of mathematics anxiety; Felt mathematic is difficult
subject (DS), Always fail in mathematic (FM), Always writing down
while in mathematic class (WD), Anxious if do not understand
(DU), Lost of interest in mathematic (Li). We run all the approaches

for mathematics anxiety dataset in two different numbers of
clusters. The experiment we define nine diferent number of clus-
ters i.e 2–10 clusters with m¼ 1:3. The Davies Bouldin Index and
Dunn Index are shown in Figs. 4 and 5, respectively. From the
graph it is clear that we are getting best performance using fuzzy
indescernibility and Fuzzy k-Partition in terms of the Dunn's
validity index and Davies Bouldin index. However, from Fig. 6, we
can see that the fuzzy indescernibility achieves lower of response
time than Fuzzy k-Partition.

There are seven attributes in Social anxiety dataset i.e. Problem
with peers (PP), Uncomfortable hostel (UH), Problem with room-
mate (PR), Home-sick (HS), Uncomfortable with the campus
environment (CE), Racial diversity (RD), Difficult to study because
of many roommates (MR). We run all the approaches for social
anxiety dataset in nine experiments. In the experiment, we define
two to ten clusters with m¼ 1:3. The Davies Bouldin Index and
Dunn Index obtained are shown in Figs. 7 and 8, respectively. From
both Figure, we can see that the the Fuzzy indescernibility and

Table 8
Average MSE and respone time of parameters for all tests.

Fuzy Centroid Fuzy k Partition Fuzzy Indescernible

λ α RT λ α RT λ α RT

α1 ; λa 0.2331 0.2155 0.3000 0.2175 0.2092 0.3918 0.2175 0.2092 0.2201
α1 ; λb 0.3000 0.3191 0.2826 0.2694 0.2575 0.2739 0.2694 0.2575 0.1179
α2 ; λa 0.2186 0.0715 0.2807 0.2163 0.0491 0.4129 0.2163 0.0491 0.2482
α2 ; λb 0.3084 0.1558 0.2912 0.2675 0.1495 0.2757 0.2675 0.1495 0.1163
α3 ; λa 0.2280 0.1547 0.3102 0.2252 0.1208 0.3728 0.2252 0.1208 0.1974
α3 ; λb 0.3084 0.2090 0.3262 0.2758 0.1733 0.3087 0.2758 0.1733 0.1406

Table 9
The accuracy improvement of Fuzzy indescernibility to Fuzzy Centroid and Fuzzy k-
Partition.

Fuzzy
Centroid

Fuzzy k-
Partition

Fuzzy
indescernibility

Improvement

Breast
cancer

0.9255 0.9717 0.9717 4.99 %

Zoo 0.832 0.8996 0.8996 8.13 %
Balloon 0.8333 1 1 20.00 %
Soybean 0.9720 1 1 2.88 %
Average of Iimprovement 9 .00 %

Table 10
The response time improvement of Fuzzy indescernibility to Fuzzy Centroid and
Fuzzy k-Partition.

Fuzzy
Centroid

Fuzzy k-
Partition

Fuzzy
Indescernibility

Improvement (%)

Breast
cancer

0.9237 2.0070 0.5417 73.01

Zoo 0.9986 1.0713 0.9020 15.80
Balloon 0.4296 1.8337 1.3440 26.71
Soybean 0.7985 0.0585 0.0480 17.88
Tic-tac-toe 0.6520 1.2325 0.2481 79.87
Monk 0.4959 0.1323 0.0472 64.34
Spect 0.8108 0.3206 0.2095 34.65
Car 0.7035 0.7037 0.1021 85.49
Average of improvement 49.72
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Fig. 2. Davies Bouldin Index for benchmark data sets.
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Fig. 3. Adjusted Rand index of benchmarks data sets.
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Fuzzy k-Partition obtained better performance than that the Fuzzy
Centroid in terms of the Dunn's validity index and Davies Bouldin
index. However, from Fig. 9, we can see that the fuzzy indes-
cernibility achieves lower of response time than Fuzzy k-Partition.

4.3.2. Supplier base management data set
A supplier base management dataset is obtained from (Her-

awan et al., 2010; Liu and Jiang, 2010) as shown in Table 11. From
the dataset, there are 27 suppliers with 7 quantitative attributes,
namely Quality system outcome (QSO), Claims (CL), Quality
improvement (QI), Response to claims (RC), On-time delivery (OD),
Internal audit (IA), and Data administration (DA).

We run all the approaches for Suplier base management
dataset in nine experiments. In the experiment, we define two to

ten clusters with m¼ 1:3. The Davies Bouldin Index, Dunn Index
obtained and the response time are shown in Figs. 10–12,
respectively. Figs. 10 and 11 show that the Fuzzy indescernibility
and Fuzzy k-Partition obtained better performance than that the
Fuzzy Centroid in terms of the Dunn's validity index and Davies
Bouldin index. However, in Fig. 12, the proposed Fuzzy indes-
cernibility approach achieves lower of response time than Fuzzy k-
Partition.

5. Conclusion

In this paper, we studied the categorical data clustering with
emphasizes on fuzzy-based approaches. This is the first study that
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Fig. 4. Davies Bouldin index for mathematics anxiety data set.
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Fig. 5. Dunn Index for mathematics anxiety data set.

Fig. 6. Response time comparison for mathematics anxiety data set.
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Fig. 7. Davies Bouldin Index for Social anxiety dataset.
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Fig. 8. Dunn Index for Social anxiety dataset.

Fig. 9. Response time comparison for Social anxiety dataset.
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proposed fuzzy-based categorical data clustering approach using
indiscernibility relation. We have succesfully proposed an alter-
native algorithm of our modified Fuzzy k-Partition approach.
Although several algorithms exist that address the issues con-
cerning fuzzy-based categorical data clustering, none of the pre-
vious algorithms provide lower response time and higher clusters
purity. We presented comparative analysis of the proposed
approach theoretically on computational complexity to two well
known Fuzzy approaches and it is shown that the proposed
approach achieved lower complexity. Furthermore, we carried out
experiments on benchmark and real world data sets to show the
performance of our proposed Fuzzy indiscernibility approach in
terms of response time and clusters purity. The result showed that
the proposed Fuzzy indiscernibility approach out performed the
two well known Fuzzy approaches in terms of lower response time
and higher clusters purity up to 49.72 % and 9 %, respectively.
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