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Abstract: 

Energy storage plays a crucial role in the development and progress of renewable energy sources. In the 
case of thermal energy, storage has been a step ahead since storage solutions already exist, unlike other 
conversion energy technologies. In this sense, the utilization of molten salts, mainly composed of mixtures of 
alkali/alkaline earth metals, in nitrate forms (sometimes also with nitrite), have been proposed and 
successfully applied. Molten salts have recognized advantages over other solutions namely in what concerns 
simultaneous use as heat transfer fluids and as storage media. Commercial utilization of molten salts has 
been tested essentially with the Na/K salt mixtures. Introduction of lithium nitrate in these formulation has 
been proposed, since can allow decreasing the melting point of the mixtures, thus providing safety 
concerning the risks of freezing in the tubes or tanks of the storage plant. This paper provides a short review 
on the utilization of lithium in molten salt mixtures used for thermal energy storage. Physical, chemical and 
thermal properties, as well as stability and decomposition issues are evaluated. Corrosion of stainless steels 
in contact with the salts is another crucial question that is also addressed. 
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1. Introduction 
The climate change challenge addresses for global responses, the renewable energy sources (RES) 

being one of the essential pillars [1]. The total RES share in global energy in the European Union 

was 16% in 2014 [2], in spite of all efforts done. The breakdown by sectors for the RES is as 

follows: 43% electricity, 49% heating & cooling and 8% transport (biofuels). Production of heat 

from RES has increased significantly.  

Regarding the electricity sector, the Concentrating Solar Power (CSP) Technology allows electricity 

production by converting sunlight to a heat source that transfers energy to a power block. When 

compared to other renewable sources, CSP has nowadays a clear advantage since allows 

incorporating a thermal energy storage process (TES), already in commercial stage, and thus 

providing electricity dispatchability. In a renewable energy system, energy storage is a key factor 

[3] and the technologies allowing such feature have high potential for implementation and success. 

Moreover, TES has much more applications than electricity conversion. It can be also used as: heat 

management in industry or buildings; store and reuse of waste heat; transport of heat. Although 

solar thermal sources for both electricity conversion and heating/cooling have nowadays a very 
narrow contribution to the overall energy consumption, its growing potential is enormous.  

CSP technologies involve the integration of a solar field, a heat transfer/thermal storage zone and a 

power block. Concerning the solar field, the technologies are classified as parabolic trough, linear 

Fresnel, central receiver tower and parabolic dish [4]. Parabolic trough is already a commercially 

proven mature technology. Regarding heat transfer, several options can be applied, namely two-

tank direct, indirect and single-tank thermocline, among other arrangements [5,6], including the use 
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of several filler materials as storage media (e.g. concrete, quartzite rock). The first CSP processes 

have operated with oil as heat transfer fluid (HTF). Synthetic oil has, however, many disadvantages 

such as the low maximum operating temperature (<390 ºC), limiting the efficiency of the power 

block cycle), high vapor pressure and potential flammability. Molten salts, namely alkali nitrate 

mixtures, have been introduced as HTF/TES media, and are nowadays the most reliable TES 

technology [6]. Examples of its application can be found in Gemasolar Thermosolar Plant (Spain) 
with tower technology or in Archimede Plant (Italy) with parabolic trough technology.  

The first developed mixtures involved sodium and potassium nitrates, such as the common Solar 

salt (60wt% NaNO3 + 40wt% KNO3). This mixture was successful since was found relatively stable 

until temperatures higher than 500 ºC. However its melting point is relatively high (240 ºC), which 

limits the efficiency of the plants and introduces a parasitic load due to the use of electric heating to 

ensure a minimum line temperature. Several other salt mixtures have been studied and developed in 

the last years, aiming at decreasing the melting points and also improving other important 

properties. Besides the binary mixtures, ternary and quaternary mixtures of metal nitrates have been 

proposed and tested. One of the alkali metals introduced in such mixtures has been lithium, and 

some of the proposed formulations have shown promising characteristics. In this paper, a short 

review on the development of nitrate salt mixtures for TES is presented, with particular emphasis, 

but not limited, to the inclusion of lithium. Thermal and physical properties are addressed, mainly 

respecting to the temperature working ranges. The interaction of the salts with the construction 

materials, namely in what concerns corrosion, is also a crucial topic when developing a formulation. 

All these issues are addressed in the ongoing NewSol research project and are discussed in the 
present paper. 

2. Molten salts in TES: main characteristics 
Designing a HTF of a thermal energy storage system involves a complex set of features. The most 
common important properties of molten salts regarding its use as HTF and TES are:  

 Melting point: melting point is a reference for designing the minimum working temperature of 

the process (usually, a safety margin above, e.g. 20-30%). Lower melting points can be 

important for some technologies involving relatively low working temperatures, such as 

parabolic trough, in order to avoid freezing in the tubes and tanks. Melting points of nitrate salt 

mixtures vary considerably with the composition, typically from 90 to 240 ºC. 

 Maximum temperature: maximum temperature is a key parameter and shall be chosen 

according to salt stability criteria. Salts with stability at high temperatures are particularly 

important for tower technologies, but are also relevant in the others. Besides chemical stability, 

other factors can be used to establish the upper limit of temperature, such as the degradability 

effects of the salt on the exposed materials. Maximum attainable temperatures for alkali nitrate 

mixtures are usually from 400 to 550 ºC. 

 Operating temperature range: besides minimum and maximum temperatures, the temperature 

difference (ΔT) is a key factor for the success of a HTF/TES process. As much higher is the 

temperature range, higher will be the heat transferred per unit mass/volume. Typical values of 

ΔT for nitrate salt mixtures are from 290 to 420 ºC. 

 Heat capacity: is an intrinsic property of a salt/salt mixture, and defines the heat transferred per 

unit of temperature changed. Higher heat capacities lead to higher heat transfer per unit mass, 

and thus to higher efficiency. Heat capacities of nitrate salt mixtures are commonly in the range 
1.2-1.8 J g

-1
 K

-1
 (average values, since heat capacity changes with temperature). 

 Physical properties: density and viscosity of molten salts are important physical properties 

since are related with the efficiency of transport phenomena, in both mass and heat transfer. 

Both vary inversely with temperature. For molten nitrates, typical values of densities of 1.7-1.9 

g cm
-3

 are reported, while viscosities can be in the range of 0.002-0.06 Pa.s (in certain cases, 

even higher). Density varies linearly with temperature while viscosity has usually an 



exponential-type relation with temperature, reason why the values of viscosity are substantially 

different according with that parameter. 

 Volumetric heat capacity: not always considered, is however an important parameter for 

characterizing a HTF/TES process, since reveals the heat capacity per unit volume which is a 

significant issue for designing the plant capacity. It is defined as the product of the density by 

the heat capacity (ρ∙Cp). 

 Thermal conductivity: an important property that affects the efficiency of the heat transfer rates 

in the plant (charging/discharging processes of TES). However, in this matter, other aspects are 

crucial and are not depending on the salt properties, such as the heat transfer coefficients of the 

materials of the heat transfer equipment, of the storage materials (e.g fillers), as well as depends 
on the equipment design. Typical values for alkali nitrate mixtures: 0.50-1.0 W m

-1
 K

-1
. 

 Chemical stability: the salt shall be stable at the temperature range of the usage, without 

occurrence of decomposition or other physical/chemical degradation phenomena. The stability 

shall be guaranteed in thermal cycles during long working periods. Usually, the higher 

temperatures promote decomposition and so the maximum temperature shall be carefully 

chosen. Other important factors are the atmosphere, the pressure, the salt impurities and the 
materials in contact with the melt. 

 Compatibility with the construction materials: is a crucial issue when designing a thermal 

storage plant, since materials in contact with the fluids shall be compatible. The working 

conditions of the plant are decisive for the materials choice, such as the salt composition and, 

mostly, the temperature. Phenomena of physical and chemical degradation, such as corrosion, 

shall be avoided or reduced to minimum. This will be essential for the longevity of the salt and 
of the construction materials in contact with it.  

 Cost is obviously a key factor with a close relation with the decision for a HTF/TES salt 

formulation. 

Table 1 shows some thermal properties collected from the published literature [6-14] and other 
sources, for several selected salt mixtures. 

After the development of the binary Solar salt, further investigations were centered on ternary 

mixtures, searching for formulations with the highest temperature range, namely melting points as 

low as 100 ºC and chemical stability at temperatures as high as 500 ºC. Quaternary mixtures have 

also been studied. The introduction of Li and Ca in nitrate formulations has been proposed and 

developed. These compounds can provide to the mixtures lower melting points, namely at eutectic 

points or close, but other aspects shall be taken into account [15] such as decomposition issues, 

viscosity and cost. In the case of calcium addition, is frequently accompanied by increase in 

viscosity. Lithium addition is usually associated with the search for decreasing melting temperature 

[16], reducing energy needs for maintaining the HTF above the freezing point, thus avoiding 

problems in the equipment (pipes/tanks), mainly in the “cool section” of the TES plant. High costs 
of lithium nitrate, when compared with other alkali nitrates, is however a drawback. 

In order to guaranty economic feasibility, contents not much higher than 10wt% LiNO3 are usually 

advised [15], but many other formulations have been proposed, as Table 1 shows. The selection of 

the fluid used as HTF/TES is crucial, namely for CSP plants where the high power requirements 
(e.g 100 MW) involve the use of large volumes of fluid [11]. Therefore the cost is a decisive factor. 

Mixtures including nitrites have also been proposed, such as the so-called Hitec salt, including 

nitrite anion in the formulation (7wt% NaNO3 + 53wt% KNO3 + 40wt% NaNO2). Addition of other 

alkali/alkaline earth metals, like calcium, has been attempted, the most known being the Hitec XL 

(15wt% NaNO3 + 43wt% KNO3 + 42wt% Ca(NO3)2).  

The Li-containing formulations depicted in Table 1 show in fact that the melting points can be 

substantially reduced when compared with other salts based on Na-K. Values in the range 100-

130ºC are usually found or even lower, such as a melting point of 75 ºC for a Li-Na-K-Ca with 

nitrate/nitrite formulation. Simultaneously, these systems did not show any visible decrease in the 



heat capacity, showing a potential for improving the energy density when compared with the 

current commercial salts.  However, Table 1 also demonstrates that mixtures containing Li can 

result in a decrease of the maximum operating temperatures, due to premature decomposition, 

which can be deleterious for the design of the TES plant. So, achieving the highest feasible 
temperature is also an important issue to allow attaining higher energy densities. 

 

Table 1. Properties of some selected salt mixtures proposed as HTF/TES. 

Salt mixture 
(wt% of components) 

Melting 

point (ºC) 

Max. oper. 

temper. 
(ºC) 

Heat 

capacity 
(J g

-1
 K

-1
) 

Volum. heat 

capacity 
(J cm

-3
 K

-1
) 

Source 

Refs. 

Lithium mixtures      
LiNO3-NaNO3-KNO3-Ca(NO3)2 

(10-20-60-10) 
132 553 1.518 - [6,7] 

LiNO3-NaNO3-KNO3-

Ca(NO3)2.4H2O  (20-10-60-10) 
88.6 >500 1.5 2.78 [6] 

LiNO3-Ca(NO3)2-NaNO2-KNO2 

(24-14-17-45) 
75 400 1.65 3.02 

Internal 

report 
LiNO3-NaNO3-KNO3 
(30-18-52) 

120 435-540 1.6 2.85 
Internal 
report 

LiNO3-NaNO3-KNO3 
(20-28-52) 

130 568 1.091 - [6] 

LiNO3-NaNO3-KNO3 
(26-20-54) 

118 430 1.63 - [6] 

LiNO3-NaNO3-KNO3 
(30-15-55) 

120 - - - [9] 

LiNO3-NaNO3-KNO3 
(27-33-40) 

170 - - - [8] 

LiNO3-NaNO3-KNO3 
(23-17-59) 

140 - - - [8] 

LiNO3-KNO3-Ca(NO3)2 
(30-60-10) 

132 560 1.395 - [6,10] 

LiNO3-KNO3-Ca(NO3)2 
(22-58-20) 

117  - - [8,11] 

LiNO3-NaNO3 
(49-51) 

194 - 1.85 3.27 
Internal 

report 
LiNO3-NaNO3-KNO3-
2KNO3.Mg(NO3)2  
(17.7-15.3-36-31) 

102 - 1.67 - [6,12] 

LiNO3-NaNO3-KNO3-NaNO2 (18-

14-50-18) 
94 430 1.66 2.85 [6,13] 

LiNO3-NaNO3-KNO3-KNO2 
(17.5-14.2-50.5-17.8) 

99 - - - [14] 

Non-Li mixtures      
NaNO3-KNO3 
(60-40), Solar salt 

240 530-565 1.55 2.85 
Internal 

report 
NaNO3-KNO3-NaNO2 
(7-53-40), Hitec 

142 450-540 1.54 2.76 
Internal 
report 

NaNO3-KNO3-Ca(NO3)2 
(15-43-42), HitecXL 

140 460-500 1.43 2.73 
Internal 

report 
NaNO3-KNO3 
(46-54)  

222 550 1.52 - [6] 

NaNO3-KNO3-Ca(NO3)2 
(16-48-36) 

133 550 1.67 2.80 
Internal 

report,[8] 

 



3. Melting points, thermal stability and decomposition 
Maximum and minimum operating temperatures of a HTF/TES allows defining the working 

temperature range and has a direct influence on the energy density of a system. The establishment 

of the melting temperature and the decomposition temperature are therefore two key parameters in 

the development of a molten salt mixture. 

3.1 Phase diagrams and liquidus temperatures 

For the definition of the melting temperature of a mixture, two situations can be found, depending 

on the composition. For the eutectic composition, the melting occurs at a set temperature. For other 

compositions, the melting occurs in a range of temperatures where a mixture of solid and liquid 

phases (with different compositions) coexist, until reaching a final temperature where all the 

material melts. This final temperature is the liquidus temperature, which is the melting temperature 
that effectively counts for this purpose. 

The stability phase diagrams, expressing the liquidus temperature lines as a function of the 

composition, are significant tools for designing the appropriate mixtures. For the system Li-Na-

K/NO3, the literature provides several studies where these diagrams were modelled and validated by 

experimental determinations. The techniques used are TG-DTA (thermogravimetry - differential 
thermal analysis) and DSC (differential scanning calorimetry). 

For understanding the importance of phase diagrams when developing mixtures, Fig. 1 shows the 

binary diagrams for the three combinations of alkali (Li-Na-K) nitrates. These figures contain plot 

trends and were constructed from data published by Coscia et al. [9], based on experimentation and 

mathematic models generated from thermodynamic presumptions. It is clear that the choice for 

binary mixtures allows attaining substantial decrease in melting points, specially when considering 

the eutectic point compositions: 222 ºC for Na-K/NO3; 183 ºC for Li-Na/NO3; 122 ºC for Li-

K/NO3. It is also observed that the use of lithium in the mixtures is advantageous for reducing the 

mixture melting points. 

Regarding the ternary mixtures, the diagrams presented in Fig. 2 show three different combinations, 

each one changing the composition of two components with a constant value of the third one. This 

figure was also constructed from the data of the same publication referred for binary mixtures [9]. 

The constant composition values selected in each diagram corresponded to the eutectic point of the 

ternary mixture. The plots show an abrupt variation of the liquidus temperature when compositions 

approach to the eutectic one. As an example (Fig. 2c) the increase in the Li nitrate content from 15 

to 30wt% corresponds to a drop in temperature from 190 to 122 ºC. The minimum temperature 
expected for this ternary mixture is around 120 ºC. 

 

 

Fig. 1. Phase diagrams (temperature/ wt. composition) for the binary mixtures (a) Na-K/NO3; (b) 

Li-Na/NO3; (c) Li-K/NO3. 
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Fig. 2. Phase diagrams (liquidus temperature/ wt. composition) for the ternary mixture Li-Na-K 

/NO3: (a) Na-K variation for constant Li; (b) Li-Na variation for constant K; (c) Li-K variation for 

constant Na. 

3.2 Stability and decomposition 

Stability of the molten salts is an important issue when designing a sensible heat TES system. There 

are many forms of salt degradation: interaction with the construction materials (with possible 

oxidation/reduction/dissolution reactions), interaction with the surrounding atmosphere, and 

decomposition/vaporization (with chemical transformation and/or release of gaseous substances). 

Thermal stability of nitrate salts depends on temperature, being usually more pronounced as the 

temperature increases. So, the maximum allowable operating temperature is normally associated 

with decomposition of the salt, and is frequently checked by TG techniques. Weight losses above 

3wt% are commonly considered for establishing a bulk decomposition point. In order to better 

understand transformations, gas analysis by chromatography/mass spectrometry can be coupled to 
the TG tests. 

The most important reactions of nitrate melts that affect stability are: nitrate decomposition to 

nitrite; oxide and carbonate formation; vaporization of the melt. For the nitrate/nitrite equilibria, the 
following equation is valid: 

MNO3 (l) = MNO2 (l) + ½ O2 (g)     (1) 

where M represents an alkali metal. Once formed, nitrites can react to produce oxides, 

2 MNO2 (l) = M2O (s) + NO (g) + NO2 (g)    (2) 

and/or, 

5 MNO2 (l) = M2O (s) + N2 (g) + 3 MNO3 (l)    (3) 

and these ones can eventually react with carbon dioxide to generate carbonates, 

M2O (s) + CO2 (g) = M2CO3 (s)      (4) 

These reactions are undesirable and shall be avoided, for several reasons, namely: (a) firstly, 

because can cause a substantial change in the melt composition, affecting their thermal and physical 

properties; (b) also because the release of gases is irreversible phenomena causing loss of material 

and harmful emissions; (c) finally because the formation of solid products, even at small scale, can 
have deleterious effects on the storing and transporting equipment in a TES plant. 

For mixtures containing nitrites, some additional decomposition reactions can also be found, as 

expressed by the following equations, 

2 MNO2 (l) = M2O (s) + 3/2 O2 (g) + N2 (g)    (5) 

2 MNO2 (l) = M2O (s) + NO2 (g) + NO (g)    (6) 

5 MNO2 (l) = 3 MNO3 (l) + M2O (s) + N2 (g)    (7) 
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The last reactions were proposed in a study involving a Hitec-type salt mixture [17], were the 

evolved gases were analyzed. Under air or oxygen atmosphere, nitrite oxidation to nitrate was found 

at temperatures of 370 and 392 ºC, respectively, although at small scale. The bulk decomposition of 

the salt was only found at higher temperatures. 

The extension of the previous reactions depends essentially from thermodynamic criteria and from 

working conditions (temperature, partial/total pressure, concentrations/activities of species), but 

also from kinetic factors. 

Decomposition of nitrate/nitrite molten salt mixtures occurs normally within the range 400-550 ºC. 

So, the working temperature interval is derived from the difference between the melting point and 

the decomposition point (applying a safety value of 20-30 ºC above and below, respectively).  
 

 

Fig. 3. Temperature intervals defining working ranges, from melting to decomposition, for selected 

nitrate-nitrite salt mixtures (values in brackets are wt% concentrations of each component). 

Figure 3 shows temperature working intervals for a set of selected salt mixtures. The values 

presented were taken from the bibliography survey, the same presented in Table 1. Intervals of 300-

430 ºC are commonly found. It is observed that some ternary and quaternary mixtures containing 

lithium can provide higher temperature intervals when compared with the most common 

commercial salts (presented in the upper part of the figure). However, it must be stressed out that 

the published data does not always correspond exactly to the same experimental conditions. 

Different furnace types, different atmospheres and pressures, are some of the factors that can affect 

results. Difficulties in obtaining accurate data are frequently reported, attributed to dehydration 

inefficiency, mixing/homogenizing and to sample instability during measurements due to salt 

creeping and overflow through crucibles. This can have impacts on the exact determination of 

transformation temperatures and heat flows. Moreover, the stability criteria shall be defined based 

on long-term/large scale stability tests, rather than by simple TG experiments or short-term tests. In 

this domain, investigations are scarce (at least, not widely published) and many challenging 
research work is still required. 

3.3 Developments in lithium molten salt mixtures 

Several publications have been made in recent years regarding ternary and quaternary mixtures of 

nitrates, some of them also containing nitrites (usually called ternary and quaternary reciprocal 

NO3-NO2 mixtures). As referred in the literature [18] lithium-containing salt mixtures have 

comparable heat capacities and lower melting points, thus allowing to attain higher energy densities 

(~1000 MJ m
-3

), but normally higher prices (1.4-2.2 USD/kg) when compared, for example, to solar 
salt (0.72-1.0 USD/kg) [18,19].  

The ternary mixture Li-Na-K/NO3, near the eutectic point, has been proposed and studied by several 

authors [9,10,20]. However, the exact composition of the eutectic was not always agreed 
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(composition range of 25-30wt% LiNO3, 17-20wt% NaNO3, 52-54wt% KNO3). Reasons of 

discrepancies are attributed to the presence of impurities in the raw materials. The quaternary salt 

with low Li content (10wt% LiNO3 + 20wt% NaNO3 + 60wt% KNO3 + 10wt% Ca(NO3)2) was 

proposed [7], with a relatively low melting point (132 ºC) and a decomposition point at 580 ºC 

(although incipient decomposition was already observed at 470 ºC). It is also referred that much 

lower melting points were obtained by other authors (e.g. 70 ºC using cesium nitrate additive or 

even 60 ºC with KCl addition), but problems related with high cost or corrosion make the 

application prohibitive. Another quaternary mixture (18 wt% LiNO3 + 15 wt% NaNO3 + 36 wt% 
KNO3 + 31wt% 2KNO3.Mg(NO3)2) was proposed [12] with a melting point of 102 ºC. 

Developments of mixtures with nitrate/nitrite anions are also found. The mixture 18wt% LiNO3 + 

14 wt% NaNO3 + 50 wt% KNO3 + 18wt% NaNO2 was studied [13], with a good heat capacity (up 

to 1.57 J g
-1

 K
-1

 at 350 ºC) and a melting point of just 94 ºC. A very similar formulation was the 

eutectic mixture 17.5wt% LiNO3 + 14.2wt% NaNO3 + 50.5wt% KNO3 + 17.8wt% KNO2 , with a 

melting point of 98.6 ºC [14]. Finally, another Li-Na-K salt mixture with a NO3
-
/NO2

-
 molar ratio of 

0.56 was proposed [21] with a melting point as lower as 80 ºC. The same authors refer that even 
lower melting points are possible to achieve with calcium addition. 

4. Other physical properties 
Viscosity and density of molten salts are also important parameters in the design of a TES facility. 

Data collected from literature is presented in Fig. 4, where plots of viscosity and density as a 

function of temperature are depicted. Original data (experimental and correlated) was taken from 

the work published by Bradshaw (2009 and 2010) [22,8], and such data was fitted in order to obtain 

the trends here presented. Essentially, an attempt is made to evaluate the effect of the content of 

lithium and calcium in mixtures. The comparison of different salt mixtures is not always absolutely 

precise since the compositions always vary. However, the Figure shows very clear trends that can 
be useful for discussion. 

 

Fig. 4. Variation of (a) viscosity and (b) density of nitrate molten salts with temperature, for 

selected ternary/quaternary mixtures. Values in brackets of legend are metal nitrate content (wt%). 

Regarding viscosity (Fig. 4a), the presence of calcium always involves a substantial rise, more 

pronounced as the temperature decreases and approaches the melting point. This behavior is due to 

the exponential dependence from temperature, usually expressed by an Arrhenius-type expression 

[8]. One of the first calcium-containing salt proposed was the mixture 44wt% Ca(NO3)2 + 44wt% 

KNO3 + 12wt% NaNO3, which was rejected due to viscosity problems [10], although its good 

thermal behavior. Another mixture proposed later was 60wt% KNO3 + 22wt% LiNO3 + 18wt% 

Ca(NO3)2, with lower viscosity and a melting point of 112 ºC [10]. By the contrary, the Li presence 

seems to decrease the viscosity, as the Figure shows. The ternary mixture Na-K-Ca/NO3 attains 

values near 0.160 Pa.s at the lower temperature (138 ºC), when compared with the other ternary 
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nitrate mixtures Li-K-Ca and Li-Na-K (maximum values of 0.062 and 0.028 Pa.s, respectively, at 

125-130 ºC). The two quaternary salts, essentially differing in the calcium nitrate contents (9 and 24 

wt%), show quite different viscosities, as higher as the calcium concentration. The several Li-Na-

K/NO3 salt mixtures evaluated have similar viscosities. To be noted that Hitec salt has a viscosity of 
0.007 Pa.s at 200 ºC (internal report). 

The dependence of density from temperature is linear (Fig. 4b), thus variations with temperature are 

clearly less pronounced. Nevertheless, the salt mixtures containing calcium also reveal higher 

densities than the other combinations. The non-containing lithium mixtures Hitec and Solar Salt 

reveal densities of 1.93 g cm
-3

 at 200 ºC and 1.84 g cm
-3

 at 400 ºC, respectively. 

5. Corrosion 
Use of molten nitrate salts as heat transfer fluid as well as thermal energy storage material is well 

documented in CSP plants. The salt mixtures already in use or potentially to be used in commercial 
applications are the Solar salt, the Hitec and the Hitec XL [23]. 

Due to the high operating temperature, austenitic stainless steels have been identified as especially 

suitable materials in the storage system [24]. Low alloy steel often reveals insufficient corrosion 

resistance [25]. From the literature, the Solar salt is compatible with 316, 304, 321 and 347 

austenitic stainless steels, with metal losses varying between 4-15 m/year [26,27].  Combined 

studies of Spanish and Chilean researchers demonstrated a detailed comparison of materials 

corrosion behaviour in molten Solar salt and Hitec XL, concluding that Hitec XL salt decreases the 

corrosiveness of the energy storage salts, which increases the operational life cycle of current solar 

technology [25,28]. 

However, compatibility of molten salts with the structural alloys as well as materials corrosion have 

been of real concern mainly because of the high operating temperatures. Hence, the material 

development and corrosion studies turn out to be an essential part of research [29]. Corrosion 

resistance of alloys depends on the content of elements, generally Cr, Ni and Mo, which influence 

the development of passivating oxide layers. Accordingly, the formation of Ni and/or Cr oxides 

layers in alloyed steels and stainless steels produce a better corrosion resistance than the only 

formation of iron oxides in carbon steels. Moreover, the presence of Mo significantly increases the 

resistance to both uniform and localized corrosion. The corrosion that takes place on metallic 

materials in contact with HTF and TES medium is largely affected by the chemical reaction that 
occurs on the molten salts [30]. 

So, efforts have been made to understand the selective removal of elemental constituents from the 

alloys in order to propose corrosion mechanisms. This makes analysis of corrosion products or 
oxide scales significantly important [31]. 

To achieve this, large number of analytical methods has been used. Molten salt corrosion has been 

predominantly studied by gravimetric, electrochemical techniques and, morphology and chemical 

analysis of corrosion products by means of XRD, SEM/ EDS, Raman spectroscopy etc, after long 

exposures at high temperatures. In general, iron oxides are identified at corrosion scales. Results 

suggested that magnetite (Fe3O4) was mainly located close to base metal while hematite (Fe2O3) 

was in higher proportion in the outermost oxide layers. The formation of Fe2O3 in preference to 

other compounds is strongly linked to the values of pO2 in the salt [32]. 

Localized phenomena such as pitting, intergranular corrosion, selective leaching, among others 

could be found after characterizing corrosion coupons transversal sections. Evaluation performed by 

SEM/EDS over the surface and cross section of metallic specimens could show the delaminated 

morphology of corrosion products as well as the enrichment of the outermost oxides layers with 

cation species coming from nitrate salt mixtures [33]. 

In recent years, lithium nitrate has been considered as a great additive to improve the thermal 

performance of molten salts [15] as aforementioned. However, there are a reduced number of 

publications in the literature reporting the corrosion ability in these promising molten salts. 



Fernandez et al. [34], have examined the behaviour of ternary molten salts containing LiNO3 and 

Ca(NO3)2 in contrast with the obtained results in the binary Solar salt currently used in CSP plants. 
The main results that were obtained are indicated in Table 2. 

Under these experimental conditions, it is clearly observed that the corrosion rate of steels is lower 

in Li ternary mixtures than in Solar salt. 

Based on results related to weight gain, descaled weight loss and the microstructure of the corrosion 

scales, Cheng et al. [35] proposed a possible corrosion mechanism of steel in LiNaKNO3 mixture at 

550 C for 1000 h, Fig. 5. According to chemical composition profiles obtained from the corrosion 

scales, the accumulation of chromium was primarily in the inner portion of the (Fe,Cr)3O4 layer, 

immediately adjacent to the steel substrate. The accumulation of chromium in the scales can be 

attributed to the corrosion of Cr–Mo steel leading to the formation of FeLiO2 and (Fe,Cr)3O4, 

followed by the predominant outward diffusion of Fe
2+

 and Fe
3+

 ions, leaving the inert chromium 

distributed in the scale next to the steel substrate. It follows therefore that steel with higher 
chromium content would be less susceptible to corrosion.  

 

Table 2. Corrosion rate and corrosion products obtained at 390C with A1 steel [34]. 

Molten salt 
Corrosion products Corrosion rate 

(µm/h) Steel Salt 

Solar Salt MgFe2O4, Fe2O3, MgO Fe2O3, Na2O, MgFe2O4 0.1108 

Lithium ternary salt MgFe2O4, K2FeO4, Fe3O4 MgFe2O4, Na2O, LiFeO2, Li2O2 0.0359 

Li/Ca ternary salt MgFe2O4, Fe3O4 MgFe2O4, LiFeO2 0.0031 

 

 

Fig. 5. Schematic illustration of the growth stages involved in the formation of corrosion scales on 
steel following exposure to LiNaKNO3 at 550 ºC [35]. 

6. Conclusions 
Research and development on molten salts for sensible heat thermal energy storage has been driven 

by the search for high energy density mixtures. Several ternary and quaternary salt formulations 

have been proposed and studied, containing lithium and calcium in the formulations, and also NO3
-

/NO2
-
 as anions, in order to decrease the melting points and therefore allowing higher operating 

temperature intervals. Questions regarding the stability and decomposition of the salts have been 

considered, as well as the control of important physical properties such as viscosity. Degradability 

of materials in contact with the salts, namely corrosion studies are other crucial aspects that shall be 

carefully examined. Regarding stability and corrosion, long-term accurate experiments are 

mandatory in further investigations. 
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