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Abstract

The explicit evaluation of selected entries of the inverse of a given sparse ma-
trix is an important process in various application fields and is gaining visibility
in recent years. While a standard inversion process would require the compu-
tation of the whole inverse who is, in general, a dense matrix, state-of-the-art
solvers perform a selected inversion process instead. Such approach allows to
extract specific entries of the inverse, e.g., the diagonal, avoiding the standard
inversion steps, reducing therefore time and memory requirements. Despite
the complexity reduction already achieved, the natural direction for the devel-
opment of the selected inversion software is the parallelization and distribution
of the computation, exploiting multinode implementations of the algorithms.

In this work we introduce parallel, high performance selected inversion al-
gorithms suitable for both the computation and estimation of the diagonal of the
inverse of large, sparse matrices. The first approach is built on top of a sparse
factorization method and a distributed computation of the Schur-complement,
and is specifically designed for the parallel treatment of large, dense matrices
including a sparse block. The second is based on the stochastic estimation of
the matrix diagonal using a stencil-based, matrix-free Krylov subspace iteration.
We implement the two solvers and prove their excellent performance on Cray
supercomputers, focusing on both the multinode scalability and the numerical
accuracy.

Finally, we include the solvers into two distinct frameworks designed for
the solution of selected inversion problems in real-life applications. First, we
present a parallel, scalable framework for the log-likelihood maximization in ge-
nomic prediction problems including marker by environment effects. Then, we
apply the matrix-free estimator to the treatment of large-scale three-dimensional
nanoelectronic device simulations with open boundary conditions.
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Chapter 1

Introduction

In numerical linear algebra, matrix inversion is one of the most computationally
expensive operations. Given an invertible matrix of order n, the computation
of the entries of the inverse is equivalent to the solution of n linear systems:
once that an LU factorization of the matrix is given, it is possible to compute
the columns of the inverse one by one, by solving the linear systems having the
columns of the identity as right-hand sides. The LU factorization performed via
Gaussian elimination costs 0(§n3) operations, while each of the n linear sys-
tems requires @(2n?) operations for the forward and backward substitutions,
giving a total of ﬁ(%n?’) operations. This technique is in general unpractical to
apply, so the cost can be reduced by half by diagonalizing the matrix, apply-
ing a Gaussian elimination process on the columns, in order to obtain an upper
triangular matrix, followed by the same process on the rows, in order to ob-
tain the identity. The whole process then costs a total of ﬁ(§n3) operations. It
is clear how this computational burden for the direct evaluation of the whole
inverse is still impossible to sustain for large values of n. Many authors have
therefore developed alternative strategies, e.g., for the iterative computation of
the inverse, such as the Newton method [Ben-Israel, [1965}; Pan and Reif, (1989].
Under appropriate assumptions on the spectral properties of the matrix, it has
been shown that the Newton methods for the computation of the p-th root of
regular functions can be adapted for the computation of the inverse p-th root
and specifically, for p = 1, the inverse. For more on this, refer to the work
by Higham|[|1986]], |[Soderstrom and Stewart [[1974/], Pan and Schreiber [1991],
and Lass et al. [2018]. The iterative Newton-based methods have been also
specialized for the treatment of structured matrices, such as circulant, Toeplitz
and Vandermonde matrices [[Pan et al., 2004]]. The iterative nature of these
algorithms make them also suitable for preconditioning in order to substitute



other techniques such as the incomplete LU factorization, in case of a sparse
input [[Chow and Saad, 1998; Bollhofer et al., [2019]]. Focusing on sparse ma-
trices, it is important to mention that all the algorithms introduced so far have
a dense nature, i.e., they do not take into account the presence of a zero pat-
tern for the entries of the matrix, and tend to fill the zero entries with nonzero
values.

While dense matrices are commonly used for several applications and ex-
ploit the good performance of the optimized libraries and vectorization proper-
ties of modern compilers, many mathematical models are designed using sparse
matrices. A sparse matrix, in general, is defined as a matrix presenting a con-
sistent number of zero entries. We will call the position of the nonzero entries
“nonzero pattern” or “sparsity pattern”, equivalently. The usage of sparse matri-
ces entail numerous computational advantages: first, the possibility of storing
a compressed version of the matrix which guarantees lower memory require-
ments. Second, the design of ad hoc sparse algorithms which may reduce the
computational complexity taking advantage of the presence of the null entries,
allowing the algorithm to skip a number of floating point operations. Consider-
ing the numerical algorithm for the factorization of the matrix, the solution of
linear systems, or its inversion, it is therefore very important to keep in mind the
possibility that the sparsity pattern of the matrix might change while operating
on it and to design sparsity-aware methods who keep the nonzero pattern of the
matrix as intact as possible. As an example, several mathematical models used
in different fields of study such as nanoelectronics [[Luisier et al., 2006} [Kuzmin
et al.,[2013}; Li and Darve, 2012; Verbosio et al., 2018, uncertainty quantifica-
tion [Bekas et al.,[2009], and genetics [De Coninck et al.,[2015,|2016; Verbosio
et al.,2017], require the explicit evaluation of selected entries of the inverse of a
sparse matrix, e.g., the diagonal elements. This kind of problems are called “se-
lected inversion problems”. It is straightforward to see that the whole inversion
process would lead to a huge waste of resources, particularly when large-scale
datasets are involved. Additionally, even though the input data is compressed,
the previously mentioned iterative methods would progressively fill the matrix
with new nonzero entries—even though very small in magnitude—unless some
sort of sparsification technique is applied, reducing thus the accuracy. In order
to fulfil the requirements of a selected inversion problem, different methods
and solvers have been designed depending on the nature of the application.

We can divide the selected inversion solvers into two major classes: the di-
rect methods and the stochastic methods. The direct methods are based on the
factorization of the original matrix, performing a sparse Gaussian elimination.
It is clear how, even from small examples, the elimination process is prone to



add additional fill-in nonzero entries (think, e.g., of the case of an arrowhead
matrix, where the diagonal, the first row and the first column are filled with
nonzeros). In order to add as minimum fill-in entries as possible, the matrix
is reordered as a preliminary action, applying for instance graph partitioning
techniques; this is called “symbolic factorization” phase. Despite the existence
of trivial cases such as the arrowhead matrix mentioned above, where swapping
the first and last row and the first and last column would guarantee no fill-in, the
minimization of the fill-in entries is still computationally challenging. Both this
and the graph partitioning problem are in fact NP-complete [Yannakakis, 1981],
requiring the formulation and development of many heuristic methods, such
as the minimum degree, nested dissection, or multilevel algorithms [[Amestoy
et al., [1996; George, (1973; [Karypis and Kumar, 1998]]. Once that the matrix
has been reordered, the sparse LU factorization is computed. From here, one
can proceed with evaluation the actual inverse entries. Even though the factors
are sparse, the inverse is in general dense [[Duff et al., [1988]], even when very
few fill-in entries are added during the factorization phase. For this reason,
many solvers apply the Takahashi’s formula [Takahashi et al., [1973]], exploiting
the sparsity of the matrix to compute selected entries of the inverse. This for-
mula designs a recursive computation of the entries through forward/backward
substitution—as in the dense algorithm—skipping useless computation for the
null entries of the LU factors.

The methods in the second class are instead iterative. In particular, we an-
alyze stochastic algorithms for the estimation for the diagonal of the inverse.
Given a sparse matrix, Hutchinson| [[1990] developed an estimator for its trace
based on a Monte Carlo method. In a totally analogous way, this estimator has
been extended to compute the trace and the diagonal of the inverse of the ma-
trix [[Tang and Saad, 2012] and used to accelerate some applications, such as
uncertainty quantification [Bekas et al., 2009, 2012]] and quantum physics nan-
odevice simulations [Verbosio et al., 2018]]. The diagonal of the inverse of A is
computed as a vector of n elements, and it is evaluated as the sample mean of a
number of random vectors. Such vectors are computed by sampling the action
of A™! on a number of random vectors appropriately generated and mapped
onto the image of A~! by an inversion operator, e.g., a Krylov subspace method
or some other linear system solving strategy. The mapped vectors, then, repre-
sent a sampling of the behavior of A™! and are used to compute the final estima-
tor. This estimator presents the disadvantage of having a variance depending
on the off-diagonal (unknown) entries of the inverse, however it presents no
bias. Because of the stochasticity and the dependence on the above mentioned
inversion operator the estimator is not widely used, and other selected inver-



sion techniques are sometimes preferred. The very low memory requirements
and the relatively easy implementation make it still attractive, and we are going
to show an innovative implementation further in this document.

This work is divided into three parts. The first (Part I-Selected inversion|
introduces the sparse factorization process, the selected inversion
problem, and the algorithms for the evaluation of the diagonal of the inverse,
focusing on the Takahashi’s formula. This is followed by some probabilistic
and stochastic background for the formulation and study of the Hutchinson’s
stochastic estimator. Then, we propose a parallel version of the Takahashi’s
approach, especially designed for large-scale sparse matrices, and based on the
distributed Schur-complement computation. We conclude the first part with the
outline of a parallel, stencil-based, matrix-free formulation of the Monte Carlo
estimator.

In|Part II-High-performance computing selected inversion, we overview some
of the most diffused state-of-the-art solvers used for selected inversion, and re-
view some of their applications. We complete the section with a set of node-level
performance tests comparing two of the most used solvers, PARDISO [[Kuzmin
et al., 2013]] and PSellnv [Jacquelin et al., [2016]], analyzing their behavior on
a dataset of sparse and dense matrices.

Finally, in [Part III-Selected inversion applications, we present two appli-
cations of the algorithms created in We include the parallel Takahashi’s
method in a framework for the maximum-likelihood estimation of parameters in
large-scale genomic prediction models; then, using the highly scalable, stencil-
based, matrix-free stochastic estimator for the diagonal of the inverse, we eval-
uate the diagonal of the non-equilibrium Green’s function matrices in nanoelec-
tronic three-dimensional device simulations with open boundary conditions.

The main contributions of this work to the existing literature are listed here
(the order does not follow the order of the chapters).

* The design of a parallel, scalable, multinode Takahashi’s approach suit-
able for the selected inversion of large-scale dense matrices with a large
sparse block (chapter 2), based on the distributed computation of the
Schur-complement and the selected inversion of the sparse submatrix.

* The study of the parallel performance of the scalable Takahashi’s frame-
work through weak-scaling and strong-scaling tests performed on up to
to 400 nodes on a Cray cluster (chapter 6)), and its efficiency on large-
scale genomic predictions datasets in the average-information maximum
likelihood optimization structure (chapter 7).



* The creation of a parallel, scalable stochastic estimator for the diagonal of
the inverse of large sparse matrices with stencil-based structure, designed
on top of a matrix-free preconditioned conjugate gradient (chapter 3).

* The analysis of the estimator’s space parallelization, its scaling perfor-
mance on up to 1024 tasks on a Cray cluster, and its validation for the
evaluation of the diagonal of the retarded Green’s function in a nanotran-
sistor simulation problem (chapter 8]).

* A comparative study of the scaling achievements of the state-of-the-art
selected inversion solvers PARDISO and PSellnv (PEXSI) and their node-

level performance on a set of sparse/dense matrices (chapter 5)).
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Chapter 2

Factorization based selected inversion

In this chapter, we are going to introduce the selected inversion process and
analyze the first class of methods called “factorization based” or “direct” meth-
ods. Such algorithms are based on the LU factorization of the matrix, therefore
it is useful to first recall the standard linear algebra behind it, i.e., the Gaus-
sian elimination. In the first part of the chapter we are going to introduce the
formalism necessary to describe the factorization of a general matrix and the
definition of a selected inversion process, followed by the reformulation of the
factorization algorithm for sparse matrices based on the so called “Takahashi’s
formula”, a selected inversion recursive method formulated by Takahashi et al.
[1973]]. Finally, a parallel, highly scalable version of the Takahashi’s formula
will be presented in section [2.7}; this approach, based on the parallelized com-
putation of the Schur-complement, will be shown to be effective on a widely
used category of sparse matrices. The scaling of the parallel method and its
performance on a real-life application will be shown in parts[[I] and [ITI, respec-
tively.

2.1 LU factorization and inversion algorithm

As a first step towards the formulation of a direct selected inversion algorithm,
we first recall the linear algebra behind the LU factorization of a matrix. A
square, n x n matrix A over K (K indicates R or C) is invertible if and only if it
is row-equivalent (or column-equivalent) to an identity matrix of size n. This
means that A can be reduced to an identity matrix, I, by multiplying it on the
left by a sequence of elementary matrices. Defining r;, r;, and ry to be the ith,
jth, and kth rows of A, 1 < j,k < n, j # k, I the identity matrix of size n and
ej,ex its jth and kth columns, and fixing 0 # a € K, the allowed elementary

9



10 2.1 LU factorization and inversion algorithm

operations and associated elementary matrices are three:

Pj;: rows r; and ry are swapped (r; <> ry);

Sj(a): row r; is scaled by a factor a (r; < ar;);
T;x(a): row r; is added a multiple of row ry (r; « r;+ar).

It is easily verified that P;, is a permutation of I where only the jth and kth rows
are exchanged, S;(a) is obtained by multiplying by a the jth diagonal element
of I, ie., Sj(a) =1+ (a— 1)e]-ejT, while Tj(a) is computed from I, setting
the (j,k)th entry to a, ie., Ty(a) =1+ aejekT. From their definitions, it is
straightforward to prove that all the elementary matrices are nonsingular and
their inverse are still elementary matrices.

Theorem 1 (Inverse of elementary matrices). All the elementary matrices are
invertible and the inverse are still elementary.

Proof. It is easy to verify that

Pyt =Py,
Sj(a)_l = Sj(a_l)a

Tjk(a)_l = Tjk(_a) .
O

The process of pre-multiplying A by the elementary matrices just introduced
describes the Gaussian elimination process, transforming A into an upper trian-
gular matrix U. There exist, then, p > 0 elementary matrices M;, ..., M, such
that

MpMp—].'..MZM]. A: U (2.1)

From this, we can define

- -1
L=( 1 Mk) =[] m (2.2)
k=1,....p k

to factorize the A into the product A= LU. Notice that if no permutation matrix
is involved, L is still lower triangular; on the other hand, in the general case, the
factorization can be achieved in the form PA = LU. For the sake of simplicity,
we can assume no pivoting to be needed, resulting in the condition P = I.



11 2.2 Complexity of the inversion algorithm

Recalling now that the invertibility of A allows the Gaussian elimination to
be pushed forward in order to transform matrix U into an identity matrix I,
there exist £ > 0 elementary matrices M,,,..., M, such that

(MP+EMP+£—1 . 'Mp+1) (MPMP_]- . 'M2M1) A - I . (2.3)

Given the factorizion A = LU, the reduction to the identity through the Gaussian
elimination described in (2.3)) entails the same result obtained by the solution
via forward and backward substitution of n linear systems of the form

Lka == ek (24)

where x, are the columns of A™'. Fixed a value for k, the system is solved in
two stages: first applying a forward substitution rule to the lower triangular
system Ly, = e, and then applying a backward substitution process to the
upper triangular one having y, (just computed) as a right-hand side, Ux; = y,.
In short,

{ Ly, =ex (2.5)

Ux, =y

2.2 Complexity of the inversion algorithm

In order to evaluate the complexity of the inversion algorithm, it is useful to
split the inversion process into two parts: the first being the reduction process
from A to the upper triangular form (2.1]), and the second being the reduction
from upper triangular to diagonal (the identity).

Theorem 2 (Complexity of the inversion algorithm). The complexity for the in-
version of an n x n invertible matrix is 0 (%n3) floating point operations.

Proof. We can split the computation of the inverse into two parts: and (2.3).
Every step of the first part (reduction to upper triangular through Gaussian elim-
ination) requires the elimination of all the entries below the diagonal of the
original matrix and the scaling of the diagonal itself to obtain a unitriangular
matrix U. This means that, for every k =1,...,n, there is the need to compute
k additions and k multiplications by k — 1 numbers, yielding 2k(k — 1) opera-
tions, and giving a total of & (§n3) operations. The second part, analogously,
consists in a backward process in order to reduce the triangular matrix to lower
triangular, at the same computational cost. The sum of the two quantities gives
a total of @ (%n®) operations. O



12 2.3 Sparse Gaussian elimination and selected inversion

It is clear how such elevated computational complexity may lead to pro-
hibitive computing times. The asymptotic behavior we outlined in this section,
however, can be adapted to the cases where some of the floating point opera-
tions can be avoided in presence of null entries in A, first, and in its factors, later.
When A is sparse, in fact, the LU factorization and the inversion process can be
performed taking into account the respective sparsity patterns and using sparse
algorithms. In the rest of this document, we will consider sparse matrices and
discuss how both the time and spatial complexity can be reduced. Notice that
we do not explore spatial complexity, yet. Since the algorithms already intro-
duced do not take into account the sparsity, the memory required to store each
of A, L, U, and A™! is n? double precision numbers so far.

2.3 Sparse Gaussian elimination and selected inversion

In this section we finally give the definition of a selected inversion process
and formulate a “sparsity-aware” version of the Gaussian elimination. Given
a sparse, invertible, n x n matrix A with entries in K, we can give the following
definition.

Definition 1 (Selected inversion process). We define as selected inversion process
a procedure aiming at the computation or estimation of the entries of the inverse
of a given sparse matrix, avoiding the standard (dense) inversion process.

In other words, we call a selected inversion process any procedure able to
evaluate a subset of the entries of the inverse of a given matrix with a complexity
that is lower than the one computed in Theorem In details, considering
the set of the indices ¢ = {(i,j) for i,j =1,2,...,n}, we define the nonzero
pattern of A as the set A = {(i,j) s.t. A;; # 0}. A selected inversion process
computes the elements of the set

{aY; for i,j))es c #}, (2.6)

where the pattern . C _¢ describes the position of the desired entries, usually
& C . As an example, in many applications one only needs to compute the
diagonal of the inverse of A, hence the selected inversion pattern becomes

2=10,7),j=12,...,n}.

In order to approach the sparse selected inversion algorithms, it is use-
ful to consider the LDU factorization of A instead of the LU one. For an in-
vertible matrix A, from (2.1), U is an upper unitriangular matrix, while L is



13 2.3 Sparse Gaussian elimination and selected inversion

lower triangular but not unitriangular, since the elements on the diagonal might
different from 1. In order to make L also unitriangular, it is possible to set
D = diag(L;q, Loy, ..., L,,) and replace the diagonal entries of L with 1’s. Ma-
trix A is then decomposed in the product

A=LDU. 2.7)

We still suppose no pivoting is required. According to [[Takahashi et al., 1973,
given the LDU factorization of A, it is possible to rearrange the equation above
in order to obtain two expressions for its inverse. We denote X := A™! for
simplicity. Let us consider the formulas

{AX=I {(LDU)X:I {X =D 'L '+ (I-U)X
— = (2.8)

XA=1I X(LbU)=1 X=U'D'+X(I-1)

Let us consider now the rightmost part of and focus on the first identity.
We can see that the unknown, X, appears on boths sides of the expression. At a
first glance, this may look like an unnecessary complication, however, looking at
the expression in details, we see that this describes a recursion formula. On the
right-hand side, in fact, D"'L~! is a lower triangular matrix since D is diagonal
and L is lower triangular, while the inverse X is multiplied by matrix (I — U).
Being U unitriangular, the diagonal of (I —U) is null, hence the factor is strictly
upper triangular. Analogously, U"'D™! is upper triangular and (I — L) is strictly
lower triangular. From this, then, we can see that can be used to calculate
the entries of X recursively and the procedure

(X = (D' L) = (DL)y,

Xij:Z(I_U)ikaj: i=n—1,...,1, j>i

< i?o (2.9)
Xij:ZXik(I_L)kj, i=23,...,n, j<i

k<i
\ Ly;#0

fills both the upper triangular (second equation) and lower triangular part (third
equation) of X. Notice that the terms (U‘lD_l)ij do not appear in the third
equation because they are zero when j < i. Considering that if A is symmetric
then its factorization becomes A = LDL' and X is symmetric too, computing
the upper triangular part of X is enough for calculating the whole inverse: con-
sidering the second line of the and the fact that X;; = X;, the third part
becomes redundant.
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Looking at in details, we notice how some of the recursion steps can be
skipped: the addendsin ), . (I—U);X, j for which (I—-U)y; is zero are ignored,
and analogously for >, _. X, (I —L)y;. The complexity of the algorithm depends
strictly on the sparsity pattern of the factors A (L) + A (U), therefore a reduc-
tion of the fill-in entries appearing during the LDU factorization through the
application of reordering strategies on the columns of A is crucial. The sparse
recursion formula represents a great improvement with respect to the dense ap-
proach, providing a convenient approach to selected inversion for both memory
and computing time. Additionally, thinking ahead at the implementation, one
natural direction to follow for optimizing the performance is the formulation of
a block version, exploiting the computational performance of the dense linear
algebra libraries.

2.4 The block Takahashi’s inversion algorithm

We consider now a block decomposition of an invertible n x n matrix C. Here,
the integer subindices no longer indicate single entries, but blocks of entries.
From the studies on saddle point problems in [Benzi et al., 2005], assuming

that C is partitioned as
C= ( Cy Cp ) \E D) (2.10)

for compatible sizes of the subblocks C;;, we can decompose C as the product

ij>

C= A B _ Ly Un Up
E D Ly, 1 S
— ( Lll Ull Lll U12 )
LZl Ull LZl U12 +S
Assuming that the factorization A = L, U,; is known, we can compute the un-
known factors as Uy, = (L;) "B and L,, = E(Uy;)"". Analogously, they can
be expressed as the solutions of the linear systems L,;X = B and XU;; = E,

respectively. Finally, considering that S is the Schur-complement of Ain C, S
can be computed as

(2.11)

S=D—(EU,;")(L,;'B)=D—EA'B. (2.12)

This expression is intended to be well defined, hence A must be invertible, and
the product A!B is not calculated explicitly, but the corresponding linear sys-
tem is solved instead. The Schur-complement-based decomposition (2.11]) just
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presented provides an interesting expression for the inverse of C that can be
computed blockwise starting from the inverse of the Schur-complement itself.
It is reasonable to expect the inverse to be in the form

c1 c!
-1 __ 11 12
¢ ‘(6—121 s )

from which we can extrapolate the following:

(a) LUy €y + LU €y =1

(b) L, Up C_llz + LUy s =0 (2.13)
() Ly Uy €My + (L Uy +8)C71y =0 .
(d) LUy C g+ (L Uy +8)S7™1 =1

The identity matrices I and the null matrices O have the appropriate size. Equa-
tion (d) gives an expression for C™!,, = —U,;; *U,, S}, while C™!,, can be com-
puted from equation L;; *(b) — L,; '(c), and use it for comptuing C~!,;. The
final expression for C™! is then

A1'+XSly —xs!
cl= ( , (2.14)

N —Sty s

where X and Y are such that U, X = U;, and YL;; = Lo;.

The reason to prefer the block formula (2.14)) in place of the is the pos-
sibility to use level-3 BLAS (basic linear algebra subprograms) libraries [Law-
son et al., 1979], providing better performance than the elementwise opera-
tions. Notice that the block decomposition is rather common, and can
be obtained also from any sparse matrix by moving to its end the dense rows
and columns that C may present or by applying a reordering to its rows and
columns such that a domain decomposition-like structure structure is obtained:

Al Bl
Ay B,

AP BP

C1 C2 et Cp D

Here, the A;’s are n; X n;, D is np, x np, and Z]. n; +np = n; renaming

Al Bl Cl !

A= , B= : , and E = : s

Ap B, Cp
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we find again the structure depicted in (2.10). Such reordering can be found
for any matrix, as shown, e.g., in [Karypis and Kumar, 1998], and using, for
instance, the software METIS /ParMETIS and KaHIP [Karypis and Kumar, [2009;
Meyerhenke et al., [2015[]. We are discussing additional details about this and
the symbolic factorization phase in of this document.

2.5 Exploiting the sparsity of the blocks

Among the applications where the inverse of a matrix must be computed, an
expression for the whole inverse is usually not necessary, but only a limited
number of entries must be computed, e.g., the diagonal. These applications are
heterogeneous in nature, and span from portfolio management [[Tang and Saad,
2012] to nanoelectronic device simulation [Kuzmin et al.,|2013]] and genomic
prediction [Verbosio et al., 2017]]. Additionally, in all of the mathematical mod-
els considered, the original matrix, say C, is sparse or, at least, presents a large
sparse block A. For these reasons, we have developed an algorithm aiming at
computing the diagonal of C~! exploting both the Schur-complement decompo-
sition and the sparsity of A. First of all, in order to compute the diagonal of the
inverse, it is sufficient to compute the entries of the diagonal blocks in (2.14),
ie.,

-1 -1
blockDiag(C_l) = ( ATHXSTY = ) . (2.16)

Here, the sparsity of block C™';; = (A"} + X S71Y) should be preserved, there-
fore requiring A™! to be computed as a selected inverse. On the other hand,
since the Schur-complement, by definition, is dense, S~' must be stored as a
dense matrix unless the product A™'B in is calculated explicitly evalu-
ating a selected inverse of A and sparsifying both the computation of S and its
inverse, introducing an approximation error.

A sketch of the procedure for evaluating the (2.16) is described in Algo-
rithm |1} The workflow starts from the computation of the Schur-complement
(and its inverse). For performance, the linear systems designed for computing X
and Y (lines|[2|and 3)) should be solved using a sparse direct solver able to reuse
the LU factorization of A for the solution with many righ-hand sides. In order
to save both memory and computing time, an LU factorization of A is computed
and stored before addressing the two linear systems, then the stored factors are
used to solve both. As an example, PARDISO [[Kuzmin et al., 2013}; Petra, Schenk
and Anitescu, 2014; Petra, Schenk, Lubin and Gartner, [2014]] fits these require-
ments. On the other hand, since there is no need to reuse the original values
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of D, this block can be overwritten with the Schur-complement S, first, and its
inverse, later, in order to save memory (lines |4/ and following). Recalling the
requirement to keep the sparsity of block C™',;, function SELINV in line [7| eval-
uates a selected inverse of A, computing at least the entries belonging to A4 (A).
Finally, the selected entries of A™! are updated according to (line |§l)
Here, X(; , and Y ;) indicate the ith row of X and the jth column of Y, respec-
tively. Notice that the operator diag : [K™™ > M — diag(M) € K™],m € N,
used in line [11|extracts the diagonal of a given matrix as a vector.

Algorithm 1 Sequential Takahashi’s method for computing the diagonal of the
inverse.

1: procedure BLOCKSELECTEDINVERSION(A, B, E, D)

2: Solve for X the systemAX =B (<= X =A"!'B)

for (i,j) € A/ (A) do
(€M), i)y + X0y S7H Y )
10: end for
11:  d < (diag(C™yy), diag(C‘lzz))T > d contains the diagonal of C™*
12: return d
13: end procedure

3: Solve for Y the system YA=E (<= Y =EA™Y)

4: S<—D—EX

5: Compute INV(S) > Compute the inverse of S
6: Cc1l,«57!

7: A;,, < SELINV(A) > Compute the selected inverse of A
8:

9:

2.6 The selected inversion algorithm

In Algorithm |1}, the most expensive computational kernels are the selected in-
version of A and the computation of the inverse Schur-complement. These two
operations, however, present a set of shared sub-tasks that can be computed
simultaneously. First, computing the Schur-complement of A in C and, later,
the evaluation of the entries of the inverse, require the solution of two linear
systems (lines [2] and [3), both requiring the factorization of A. Second, the se-
lected inversion process in line|7|is as well based on the factorization of A. The
structure of the algorithm suggests then to reuse the factorization already com-
puted, reducing the computational time dramatically. This feature is already
implemented in different solvers like PARDISO, keeping a copy of the LU fac-
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READ_INPUT(A,B,D,E);
[L,U] = FACTORIZE(A);

v
v
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Ci1 = Ajpy + X IW(S) Y

Figure 2.1. Sequential Takahashi’s inversion workflow.

tors of A, so that they are computed once and for all, until manually released by
the user. The factorization hence is used to first solve the two linear systems,
then to compute the selected inverse of A, and finally to evaluate the Schur-
complement. We illustrate the complete workflow in Figure

Notice that the Schur-complement is a dense block, hence the inverse S}
should not be computed as a selected inverse. The inversion process requires
then to use linear algebra routines optimized for dense operations, i.e., LAPACK
libraries [[Anderson et al., 1999]]. In several cases, block D has a size consid-
erably smaller than A, allowing an agile treatment of the Schur-complement
without essentially altering the complexity. In a more general setup, how-
ever, this is not true and it is very important to design a strategy to tackle the
Schur-complement calculation at a reduced computational cost. Looking closer
at (2.12)), it is possible to decompose the computation of S in subblocks, in-
dependent of one another: each entry of S is computed considering different
rows and columns of B and E separately. In particular, as depicted in Figure|2.2)]
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provided that A is shared among all the computing entities, each of them can
compute a single entry (S);; by considering only E; y and A" B ;). This property
suggests to implement a parallel computation of the Schur-complement, which
is the base of the parallel Takahashi’s selected inversion we will present in the
following chapter.

S E A B

) I

Figure 2.2. Schematic representation of the Schur-complement computation.
Element S;; is the scalar product of E; .y and A_lB(,,j).

2.7 The parallel Takahashi’s method

For application-related reasons described in [De Coninck et al., 2014], we also
add the condition that C is symmetric, i.e., both A and D are symmetric and E =
B'. The parallel Takahashi method is described in Algorithm [2, and combines
the Takahashi’s formula with the Schur-complement decomposition (2.11)
allowing the treatment of large-scale matrices through the distribution of its
blocks among a set of processes. The computation of the Schur-complement
and the update of the selected inverse are performed in parallel, and the results
are gathered on a root process. The algorithm performance is boosted by the
usage of optimized linear algebra and communication libraries and the MPI
(message passing interface) paradigm [Snir et al., 1998]].

2.7.1 Matrix representation and compression

Considering a matrix C, decomposed in blocks as in (2.10), the first core as-
pect that the parallel Takahashi’s algorithm must address is the distribution of
such blocks. The distribution is made according to the standard defined by the
BLACS (basic linear algebra communication subprograms) libraries, which are
the communicaion layer of ScaLAPACK (scalable linear algebra package) and
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Algorithm 2 — Parallel Takahashi selected inversion

1: Allocate a p x p MPI process grid, ¢
2: Divide D into p? blocks, D;; >1<1i,j<p,of size 2 x
3: Divide B into p blocks, B; >1<1i<p, of size n, x %D
4: parfor (i,j) € ¢ do (in parallel)
5: SEND(i, B;) > Send the blocks of B to the respective rows of ¢
6 SEND(i, j, D;;) > Send the blocks of D to the respective processes of ¢
7 D;; < D;;—B;'A'B; > Compute the Schur-complement
8: end parfor
9: D« D! > on each process, using BLACS
10: A;,, < SELINV(A) > on the root process, using PARDISO
11: parfor (i,j) € ¢ do (in parallel)
12: Y; < SOLVE(A, B)) > Solve for Y; the system AY; = B;
13: if i # j then
14: Y; «— SowEe(A', B)) > Solve for Y; the system A'Y; = B;
15: end if
16: end parfor
17: Ainv — Ainv + Y{r D Y]

18: d « (diag(Ainv)’ dlag(D))T

PBLAS (parallel basic linear algebra subprograms) libraries [Blackford et al.,
1997; |Choi et al., 1996]]. For blocks D and B, which are in general dense for
application-related reasons, a cyclic distribution scheme is adopted; we analyze
the details of the matrix distribution in the following section. Block A, instead,
is entirely allocated on the local memory of each process: storing A on every
local memory is in general possible since the sparsity of A allows it to be repre-
sented in CSR (compressed sparse row) format with a considerable amount of
memory saved with respect to the dense version, requiring the allocation of n?
numbers. Instead of storing all the n? entries of the matrix, three vectors are
used: one for the nonzeros, one for the column indices of the nonzeros, and one
for the indices pointing at the first nonzero of each row. We are presenting more
implementation details about the matrix distribution and storage in

2.7.2 The parallel Schur-complement

Let us consider p?> MPI processes arranged in a virtual 2D square grid of size
p % p, such that each of them can be identified by the couple (i, j) for some
0 <1i,j < p—1. This setup improves the efficiency of operations and communi-
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cations on a particular distribution scheme we will analyze at a later time. The
goal of the parallel Takahashi algorithm is to make the processes operate inde-
pendently on matrices of size much smaller than C, and at the end of the compu-
tation gather the results on the master process. In order to proceed accordingly
to the parallel Schur-complement computation presented in Figure block D
will be decomposed both row-wise and column-wise into as-square-as-possible
patches, while B will be decomposed column-wise into vertical strips. The de-
tails about the memory distribution are presented in Section

Let us now analyze the details of the parallel algorithm (Algorithm [2)). The
block subdivision of matrices D and B (steps [2] and |[3) is crucial. For the sake
of simplicity, we assume at the moment that both n, and n; are multiples of p,
however we will analyze a general case in section The loop in lines [4] to
is the core of the parallel implementation: each process, identified by its coor-
dinates in the grid, (i, j), can compute its own piece of the Schur-complement
D;; independently from the other processes. Recall that, as an exception to the
usual notation, D;; does not indicate a single entry of D, but a block of entries.
Analogously, by B; and B, in line [7| we indicate the blocks composed by the
columns of B and B" and, in the same fashion, blocks Y; and Y," are the stripes
composing the solution of the system AY = B and A'Y = B. Notice that Y; and
Y," are computed by p processes in parallel (line ; the reason why only p
processes, and not p?, are involved in this computation lies in the fact that the
distribution of B is done according to a 1D cyclic distribution (and not 2D). Fi-
nally, in the second to last line the entries of A~ are updated according to the
rule defined in the sequential case (Algorithm line |§]) Since A™! is computed
as a selected inverse, only the nonzero entries are actually updated, e.g., the
diagonal.

In we are going to present the performance of the parallel Taka-
hashi’s approach in the computation of the maximum-likelihood estimators in
a genomic prediction framework.



22

2.7 The parallel Takahashi’s method




Chapter 3

Stochastic estimation for the diagonal
of the inverse

In this chapter we discuss a technique to estimate the diagonal of the inverse
using a stochastic estimator. Such technique can be used to compute the se-
lected entries of the inverse up to some tolerance greater than machine preci-
sion. Applying this method can be useful to calculate the first decimal digits of
the diagonal entries in an agile way, avoiding any fill-in and using optimized
Krylov-subspace methods. We first recall how to design the estimator and its
properties, then we describe an iterative algorithm that estimates the diagonal
of the inverse by generating random samples. An application of the algorithm

follows in

3.1 Unbiased estimators for diagonal and trace

In order to introduce the estimator, it is useful to recall some notations and
definitions from the probability theory.

Definition 2 (Probability and statistics notations). We introduce the following
simplified definitions and notations that are going to be used throughout the whole
document.

(i) We say that a variable x is distributed as another variable y (and we indicate
itas x ~ y) if the domains of x and y are the same and if P(x = w) =P(y =
w) for any valid choice of w in the domain.

(ii)) We say that a variable x follows the probability distribution 2 (x ~ &) if
the probability distribution of x coincides with 2.

23
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(iii) We say that p > 1 variables x,, ..., X, are independent and identically dis-
tributed (and we indicate it with “i.i.d.”) if x; ~ x; and x; is independent
from x; (x;ALx;) forall 1 <1i,j <pandi#j.

3.1.1 Estimator for the trace of a given matrix

Let now A be an n x n (sparse) matrix and e, for k = 1,...,n the columns of the
identity matrix of the same order, I. It is straightforward to see that it is possible
to extract the vector containing the diagonal elements of A and, consequently,
the trace of A, according to the formulas

n

diag(A) = Z (ekTAek) e, and
= (3.1)

n

tr(A) = Z ekTAek .

k=1

In (1990, |[Hutchinson| developed an estimator for the trace of A of the form 7 =
u"Au, where the random vector u has length n, zero mean and fixed variance.

Theorem 3 (Estimator for the trace [Hutchinson, [1990]). Given a square, n x n
matrix Aand {v;}_, i.i.d., u = (vy,...,v,), such that E(v;) = 0 and V(v,) =
for any i, let us consider the scalar T = u' Au. Then, such scalar is an estimator
for tr(A) and

E(t) = o?tr(A).

Proof. By rewriting the estimator, we can see that

T= E ua;u; = E a;u;u;

i,j=1 i,j=1
_Zauu +Zal]u +Zauulu]
i<j i>] (3 2)
—Zauu + - Z a;u;l; +aﬂu]u)
1#1

—Zauu + = Z(au+aﬂ)ulu]

I#J



25 3.1 Unbiased estimators for diagonal and trace

Hence the expected value is

- 1
]E(T) =K (Z Clii ul-z + E Z(aij + aji)uiu]')

i=1 i#]
n
ZE(Z%‘ u’+ Z (aij+aﬁ)uiuj)
i=1 1<i<j<n
n
3.3
= Zaii E(ulz) + Z (aij + aji) E(uiuj) (3.3)
i=1 > 1<i<j<n
=V(u;)
n
:Zaiiv(ui)'f‘ Z (a;; +a;;) E(uu))
i=1 v 1<i<j<n S
=o2Vi == =0 since i#j
=o?tr(A).

O

From here, it is clear how a clever choice for the random samples could
cancel the bias. It is easily proven that the Hutchinson’s estimator for the trace
of A, 7, defined as follows is unbiased and has minimum variance:

Ty =u'Au such that
u' =(vy,...,v,), {v;};lL and

3.4)

Theorem 4 (Unbiased estimator for the trace). The Hutchinson’s estimator Ty
defined in (3.4) is an unbiased estimator for tr(A).

Proof. This follows immediately from Theorem 3|and the fact that for the Hutchin-
son’s estimator V(v;) = E(v,%) =1 for all i. H

Let us now focus on the variance of the biased estimator 7. We first observe
that it can be seen as the quadratic form associated to matrix A applied to vector
u. Calling

2,:[R">x — x'Ax € R],

we can write T = £,(u). The following result provides an expression for the
variance of a random quadratic form associated with A.
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Theorem 5 (Variance of the trace estimator). Given a square, n X n matrix A=
(a;))ij andu ~ (vy,...,v,), {u}; iid, p == E(v,*) < oo for k =1,2,3,4,
and £, the quadratic form associated to A, define T = 2,(u) = u' Au. Then,

V(T) = (g —3p2) D a2 + (u2 — D tr(A) + 22 tr(A2). (3.5)

Proof. We first observe that the quadratic form associated to matrix A is equiv-
alent to the quadratic form associated to %(A +AT), so we can assume A to be
symmetric. Now, in order to compute V(7), it is necessary to compute E(7?)
first:

n n
2
E(t ):E( Z aijakluiujukul) = Z a;;aBluuuy]. (3.6)
i,j,k,1=1 i,j,k,I=1

Given the independence of the v,’s and the zero mean, we can compute the
expected value in formula (3.6]) quite easily as

u, if i=j=k=1,
Eluuuul=4ul ifi=j#k=1lVi=k#j=lVi=l#k=j,. (3.7)
0 otherwise

From this, we rewrite (3.6) as

E(T2)2M4Zai2i+H§Zaiiakk+.ugz a;; ]1+:U’zzalkakl

i i#k i#] 7k (3.8)
= M4Zai2i +M§[Zauakk +2Z dij ]l:|
i i#k i#

Now, it is clear how the first term in the last square bracket can be rewritten as

2 :aiiakk = E :aiiakk_ E :aiiaii

i#k ik i

= tr(A)* — Z a’,

i

while the second term is

; 54 Z a;a; Zaﬁaﬁ
—ZZ o= 20}
—Z(B =2
= tr(AZ) > a2 :
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Finally, replacing these two quantities in (3.8) and subtracting E?(7) = tr(A)?,
we obtain (3.5)). O

From the previous theorem, considering now the v,’s such that u, = o? and
u, = o, we can rewrite (3.5) as

V(1) = (0% = D) tr(A + 20%(tr(A%) — > a?). (3.9)

Theorem 6 (Variance of the Hutchinson’s estimator). The Hutchinson’s estima-
tor’s variance is
. 2
V(ty) = 2||A—Diag(A)|l; .

where Diag(A) is the diagonal matrix having the diagonal of A as entries.

Proof. When the {v,}; are chosen according to the definition (3.4), we have
02 =1 and from (3.9) the variance becomes

V(1)) =21tr(4>)—2 > a? =2||A—Diag(A)|I?, (3.10)
minimizing (3.9)). O

Given the fact that it is unbiased and has minimum variance, the estimator
can be evaluated as the sample mean of a sufficiently large set of samples de-
signed according to the definition of u. Considering s i.i.d. vectors v, ~ u for
k=1,...,s,

S
tr(A) ~ % Z Vi AV . (3.11)
k=1

This property is described in [Bekas et al., 2009; Tang and Saad, 2012]]. For
the arbitrary choice of A, applies to any matrix, even to its inverse A™';
hence, in the following sections, we are going to use it for the computation of
both the trace and the diagonal of an inverse matrix. We will also discuss a
strategy to reduce the computational cost of the inversion process, choosing an
appropriate evaluation strategy for the samples.

3.1.2 Unbiased estimator for the trace of the inverse

The evaluation of the entries of the diagonal (3.1)) can be specialized for the
computation of the diagonal of the inverse diag(A™!) = (6,,...,6y). If A lis
known, one simply needs to apply the (3.1)), giving

5]( = ZekTA_l €k -

k=1
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This formula, however, would obviously be as expensive as the dense inversion
process. We observe that the computation of the whole inverse can be avoided
by solving a linear system, since e,' A'e, can be computed equivalently as
ey ¥, and y, = Ale;, < Ay, = e,. The strategy to be adopted becomes
then

n
O = ZekT Yir Where Ay, =e¢e;.
k=1
Here, the linear systems Ay, = e, are computed in several ways. A straightfor-
ward strategy would be calculating the solution of the n linear systems using
the LU factorization of A, but this would give a computational complexity equiv-
alent to the dense inversion. In order to design a selected inversion approach
based on this idea, it becomes therefore necessary to reduce the computational
burden of the problem; in order to do so, we consider two lines of action:

1. The replacement of the direct method for the computation of the y;’s with
an iterative method, e.g., a Krylov-subspace iteration, so that both the
execution time and the memory requirements are reduced. The comput-
ing time can be sensibly cut down by choosing an appropriate tolerance,
and trading some of the accuracy for a quicker solution. On the other
hand, independently from the tolerance, the memory remains modest,
since the original matrix is never modified and no fill-in entries are gen-
erated. While the choice of the tolerance for the method is in principle
a complex issue and may depend on the structure of the linear system, it
could also possible to precondition the system through, for instance, an
incomplete LU factorization [Bollhofer et al.,|2019]] in order to reduce the
number of iterations.

2. The reduction of the number of linear systems to be solved from n to a
sensibly smaller number, say, s < n, together with formulating a process
to extract “enough” information from the estimator. The latter is a delicate
point and is strictly related to the design of the stochastic estimator 7.

Considering the first idea, one could approximate the diagonal of the inverse of
Aas

diag(A™") ~ AR
kzzl:( ‘ k) ‘ (3.12)

Krylov

where y, ~ A'e,
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and the methods used to compute the y,’s can be heterogeneous, e.g. conjugate
gradient [Golub and Van Loan, 2013, Chapter 11] for symmetric positive def-
inite systems or others (MINRES [Paige and Saunders, (1975], GMRES [Saad,
2003]) for more general matrices. In addition, we can combine with
the second idea and reduce the number of systems to be solved. Considering
method to estimate the diagonal, in fact, one may reduce the number
of right-hand-sides to some value s < n, such that the trace of A™! can be esti-
mated correctly, provided that the random samples are generated accordingly.
The final expression for the estimator for the trace becomes then

S

_ 1 _
tr(A 1) A ; Z VkT(A lvk)

X b (3.13)
= — Z v X, where Ax, Y Vi -
s
k=1

3.2 Unbiased estimator for the diagonal of the inverse

From here, we extrapolate a formula for the diagonal of the inverse diag(A™")
by replacing the inner products v, " x; with Hadamard (elementwise) operations

© :((al,...,an), (B4, - ..,ﬂn)) — (alb’l, . ..,anﬁn) and

@:((al,...,an),([jl,...,[jn))»—>(%,...,%), a.,0# By €K, Vk.

As discussed in [[Bekas et al.,|2009, equation (3) ] and [Bekas et al.,|2007, section
2.1], an estimator d, for the diagonal of A is computed as

C/i; - (Z Vk @Avk) Q@ (Z Vk ®© Vk) . (314)

k=1 k=1

Combining this with the estimator for the trace (3.13), we can replace the vec-
tors Av,’s with the x;’s previously defined and design an estimator for the dia-
gonal of the inverse, d, in the form

d= (Zszva)xk) @ (ivkcavk) . (3.15)

k=1 k=1

Looking closer at the quantity in the square brackets, one can see that it can be
interpreted as an iterative process. Starting from a null vector as initial guess
(k = 0), at every iteration for k > 1, the previous estimation for diag(A™) is
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Algorithm 3 . Stochastic estimator for the diagonal of the inverse of an invert-
ible matrix.
Input: matrix A, number of samples s, accuracy €
Output: approximate diagonal of the inverse d
q < (0,...,0)
r<—(0,...,0)
fork=1,...,sdo
Vi <~RAND_VECTOR(n, 0, 1) » generate random vector v, (mean 0 and
variance 1)
X, < KRYLOV_SUBSPACE(A, Vi, €) b solve the linear system Ax; = v, up
to accuracy €
q < g+ Vv OXy
re<r+v,0v
end for
d—qor

Wb

a

v ® N

summed with the contribution given by the vector x,, i.e., the solution of the
linear system Ax;, = v, for a new random sample v,. The contribution added
is the elementwise product of the solution and the random sample, weighted
according to the entries of the sample itself. Starting from two initial values
q©® =(0,...,0)and r@ =(0,...,0), then, we can write

qPW=q* Y4y, 0x, 1<k<s
rO =D yy oy, 1<k<s . (3.16)
d=q¥ or®

The essential process is described in Algorithm|3] First, two null n-vectors, g and
r, are allocated. Then, at each iteration, a random vector with zero mean and
unitary variance, v;, is generated, and the linear system Ax; = v, is solved using
an iterative Krylov-subspace method (lines[4/and[5). The iteration is completed
(line[6) updating each entry of g by adding to its value the corresponding entry
of the solution of the linear system weighted by the corresponding entry of
vii ¢ =q' +x,vi, i =1,...,n. Notice that the update of r (line [7) simply
consists in adding to each entry of r the square of the corresponding entry of
vie r'=r'+(v))? i =1,...,n. We obviously assume that all the operations are
computable, hence that none of the entries of v, are ever zero during the whole
process. Given the independence of the samples, in case of a null entry, we can
simply discard the sample and proceed with the generation of a new one.
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In case that the Hutchinson’s estimator is used, the v;’s are generated accord-
ing to definition (38.4). The expressions for computing g and r then is simplified
and becomes

q' =q' +sign(v)) x}
{ri =ri+1 ’

giving r = (s,s,...,s) at the end of the s iterations. This means that each entry
of d, computed as d' = g'/s, will contain the sample mean of the weighted
values of x;, where the weights are either +1 or —1 with probability %

In the following sections we describe a matrix-free version of the algorithm
for the computation of the diagonal of a sparse matrix that can be described as
a stencil. The Krylov subspace method will be formulated keeping the matrix
implicit, reducing the memory requirements and allowing the parallelization of
the iterative method.

3.3  Stencil-based formulation

In this section, we extend the stochastic estimator introduced before and apply
it to the problem of estimating the diagonal of the inverse of a sparse matrix.
We design a framework for a stencil-based, matrix-free approach, where we
reformulate Algorithm [3| keeping the original matrix implicit, and computing
the solutions of the computational kernel, i.e., the Krylov-subspace iterations,
using stencil operations (for more details about stencils, refer to, e.g., [Saad,
2003, Section 2.2 and Section 10.3]).

3.3.1 Stencil-based matrix and vector operations

Assuming that the structure of the matrix whose diagonal must be estimated
can be described as a stencil, we can translate the stochastic estimation algo-
rithm introduced in the previous sections. The pivotal assumption behind such
reformulation is the usage of a Krylov-subspace iteration method to solve the
linear systems in (3.12). Krylov-subspace methods are in fact based solely on
four types of operations that are vector sum, scalar-vector product, (vector-
vector) dot product, and matrix-vector multiplication. The first three are ele-
mentary operations that can be performed directly on any data structure, while
the last, matrix-vector multiplications, can be effortlessly translated into ele-
mentary stencil operations keeping the matrix actually implicit and never build
it nor store it. This key property for the matrix-vector operations can be ex-
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Figure 3.1. Discrete 3-dimensional grid with 5 x 5 x 5 points.

ploited only if the nonzeros of the matrix describe a stencil-structured matrix.

Definition 3 (Stencil-structured matrix). We say that a matrix is stencil-struc-
tured if there exist a d-dimensional stencil (d > 1) and a function called “reshape
function”, such that (i) the reshape function is invertible and maps any vector to
a d-dimensional discrete domain, e.g., a regular grid, and (ii) any matrix-vector
product can be expressed by applying the stencil to the vector reshaped as a discrete
domain through the reshape function, and finally reshaping the resulting domain
back in vector form.

We consider a three-dimensional, n x n x n regular discrete domain 2 with
N = n® nodes (Figure , an N x N sparse matrix A, and a vector b € KV.
We indicate the nodes of Q with p;; for 1 < i,j,k < n, and with a;; and f;
for 1 <1i,j < N the entries of A and b, respectively. The structure of 2 can be
intended to be the domain of a discrete scalar function f of three variables by
describing the image of Q as a grid of n x n x n values

F ={fix=fpij) €K, 1<14,j,k <n}.

We first observe that the nodes in 2 can be labeled using a sequential index in



33 3.3 Stencil-based formulation

29 c R5><5

Figure 3.2. An example of the reshape operator (3.18), describing a bijection
between the points of an n x n grid and the vectors of R™.

a column-wise fashion, i.e., we can map it to an N x 1 vector

) P11 x?! P12 7 X Pinn N
X P11 x? P21 7 X Ponn N2
Q— : S.t. ] ) ) . (3.17)
Y : : :
?IQN—/ pnll — Xn pn21 = in pnnn HXN

Equivalently, it is possible to relabel the elements belonging to any other grid
¢ as a vector g = (g',...,g" )T using the same technique. We define a reshape
operator as the inverse of (3.17), mapping the vectors of KV onto any grid

p: KN — 9 s.t.
forany v = (uy,...,uy) €K” and 1<k <N, (3.18)
p(u) =gP for some p.

Notice that operator is trivially invertible (we imply an obvious bijection
between any grid ¢ and the domain 2). See a small two-dimensional example
in Figure When matrix A is stencil-structured, it is possible to describe its
nonzero pattern via a stencil function,

fi 49— 7, (3.19)

where both ¢ and & are grids of scalars in K. The nonzeros in the jth row of
A describe the coefficients of the nodes involved in computing the value of the
stencil at node g’ (1 < j < N), i.e., if the kth entry in such row aj; is nonzero,
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Algorithm 4 . Stencil-based, matrix-free stochastic estimator for the diagonal
of the inverse.
Input: stencil function f,, number of samples s, accuracy €
Output: approximate diagonal of the inverse d

1: £ «ZERO_GRID(n,n)

2: & «<ZERO_GRID(n,n)
3: fork=1,...,sdo
4
5

¥, «<RAND_GRID _PLUS_MINUS(n, n) b generate random n X n grid ¥

Z. <KRYLOV_STENCIL(f,, ¥, €) > solve the stencil equation

falZ) =Y uptoe

6: £ «— £+ HADAMARD PROD(Z, %) > extend vector operation
q<q+Xx. 0V

7: R < R+ HADAMARD_ PROD(Y;, %) > extend vector operation
re—r+v.0v

8: end for

9: 9 < HADAMARD_ RATIO(L, %) > extend vector operationd «—q@r

10: d «<RESHAPE(9Z, n, 1)

then the value at node g* is needed in order to apply the stencil at g’ and its
coefficient in the stencil formula is a;;. The product of A with a vector v, then,
is computed as

y=Av <& y= (p_l o fu op) (v). (3.20)

Letus fixn>0,N =n?® and 1 <i < N. For any vector x € K" the i-th entry
of the product y = Ax is obviously y; = A; .,x. Using the reshape operator as
suggested in ((3.20), calling & = p(x) the reshaped vector, one can compute y;
by simply applying the stencil described by f, to the point identified by (j, k, 1)
in & (for some 1 < j,k,1 < n) and mapped to x; by p7%, i.e.,

Yi= [fA(p(x))]jkl .

Given the stencil function and the reshape operator, the design of stencil-
based Krylov-subspace method solves the linear system f,(Z) = % keeping
both the right-hand side and the solution shaped as grids, once that matrix-
vector products are translated into stencil operations. From here, it is possible
to reformulate Algorithm[3]in a stencil form, where the linear systems are solved
by replacing the standard Krylov-subspace method with its stencil formulation.
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Algorithm 5 . Stencil-based, matrix-free Conjugate Gradient method for a
generic stencil function f, and a regular discrete domain %.

1: function CG_STENCIL(f,, 9, tol, maxiter)

2: X < ZERO_GRID(n,n) > initialize solution
3: M < FILL_GRID(0, n, n) > fill grid .# with diagonal entry of A, 6
4 R — B—f4(X) > compute residual
5: p<0
6: for k = 1, ..., maxiter do
7: S — fA(2)
8: a«— p/ DOT(S,P)
9: > DOT sums all the entries of HADAMARD PROD(:,-)
10: X —X+a?P
11: Re—R—aS
12: % < HADAMARD RATIO(S, 4 )
13: > apply diagonal preconditioner .#
14: Prew < DOT(ZR,%)
15: ﬂ « pnew/p
16: P —U+PP
17: if DOT(%,%)/DOT(AB,AB) < tol*tol then
18: > use DOT to compute || - ||?
19: break
20: end if
21: end for
22: if k < maxit then
23: return &
24: else
25: Error, convergence not achieved.

26: end if
27: end function

A pseudocode is described in Algorithm[4] Supposing that in line[5|the conjugate
gradient is used [[Saad, 2003, chapter 6], inside this algorithm, at each iteration,
there is the need to compute two matrix-vector products that must be replaced
with an implicit matrix formula. As we mentioned before, the remaining ele-
mentary operations to be computed in the Conjugate gradient can be performed
as elementwise operations either on the grids or on the vectors, independently.
For instance, the dot product of two vectors shaped as grids ¥ and #/, indicated
as DOT(V¥,#), is computed as the sum of the entries of the Hadamard product
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o Y(¥) @ p Y (#). The point-wise product and ratio, instead, are indicated as
HADAMARD PROD and HADAMARD_ RATIO, respectively. An illustrative version
of the Conjugate Gradient in stencil form is presented in Algorithm |5, where a
simple diagonal preconditioner (Jacobi preconditioner) is included. Such pre-
conditioner is preferable since it does not change the nonzero pattern of the
matrix, preserving its stencil-structure. Additionally, applying the diagonal pre-
conditioner involves only the scaling of the stencil coefficients, which translates
into very simple changes in the stencil. Function KRYLOV_SUBSPACE in Algo-
rithm [4} line 5| can identify also other methods, such as biconjugate gradient or
GMRES [|Saad), 2003]], to be selected in case of non-positive definite matrices or
non-symmetric ones.

In Part [ITI) of this document, we are going to present an application for the
matrix-free, stencil-based stochastic estimator just designed, and create a frame-
work for nanoelectronic device simulation, where the design of nanodevices
requires the computation of the diagonal of the inverse of large, sparse, stencil-
structured, symmetric, positive definite matrices.
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Chapter 4

Selected inversion background

In this chapter we give an overview to some of the existing selected inversion
methods and describe briefly their main characteristics and application capabil-
ities. The field of sparse direct solvers is heterogeneous, however most of the
techniques involve graph partitioning strategies, supernode-based factorization,
and elimination tree parallelism. The following sections offer an overview of
PARDISO, PSellnv, MUMPS, FIND, and some of their applications.

4.1 PARDISO—Parallel direct solver

PARDISO is a high-performance, memory efficient, robust, and OpenMP-scalable
solver for sparse linear systems and selected inversion [Schenk et al., 2001;
Schenk and Gartner, |2004; [Schenk and Gértner, 2002]]. The approach imple-
mented by PARDISO to solve a sparse linear system is based on, first, the com-
putation of fill-in reducing permutation for the coefficient matrix and, second,
the factorization of the permuted matrix. The reordering strategy applied is
either the minimum degree algorithm [[Amestoy et al., 1996] or nested dissec-
tion [Karypis and Kumar, 1998, 2009]]. In order to exploit the computational
efficiency of the Level-3 BLAS libraries [[Lawson et al., 1979], PARDISO and
many other modern solvers are based on the supernode technology. Super-
nodes are groups of adjacent columns of a matrix sharing the same structure
in the L factor and presenting a dense triangular block right below the diago-
nal; any exchange of lines belonging to the same supernode does not affect
the fill-in, making the supernode mechanism widely used for designing pivot-
ing strategies. The supernode dependencies are described through a graph and
an elimination spanning tree is built in order to allow the parallelization of the
factorization phase and, consequently, the forward/backward substitution. The

39
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elimination tree is created through a depth-first search: starting from a root su-
pernode (n), at every step the algorithm selects the node among the neighbors
of (m) who are still unvisited and having the biggest index. When all the neigh-
bors of a node (k) are visited or no neighbor of (k) has larger index, then (k) is
a leaf, and the algorithm tracks back the last node having unvisited neighbors.
For more on this, refer to, e.g., [Bollhofer and Schenk, 2006]. In case the com-
putation of the LU factors requires pivoting, either a standard diagonal pivoting
or a 2 x 2 Bunch-Kaufman pivoting [Bunch and Kaufman, 1975 is used. The
latter, available only for symmetric matrices, is based on the comparison be-
tween the magnitude of the diagonal entries of the matrix and the off-diagonal
ones after each step of the Gaussian elimination. Depending on the result of
the comparison, either a single entry or a 2 x 2 block is picked as a pivot.

PARDISO implements different levels of parallelism. The first is related to
trees and is generally exploited by all the sparse direct solvers: since the elimi-
nation tree is processed from the leaves to the root (bottom-up) during the fac-
torization phase—and vice versa during the forward/backward substitution—,
any node can be processed as soon as its children have completed the elimina-
tion operations. This allows a partially parallel computation for the processes
as it is outlined in Figure for a small example. The second type of paral-
lelism exploit the presence of multiple processes to distribute the factorization
phase, assigning the supernodes to the different processes by applying a 2D
supernode-process mapping. The third and last type, finally, is called “pipelin-
ing parallelism” and is applied in combination with a supernode splitting strat-
egy designed to increase load-balance and the solver’s pipeline efficiency. The
splitting mechanism can be applied when a consistent number of processes is
available and consists in dividing large supernodes into smaller blocks called
“panels” which can be mapped onto the processes through a one-dimensional
distribution scheme. The size of the panels, of course, is kept large enough to
exploit the BLAS performance.

The pipelining parallelism can be implemented in a bottom-up traversal of
the tree starting by allocating a queue containing all the leaves of the tree, each
of them identifying one task to be completed, and reserving a group of pro-
cesses. Every process asks to be assigned to one of the remaining tasks in the
queue until all the panels are factorized, i.e., until the queue is empty. The pro-
cess removes the assigned panel from the queue and allocates a new, separate
queue of all the descendants of the panel’s supernode. As long as there are de-
scendants in the new queue, the process performs the factorization steps with a
right-looking strategy, then removes the descendant from the queue. This phase
requires communication between the processes and must be synchronized, since
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Figure 4.1. A small example of tree parallelism considering four supernodes
(made by columns {1}, {2}, {3}, and {4,5,6}) and two processes (P; and P,).
Supernode (D is eliminated by process P, while 3) can be treated by P,; as
soon as the computation on (I) is completed, P; can proceed to work on 2
in parallel.

the descendants of the panel may be assigned to different processes. After this
phase is completed, the internal factorization is computed—independently from
other processes—and the queue of tasks is updated with the panels that are go-
ing to be involved in the next step. Notice that, as soon as it completes the fac-
torization of a supernode, the process ends the right-looking phase by informing
immediately all the supernodes having a ancestor/descendant relationship with
the completed supernode: this allows other processes to start the factorization
on those supernodes right away.

PARDISO applications

PARDISO was designed for the parallel scalable solution of large sparse sys-
tems arising in semiconductor device and process simulations [Schenk et al.,
1999]. More recently, the Schur-complement feature of the solver has been
widely used in stochastic optimization [[Petra, Schenk, Lubin and Géartner, 2014;
Petra, Schenk and Anitescu, [2014]. The goal of the work is to design a scalable
framework for the solution of stochastic optimization problems coming from
the optimization of the USA power grids. The solution of such problems aims
at finding the optimal operation of the facilities producing energy at the low-
est cost and guaranteeing a reliable service. The inclusion of renewable en-
ergy as the wind, together with the impossibility to obtain complete and very
precise weather forecasts, introduces increased uncertainty in the model. This
results in larger optimization problems with a huge number of variables. The
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presence of both dense and sparse features in the linear systems involved, the
ill-conditioning of the interior-point matrices (excluding the usage of iterative
methods and forcing the adoption of a direct one), and the saddle-point struc-
ture of the matrices suggest a Schur-complement-based solution of the systems.
On a related topic, Kourounis et al.| addressed the solution of nonlinear op-
timal power flow problems through interior point methods. The modelling of
distributed storage devices carries important computational challenges from the
introduction of large scale renewables. The authors designed an efficient Schur-
complement-based approach exploiting the PARDISO properties, designed ad
hoc for the problem structure, several order of magnitude faster than the com-
petitors, and saving a significant amount of memory [Kourounis et al., | 2018]].

A second important PARDISO application is the non-equilibrium Green’s
Function (NEGF) formalism for nanoelectronic devices [Kuzmin et al., 2013]].
Recent advances in nanoelectronig device design require an effort to overcome
the difficulites in simulatin nanotransistors. From the first transistor created
in the late 1950s to the most recent ones, the size of the electrical compo-
nents reduced by a factor 10'°. The challenges of such a size reduction are
enormous and affect the whole industry, causing the producers to investigate
single-atom transistors. As a drawback, the ab-initio—i.e., without any sup-
porting experimental data—simulation of such tiny components would require
enormous computational challenges arising from the involvement of the density
functional theory framework. One of the most effective techniques is the NEGE
and is used to study the electronic and thermal properties of nanoscale tran-
sistors. In such framework, the computation of the so-called “retarded Green’s
function” is a selected inversion problem, where the diagonal of the inverse of
a large, sparse, structurally symmetric matrix is required. PARDISO has been
successfully used, showing excellent performance in the solution of realistically
sized examples. On a side note, in this work (chapter [8)), we are presenting
a matrix-free stencil-based framework for the stochastic estimation of the re-
tarded Green’s function; PARDISO will be used as a baseline for the evaluation
of the framework’s accuracy and time performance.

Finally, we mention an application of the parallel Takahashi’s approach (sec-
tion in genetics. In chapter [7| we introduce a scalable framework for the
treatment of sparse/dense datasets in genomic prediction, aiming at the stochas-
tic estimation of parameters for plants breeding. This genetic framework uses
both the Schur-complement computation and the selected inversion features of
PARDISO. The stochastic estimation process, in fact, requires the evaluation of
the diagonal of the inverse of a dense matrix presenting a large, sparse block.
The block structure of the data suggests the application of a block-based Gaus-
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sian elimination technique, where the selected entries of the sparse block—
computed by PARDISO—are used in the evaluation of the parallel version of
the Takahashi’s formula (section [2.7). The results proposed in [[Verbosio et al.,
2017] and [[De Coninck et al.,2016] show the good performance in the stochas-
tic estimation framework with considerable memory and time savings.

4.2 PSellnv—Parallel selected inversion

PSellnv [Jacquelin et al., 2016 is a parallel framework for the selected inversion
of sparse matrices, and is the parallel implementation of Sellnv, an algorithm
for the extraction of selected entries of the inverse who is in turn built on top
of an efficient left-looking supernodal LU factorization [Lin et al., 2011]].
PSellnv is based on the block-formula for the LU factorization (2.11]), and
can be interfaced with any supernodal factorization provided by different soft-
ware, such as SuperLU and SuperLU_dist [Demmel et al., [1999; Li and Dem-
mel, 2003]]. Analogously to PARDISO, an elimination tree is created and it
is traversed bottom-up to complete the factorization of the single supernodes.
PSellnv, however, does not include any supernode-splitting technique, but aims
at the distribution of the LU factors and entries of the inverse to a number of
processes through MPI directives. The MPI processes are arranged in a virtual
rectangular grid, and the factors are distributed according to a 2D block-cyclic
pattern (see, for more details, Figure and [Blackford et al., 1997]]). The
tree parallelism described in section [4.1] is exploited by PSellnv, however, the
2D cyclic distribution of both the factors and the inverse entries may prevent
independent tasks to be executed completely in parallel. For this reason, the
authors aim at the reordering of the computational tasks and the overlapping
of computation and communication. The communication scheme is relatively
simple: a process owning a diagonal block of a given supernode of the L fac-
tor must broadcast said block to all the processes in the same column of the
virtual process grid who own a block of the same supernode. This is necessary
to complete the factorization phase of the left-looking strategy. For the com-
putation of the entries of the inverse, instead, the communication pattern is
slightly more convoluted. Each block of the L factor must be shared with all
the processes within the same grid column of processes who own a block of
the inverse belonging to the same supernode. Since there is no guarantee that
the sender and the receivers belong to the same communication group, this
strategy is implemented using a series of point-to-point MPI send/receive calls.
From the node-level point of view, we will show in the following chapter that
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this communication strategy causes significant overhead and latency.

PSellnv applications

Since both Sellnv and PSellnv were designed for the treatment of electronic
structure problems, they have been tested [Jacquelin et al., [2018]] on matrices
arising from (discontinuous Galerkin) density functional theory software such
as [Lin et al., 2012] and [|Soler et al.,[2002[]. The performance of the implemen-
tation of PSellnv—available in the PEXSI solver [Lin et al., 2009, [2013[]—will
be tested against PARDISO on selected inversion problems, in the following
chapter.

4.3 MUMPS—Multifrontal massive parallel solver

Amestoy et al. have developed a multifrontal massively parallel solver (MUMPS),
based on the simple assumtption that, given the LU factorization of any matrix,
in order to compute the (j, k)th entry of the inverse, one simply has to extract
the jth entry from the solution of the linear system [Amestoy et al.,[2001]].
Exploiting the sparsity of the right-hand side, i.e., the kth column of the iden-
tity, MUMPS applies a “pruning” strategy on the elimination tree [[Amestoy et al.,
2015, section 2.2]. Such strategy is based on the fact that, in order to compute
the (j, k)th entry of the inverse, the only nodes of the tree to be traversed are
the ones on the paths from node (§) to the root and from (k) to the root. By do-
ing so, the nodes which do not belong to these paths are not visited (“pruned”
from the tree). As discussed before in this document, many applications need
to compute a number of entries of the inverse in the order of the size of the
matrix, e.g., the diagonal, or even bigger. If this is the case, computing the
entries of the inverse for so many right-hand sides would require a prohibitive
amount of storage, hence the evaluation of the entries must proceed in blocks.
The entries are computed in blocks of variable size, e.g., 16 at a time, although
this mechanisms may result in numerous accesses to some parts of the factors
required for the calculation in multiple blocks, depending on the position of
the required entries. In order to reduce this operation’s cost, the authors devel-
oped an algorithm for splitting the right-hand side and an out-of-core strategy.
The latter is combined with a combinatorial policy for the reordering [[Amestoy
et al., 2012]]: once that the list of requested entries of the inverse is partitioned
into blocks of a given block-size, each of them containing a smaller number of
elements, such blocks are reordered to ensure that the entries are kept con-
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tiguous once that the blocks are merged as the software proceeds in managing
the right-hand sides (therefore keeping the BLAS routines efficient). After the
reordering is completed, for each of the blocks, the elimination tree is pruned
accordingly. Then, for each of the nodes in the pruned tree, the block of right-
hand sides to be included in the computation is determined according to the
position of the entries in the block. Finally, the non-leaf nodes are merged to
reach the predefined block-size, until the dimension of root node reaches the
block-size itself. Obviously, the last block of right-hand sides may have a fewer
number of entries. In [Amestoy et al., 2012], the authors show that partitioning
the requested entries of the inverse in blocks in order to minimize the traversal
of the tree is equivalent to the tree-partitioning problem, and show that this is
an NP-complete problem [Theorem 3.2]. They propose few heuristics and build
a model for the extraction of the diagonal entries on top of that.

Both the grouping strategy on the entry blocks and the sparsity-exploiting
mechanism on the right-hand sides make MUMPS suitable not only for the se-
lected inversion, but also for other applications where the simultaneous com-
putation on multiple right-hand sides is requested. The solver is, in fact, widely
used as a solver for sparse linear systems, however the large computational
effort required by the blocking, postordering, and merging process may cause
some lack of efficiency when the evaluation of a large number of entries of the
inverse, e.g., the diagonal entries, is requested.

4.4 FIND—Fast inverse using nested dissection

Finally, we overview briefly the FIND (fast inverse using nested dissection) al-
gorithm, specifically designed for the computation of the diagonal of the in-
verse [Li et al., |2008]]. The key idea of the algorithm is the computation of
many LU factorizations of a given n x n matrix A, where each factorization is
designed to evaluate one specific entry of the inverse’s diagonal. Once that one
sparse LU factorization is given, in fact, recalling the Takahashi’s formula [[Taka-
hashi et al., [1973]—and adapting (2.9)—, one can compute the bottom-right
entry of the inverse of A as (A™'),,, = 1/U,,,. The sparse LU factorization is of
course computed after a symbolic factorization step, i.e., after A has been re-
ordered to reduce the fill-in. The reordering permutation is crucial in the design
of the algorithm: once that the entry in position (n,n) has been computed, A is
permuted again in order to move to the bottom-right position all the nodes of
the corresponding graph associated to the diagonal entries, one after the other.
By doing so, after every reordering/factorization, the formula for (A1), can be
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simply applied. At a first glance, this procedure would require the computation
of n reordering/factorization couples, however the authors suggest a strategy
to reduce the computational cost based on ad hoc permutations of A, order of
the factorizations, and storage of intermediate parts of the different LU factors.
The idea is to recursively subdivide the mesh associated with A (where each of
the nodes corresponds to a row/column of the matrix and an edge from (i) to
(§) represents a nonzero entry A; ;) into clusters, and the clusters are arranged
into a binary tree—where every cluster is a node and its sub-clusters are its chil-
dren. After that, an elimination process resembling the Gaussian elimination is
performed. The process is divided into two steps: in the first, the inner nodes
of each cluster are eliminated, while the second step consists in removing all
the nodes who are external to any of the current leaf clusters. At every level
of refinement every cluster is split into two sub-clusters, and the clusterization
obtained at lower levels is reused for efficiency. The approach is inspired by the
nested dissection algorithm [George, 1973]], but it includes some differences.
Once that a leaf cluster is defined, matrix A is reordered in a way that the entries
of the leaf cluster form a bottom-right block. Then, the columns correspond-
ing to the complement of the leaf cluster (with respect to the whole graph) are
eliminated in order to obtain the entries of A~! belonging to the leaf cluster.
After a certain level of refinement is reached, the complementary of the leaves
are quite large clusters, hence they overlap. In order to save computation, a so
called “complement cluster tree” is created, where the parent of two leaves cor-
respond to their intersection, while a parent would be the union of its children
in the regular cluster tree. Both the trees are traversed to perform the elimina-

tion with the support of other tree data structures [Li and Darve, 2012, Section
6].

The main goal of FIND is again the computation of the non-equilibrium
Green’s functions for two-dimensional nanotransistors, in particular the retarded
Green’s function. It has been tested against the standard recursive Green’s func-
tion method [|[Sahasrabudhe et al.,[2014]], proving good performance and accu-
racy. Interestingly, the authors also designed an extension for the FIND algo-
rithm [[Li and Darve, [2012[], in order to compute also the lesser Green’s func-
tion, needed for computing the charge and current densities of the nanodevices,
and some of the off-diagonal entries. The method is based on the fact that the
evaluation of the lesser Green’s function can be extrapolated by the LU factor-
ization of the retarded Green’s function and the assumption that the latter and
the self-energy matrix—essentially describing the boundary conditions of the
problem—share a similar nonzero structure.
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4.5 General observations

In this chapter we provided an essential overview of the most diffused algo-
rithms and packages for the direct evaluation of the entries of the inverse of
sparse matrices. In particular, we selected the algorithms suitable for the com-
putation of the diagonal of the inverse. We can see that many of them (PSellnv,
FIND, PARDISO) have been designed and/or successfully used in nanoelec-
tronic structure problems, such as nanotransistor ab-initio simulations, a topic
of paramount importance for the development of modern electronic devices.
Related to this topic, we mention that other ad hoc solvers have been designed,
such as the extension to the hierarchical Schur-complement method [Hetma-
niuk et al., 2013[]. Exploting an efficient LDL' factorization of the NEGF ma-
trix and a specific order of the operations, the method aims at keeping the fill-in
as low as possible, and has been applied to 3D nanoscale devices [Zhao et al.,
2016]. From a more general point of view, instead, we mention UMFPACK
(based on the unsymmetric multifrontal method) [[Davis, 2004], which com-
bines a column pre-ordering strategy to limit the fill-in with a right-looking fac-
torization. The package analyzes the matrix and automatically selects the most
appropriate pre-ordering/pivoting strategy, however this is loosely related to
the selected inversion topics treated in this document, so we are not investigat-
ing it any further.

Since computing the minimum fill-in obtainable for a matrix is a NP-complete
problem [Yannakakis, [1981], it is clear that the design of heuristics for the re-
ordering strategies are the key element of the state-of-the-art algorithms and de-
termine in large part their efficiency. For this reason, many different approaches
based on graph partitioning/relabelling have been designed through the years,
as en example, the (1969| (reverse) Cuthill-McKee algorithm [|[Cuthill and McKee,
1969; [Liu and Sherman, 1976]]. Currently used methods, however, rely on mul-
tilevel and recursive methods such as the above-mentioned nested dissection
and minimum degree, and possibly refinement techniques such as the novel
parallel p-Laplacian refinement [Simpson et al., 2018]]. Moreover, the paral-
lelization techniques and reduction of the communication volume play a central
role. The introduction of fill-in entries, in fact, complicates the communication
between processes and supernodes during the traversal of the elimination trees.
This aspect must be taken into account unless communication-avoiding state-
gies are included, e.g., imitating the communication-optimal LU factorization
(CALU), designed for dense matrices [Grigori et al., [2011[]. This method aims
at reducing latency for dense LU routines implementing communication avoid-
ing pivoting techniques for the factorization of blocks of columns. Considering
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that the final goal is to exploit the efficiency of the BLAS/LAPACK routines and
the vectorization of modern compilers, the design of splitting techniques (such
as the PARDISO panel subdivision) and the parallelization of the refinement
methods may also help in the design of agile solvers.

In light of the discussion just concluded, in the following chapter we are an-
alyzing the node-level performance of PARDISO and PSellnv. We will present
the scaling performance of implementation of the two algorithms using multiple
threads/processes (C++ code supported by MPI/OpenMP paradigm), and test
their behavior on sparse and sparse/dense matrices. The choice of the datasets
will be made keeping in mind the final goal, which is the implementation of
the parallel Takahashi’s formula. Analyzing the scaling results, we will justify
the choice of including PARDISO in our sparse/dense framework in order to ex-
ploit its parallelization of the Schur-complement computation and the selected
inversion.



Chapter 5

Comparative experiments for
factorization-based selected inversion

The goal of this chapter is to analyze the performance of PARDISO against
state-of-the-art direct solvers. The reason lies in the fact that the computa-
tion of the parallel Takahashi’s selected inverse requires a sparse solver for the
main computational kernels, from the selected inversion of the sparse blocks, to
the Schur-complement calculation. Additionally, we show how the treatment
of sparse-dense matrices, i.e., sparse matrices coupled with dense rows and
columns, can increase the complexity of the state-of-the-art solvers, justifying
the need of a sparse-dense framework for the usage of the parallel Takahashi’s
method. We aim at the usage of such framework in real life applications, and
we show one in chapter |7, where we treat sparse-dense data in the field of
genetics. As a final objective, we prove the efficiency of PARDISO as a sparse

selected inversion solver and justify its usage in the sparse-dense framework
designed in Among the modern software, we choose to compare
the solvers PARDISO and PSellnv (section 4.2)); the first available
in the PARDISO libraries, version 5.0.0, the second included in the PEXSI solver,
version 0.9.0 [[Lin et al., 2009, 2013]]. The experiments aim at the evaluation of
the node-level performance of the two software, and measure the time needed
to compute the diagonal of the inverse of several matrices by PARDISO, using
1, 8, and 16 OpenMP threads, and by PEXSI, with 1, 8, and 16 MPI processes.
The tests have been performed on a machine equipped with four octa-core Intel
Xeon CPU E5-2650 @2.00 GHz and 128 GB of total memory.
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Figure 5.1. Weighted two-dimensional stencil for the finite differences dis-
cretization of the Laplace operator (left). Laplacian matrix generated by the
5-points 2D stencil on the left on a 50 x 50 grid (center). Laplacian matrix
generated by the 2D stencil, coupled with dense rows and columns for the
case N =502+ 100 (right).

5.1 Setup of the node-level comparative tests

The test cases we decided to use to compare the node-level performance of the
two direct solvers are made made of two different groups of matrices. The first
consists of stencil matrices generated by the finite differences discretization of
the Laplace operator, on both 2D and 3D regular grids, using a 7-points stencil
analogous to the one depicted in Figure (left and center). The second group
is created considering finite difference Laplacian matrices over smaller 2D/3D
grids, coupled with a fixed number (i.e., 100) of randomly generated dense
rows and columns, according to the structure presented in Figure (right).
We consider three n x n 2D grids for n = 500, 1000, 2000, and three different
n x n x n 3D grids for for n = 50,80, 100. The size of the matrices involved, N,
is either n? or n® for the matrices in the first set, while it is n? + 100 or n®+ 100
for the sparse/dense ones. The sparse dataset requires smaller computational
effort than the sparse/dense one because of the low bandwidth, which is n—1
for the 2D discretization and n? — 1 for the 3D one, while it becomes N — 1 for
both the discretizations in the sparse/dense dataset. Both the solvers reduce the
bandwidth during the symbolic factorization phase by applying a reordering to
the rows and columns. PARDISO assign this phase to METIS, while PSellnv
uses SuperLU_dist.; both analyze the sparsity pattern and group the different
columns into supernodes, gathering together columns with the same sparsity
pattern (chapter [4). In this chapter we show also how the two solvers use dif-
ferent parallelization techniques who may lead to considerably different com-



o1 5.1 Setup of the node-level comparative tests

munication patterns between processes, supernode splitting techniques, and,
ultimately, execution time. The lower bandwidth of the sparse dataset, coupled
with its stencil-structured nature, makes the reordering strategies more effec-
tive: the underlying mesh handled by the graph-partitioning software, included
in the symbolic factorization packages, is particularly easy to treat and guaran-
tees a good result for the minimization of the edge-cut and the load balance.
On the other hand, we underline that the inclusion of the dense blocks cause
the complexity of the inversion algorithm to grow the new nonzero structure
complicates the graph partitioning problem. Additionally, we have to consider
that the nonzero density for the sparse/dense matrices is considerably higher
than in the sparse ones and this aspect creates higher fill-in in the factorization
phase, when combined with the challenging graph partitioning solution. While
it is well known that discretizing the Laplace operator leads to a total of ¢(N)
nonzeros, precisely n(5n—4) for the 2D case and n?(7n—6) for the 3D case, the
number of nonzeros in the sparse/dense dataset is increased of h(2N +h) when
adding h dense rows and columns. This can raise dramatically the number of
nonzeros, by a factor of approximately 1+ %h for the 2D case and 1+ %h for the
3D case. In our dataset, where 100(2N + 100) nonzeros are added, we have
that the sparse/dense factor presents around 41 times the nonzeros for the 2D
discretization and 29 times for the 3D discretization. The final numbers are

recapped in Table

Table 5.1. Dataset for the node-level performance analysis. The sparse and
sparse/dense datasets. The last column indicates the nonzero density of the

matrix.
Dataset | Discretization n N nnz density (%)

500 250000 1.2480e+06 2.00e-03
2D 1000 1000000 4.9660e+06 5.00e-05
2000 4000000 1.9992e+07 1.25e-05

sparse
50 125000 8.6000e+05 5.50e-03
3D 80 512000 3.5456e+06  1.35e-03
100 1000000 6.9400e+06 6.94e-04
500 250100 5.1258e+07  8.19e-02
2D 1000 1000100 2.0501e+408 2.05e-02
2000 4000100 8.2000e+08 5.13e-03

sparse/dense
50 125100 2.5870e+07 1.65e-01
3D 80 512100 1.0596e+08 4.04e-02
100 1000100 2.0695e+08  2.07e-02
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Figure 5.2.  Symbolic factorization of the sparse matrices—comparing

PARDISO (PDS) and PEXSI (PSI) execution time on 1, 8, and 16 threads/-
tasks.

In the following section we show how both the consistent increase of the
nonzeros and the complexity of the new nonzero structures affect the perfor-
mance of both PARDISO and PSellnv. We will prove however that PARDISO not
only succeeds in treating all the problems in the datasets, but is also able to do
it in considerably less time. For this reason we pick it as the best direct solver
capable of computing the diagonal of the inverse on the sparse/dense datasets
and we will include it in the parallel Takahashi’s framework, to be used for the

treatment of genomic prediction datasets in

5.2 Node-level performance analysis

As part of the node-level performance experiments, we show not only how
PARDISO can be preferred for the selected inversion of sparse matrices, but
also how it is still the best choice for sparse/dense data. We report the time
consumed by each of the direct solvers, showing that the PARDISO competitor
cannot deal with the presence of dense rows and columns in the sparse struc-
ture, even if they are included in a small number. [Schenk [[2000]] showed that
that the computational complexity for the direct solution of a sparse linear sys-
tem of equations arising from a regular finite element 3D grid is 0(N?) for the
numerical factorization, and @(N*?) for the triangular solution phase. On the
other hand, PARDISO can still manage such cases successfully, making it our
software of choice in the treatment of sparse/dense selected inversion datasets,
even though we notice a lack of scalability.

The results relative to the pure sparse matrices are presented in Figures
from a first look we see that PARDISO outperforms PSellnv in all the stages
of the selected inversion process. Let us start from the symbolic factorization,
i.e., Figure The time measured for PEXSI includes the reordering of the
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Figure 5.3. Numerical factorization of the sparse matrices—comparing
PARDISO (PDS) and PEXSI (PSI) execution time on 1, 8, and 16 threads//-
tasks.
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Figure 5.4. Selected inversion of the sparse matrices (after the factorization
is completed)-comparing PARDISO (PDS) and PEXSI (PSI) execution time
on 1, 8, and 16 threads/tasks.

matrix, the conversion of the internal structures into matrices, and the design
of the communication pattern (see for further details). We can see
that PARDISO is roughly 20 times faster than PSellnv on the 2D matrices, while
the speedup is on average 10x on the 3D ones. For the numerical factorization
(Figure[5.3), instead, the speedup is slightly lower, on average around a factor of
7. The same happens in general when performing the third phase (Figure |5.4)
but the speedup factor in this case varies more, from 2x for the single-threaded
N = 2000? case (left plot), to 30x on the N = 500% running on 8 threads
(central plot). Additionally, the selected inversion phase can be performed by
PARDISO up to three orders of magnitude faster than PSellnv in the sparse-
dense case (N = 10002 + 100).

As predicted, we notice that the execution time for the sparse-dense dataset
is higher than the pure sparse dataset for both PARDISO and PSellnv (Fig-
ures [5.5H5.7). PEXSI, however, suffers from heavier performance degrading
than the first—mostly in the selected inversion phase. Also, PEXSI’s execution
on the 2000 x 2000 grid terminates prematurely since the 128 GB of memory
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Figure 5.5. Symbolic factorization of the sparse-dense matrices—comparing
PARDISO (PDS) and PEXSI (PSI) execution time on 1, 8, and 16 threads/-
tasks.
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Figure 5.6. Numerical factorization of the sparse-dense matrices—comparing

PARDISO (PDS) and PEXSI (PSI) execution time on 1, 8, and 16 threads/-
tasks.

are not enough for the solver to perform the factorization. This translates into
an out-of-memory error, hence this testcase is marked with the label “oom” in
the plots. Recalling Table for this testcase, the allocated matrix would con-
sists of 4,000,100 rows and a total of roughly 0.82 billion nonzeros, resulting
in prohibitive fill-in. The structure of the sparse/dense matrices is particularly
troubling for both the solvers, however the reordering strategy of PARDISO and
its internal Cholesky factorization allow it to store only the upper triangular part
of the matrix (reducing of a factor ~2 the nonzeros) and resulting in a total of
only 0.57 billion nonzeros in the Cholesky factor. Looking in details the single
phases, during the symbolic factorization (Figure [5.5), PARDISO gains a factor
19 speedup on average (on the testcases that can be actually solved by PEXSI,
excluding therefore the 2000 x 2000 grid), while this becomes more consistent
for the selected inversion phase (Figure[5.7). Here, the presence of a consis-
tently higher number of nonzeros in the PEXSI’s factors than the PARDISO’s
ones translates into huge time consumption for the creation of the communi-
cation pattern between supernodes, and also to higher execution time for the



5%} 5.2 Node-level performance analysis

1 OpenMP thread / MPI task 8 OpenMP threads / MPI tasks 16 OpenMP threads / MPI tasks

10*
10%

10%
10
10° H
- 5
[}
o
T T 1. -

Time (s)

=
(=1
—

Selected inversion

%

1072
80°

o
0 [T

100°

-
a
9
=
q1|1S
o
4
o
=

wn= wn= wn= wn= wn= wn= n= n= n= wn= wn= wn= wn= wn= wn= n= n= n=
g g g~ g g~ g~ g g g gt g g~ g g g R g g~

Figure 5.7. Selected inversion of the sparse-dense matrices (after the factoriza-
tion is completed)—comparing PARDISO (PDS) and PEXSI (PSI) execution
time on 1, 8, and 16 threads/tasks.

numerical evaluation of the entries. PARDISO is therefore up to three orders of
magnitude faster on the 2D grids (2680x for the 1000 x 1000 grid) and up to
two orders of magnitude faster (125x speedup for N = 100° + 100) for the 3D
testcases.

In light of the analysis just completed, we can appreciate the good per-
formance and memory savings that PARDISO ensures, and justify the decision
to include PARDISO in our sparse-dense framework implementing the parallel

Takahashi’s method.
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Chapter 6

Scalability of the parallel Takahashi’s
method

In this chapter, we describe the performance of the C++ implementation of the
parallel Takahashi’s algorithm for sparse, real, symmetric matrices. We present
weak and strong scaling tests for the computation of the diagonal of the inverse,
which is a selected inversion problem. The scaling tests are performed at the
Swiss National Supercomputing Center (CSCS), on up to 400 nodes of the clus-
ter Piz Dora, equipped with two 12-core Intel Haswell CPUs (Intel Xeon E5-2690
v3) per node. The C++ code is compiled on the Piz Dora using the Cray C++
compiler, and is supported by the Intel MKL ScaLAPACK and BLACS libraries
together with MPI. According to the definition of Algorithm we
test its performance on a set of random matrices that can be decomposed into

blocks as
A B
= 5)

considering A as a sparse block and B and D as dense.

6.1 Parallel Takahashi’s method’s implementation de-
tails

Recalling the structure of the algorithm, the workflow is based on the distri-
bution of the dense blocks B and D among a 2D p x p (p = 2) virtual grid of
processes, and the parallel computation/inversion of the Schur complement of
block A in C. The implementation of Algorithm [2| requires some effort in both
the design of the memory distribution pattern and the processes’ arrangement.

o7
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Figure 6.1. Example of simplified implementation for the ScaLAPACK 2D
cyclic distribution. Left: matrix D is represented in gray and each process,
identified by a number in {0,1,2,3}, owns a block of it. The colored blocks
represent the maximum memory allocated by each process. Right: the actual
subblocks of D saved on the local memory of each process. The scheme shows
the part of D saved by each process.

Let us suppose that block D has size n,. According to the ScaLAPACK stan-
dard [Blackford et al., [ 1997]], D must be sliced into submatrices of a fixed size
and assigned to the processes in the grid according to a 2D circular pattern. Let
us fix s as the maximum size of the submatrices, which means that each sub-
block will contain at most s X s entries of D. It follows that in order to partition

D into such subblocks, it must be sliced into b? = ["TD]Z patches. The ceiling
function [ - | is used because and additional patch must be added in case nj, is
not a multiple of s. Considering now a single process belonging to the grid,
(i,j) for some 0 <i,j < p—1, it will be assigned to store a number of rows and

columns equal to
b—i b—j
n = and n=|——1, (6.1)
p . p

respectively, meaning that the process will need to allocate enough memory
to store block D;; of size (sn}) x (s n?). Notice that this rule may lead to an

overestimation of the required memory that can be computed as w = (bs)? —
n? = (bs —np)(bs + n,) numbers allocated that are not actually necessary for
the computation. In the worst case, given a value for np, the choice of s is such
that n, =sk+1 for some k > 1; since (bs—np) = (s(k+1)—(sk+1))=(s—1),
the memory overestimation becomes

w=_(—1)(bs+np).
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An analogous mechanism is used for the storage of B. Each process (i, j) will
store s n§ columns of B and s n] rows of B', adding up to (n,) x (s n§) and (sn)x
(n,) elements, respectively. The processes on the diagonal of the grid (i =
), instead, do not need to store both the columns of B and the rows of B',
because this would result in duplicating the necessary memory, since the two
blocks coincide. The distribution pattern for a 2 x 2 process grid is portrayed in
Figure

As an example, let us consider n, = 1000, a block size s = 128, and p = 3
(nine processes arranged in a 3 x 3 grid). Given these parameters, we have
b = [%] = 8, ny = n; = 3, and n; = 2. The memory allocated by each
process (i, j) is summarized in the following scheme.

A\ 0 1 2
0 384 x 384 384 x 384 384 x 256
n=n"=3 n=n"=3 n =3,n"=2

384 x 384 384 x 384 384 x 256
nn=n=3 n=n"=3 n =3,n"=2

256 x 384 256 x 384 256 x 256

2
n=2,n"=3 nN=2n"=3 n=n"=2

As mentioned before, the processes belonging to the last column and row of the
grid (i.e., i = 2 or j = 2) allocate an amount of memory exceeding the actual
memory sufficient to store the part of D assigned to them. This overestimation is
handled by ScalLAPACK during the computation and communication phases. In
a similar way, matrix B is divided into “vertical stripes” and distributed among
the columns of the grid according to a 1D cyclic distribution, hence allocating
ng x 384 elements on (0,0) and (0, 1), and ngz X256 on (0, 2). See a comparison
between the 1D and the 2D cyclic distribution in Figure
From Algorithm |2| (page , we can see that the p? blocks D;; forming the
Schur-complement are computed in place to avoid memory duplication: each
of them belongs to the local memory of a process (i, j) and is overwritten with
the corresponding part of the Schur-complement of A in C, independently from
the other processes. In order to achieve this parallelism, each process (i, j)
assembles a smaller matrix, C;;, composed coupling A, the slice B;, the stripe
B.", and D, j»asin Figure The process computes then the Schur-complement
of Ain Cjj, i.e.,
D;«—D;;—B;' A'B;=D;—B,"Y,. (6.2)
—

Y;
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Figure 6.2. Example of two-dimensional (2D) (left) and one-dimensional
(1D) (right) block-cyclic distribution among a 2 x 2 grid of processes la-
beled {0,1,2,3}. The 2D distribution is recommended when the BLACS
and ScaLAPACK libraries are used, in order to optimize the communication
between the processes.

Block A must be stored in the memory of every process, even for large-scale
datasets. For memory and computation optimization, A is stored in compressed
sparse row format (CSR). The sparse matrix is encoded using three vectors:
one for the nonzeros, nz, one for the column indices of the nonzeros, cols, and
one for the indices pointing at the first nonzero of each row, prows. Suppos-
ing to have { nonzeros in A, nz is a vector of length { where the nonzeros are
listed row-wise, cols has the same length and indicates the column-index of
the nonzeros, while prows has length n + 1 and indicates where, in the list
of the nonzeros, the first nonzero of each row is placed. The first entry of
prows equals O (or 1 in a 1-based index environment such as FORTRAN or
MATLAB), while the last equals { (or { + 1 in a 1-based environment). Us-
ing this format, the nonzeros of the k-th row of the matrix (for -1<k<n in a
0-based environment or O<k<n+1 in a 1-based environment) are stored in nz,

in positions prows[k],prows[k]+1,...,prows[k+1]-1, and have column in-
dex cols[prows[k]], cols[prows[k]+1], ..., cols[prows[k+ 1]-1], re-
spectively.

Property 1 (Compressed Sparse Row (CSR) format storage). Given an n x n
sparse matrix Awith { nongeros, the CSR format reduces the memory requirements
for storing A from n? elements to O (C ), precisely 2 +n+1 (assuming that both the
data types used for the matrix entries and for the nongero indices occupy the same
amount of memory). Additionally, if Ais symmetric, then only the upper triangular
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Figure 6.3. The colored part represents the data belonging to process (i, j).
The contribution to the Schur-complement D;; is computed by the process
after assembling a new matrix C;; (on the right), made of the parts stored in
its own memory, which is smaller in size than the original matrix C (gray).

part can be stored, i.e., assuming that A has 6 nongeros on the diagonal, the cost
is reducedto { —6 +n+ 1.

Sparse matrix routines are designed to perform matrix-vector and matrix-matrix
operations exploiting these structures, optimizing the performance not only of
low level operations, but also reordering, factorization, solution of linear sys-
tems, and selected inversion. This system is analogous to the CSC (compressed
sparse column), where the nonzeros are stored in a column-wise order and the
roles of cols and prows are exchanged.

Going back to (6.2), we see that A must be treated by every process to com-
pute the local Schur-complement, however the inverse is never computed ex-
plicitly, exactly as in the sequential case (Algorithm line: the product A™'B i
is again calculated as the solution of the system AY; = B}, locally by the process
(i, j). Note that the solution of the system is identical for the processes belong-
ing to the same column of the process grid because of the 1D cyclic distribution
of B. For this reason, matrix Y is stored in a pattern identical to that used
for B, i.e., on the processes belonging to the first row of the grid. The only
exception is the root process (0,0), where a selected inverse of A is actually
computed in order to provide the base for the Takahashi’s update of the diago-
nal entries, according to Algorithm |2} line Here the factorization phase is
not repeated during the computation of the Schur-complement component D,
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taking advantage of the factors stored in memory during the selected inversion.
For performance, in the light of the node-level comparison tests run in
we choose to use the solver PARDISO [Kuzmin et al., 2013} Petra, Schenk and
Anitescu, [2014; Petra, Schenk, Lubin and Gartner, [2014]] for this phase; in or-
der to save memory and computing time, PARDISO computes and stores the
LU factorization of A before addressing the linear systems and use the stored
factors to solve both the systems. Additionaly, the factors are reused when the
selected inverse of A is computed explicitly on A4 (A). As a matter of fact, re-
calling the Takahashi’s formula, PARDISO stores internally also the entries on
A (L +U). As a last step, in order to complete calculating the entries of the
diagonal of the inverse, the inverse of the whole Schur-complement D is cal-
culated, as required by the bottom-right block of decomposition (2.14). Using
the ScaLAPACK/BLACS routines such as send, receive, factorize and invert, it is
possible to compute a distributed inverse of the block. The inverse overwrites
D and follows the same distribution pattern (Algorithm [2] line [9). Finally, be-
fore the selected elements of A™! are updated, the matrix-vector product D‘le
and the dot product between Y;" and D_le are calculated by PBLAS, since both
factors are distributed across the process grid. The final result is stored in the
master process.

This step concludes the algorithm. In order to simplify the computation,
once that the nonzeros of A™! are computed, they are stored in a vector, and the
values are updated computing and communicating the matrix-vector and dot
products on the fly for all the necessary matrix indices. In the following section
we analyze the strong scaling performance of the algorithm’s main components,
including this last one.

6.2 Strong scaling tests

With the strong scaling experiments we want to demonstrate the performance
of the parallel Takahashi’s method on a high number of processes, showing how
the reduction of the local workload on the single processes results in lower the
execution time. The dataset is made of symmetric, positive definite matrices
from the SuiteSparse Matrix Collection (former “University of Florida Sparse
Matrix Collection”) [Davis and Hu, 2011]]. This matrices are chosen to be large
and sparse block A in the block decomposition, and are listed in Table We
couple block A with a dense rectangular matrix B and a dense symmetric, pos-
itive definite block D of a fixed dimension. Both B and D are randomly gener-
ated, so there is no guarantee about the positive definiteness of the local matri-
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Table 6.1. Matrices used for the strong scaling tests from the University of
Florida Sparse Matrix Collection.

Name Order Nonzeros Density = Application
pwtk 217,918 5,926,171 0.13e-01 % Structural problem
af shell3 504,855 9,046,865 0.36e-01 % Structural problem

parabolic fem 525,825 2,100,225 0.74e-05% Comp. fluid dynamics

ces C;;. Being aware of that, the Cholesky factorization LDL" of the C; ;’s might
fail, so we instruct PARDISO to treat each block as a symmetric indefinite ma-
trix when computing the factorizations. This worsens the overall performance,
although uniformly among the processes, so it does not affect the scaling. In
order to use the whole memory available at each node, we allocate a single
MPI task on each node of the cluster. The performance plots are shown in Fig-
ures There are three different quantities reported, indicating the time
required for:

(a) the parallel computation of the complete Schur-complement of A in C,
i.e., S = D—B'A™'B, measured as the elapsed time between the start and
the end of the computation of the S;;’s;

(b) the collection of the entries on the diagonal of C™!,, and the update of
the entries of A~ as described in Algoritm [2] line

(c) the whole process, excluding the matrix loading from file, which is ap-
proximately equal to the sum of items[(a)] and

The strong scaling tests are designed to use an increasing number of nodes, from
16 to 400, and a fixed number of OpenMP threads, 16, used by PARDISO. We
include only the square numbers of tasks, so that they can be arranged in square
grids as 4 x 4, 5 x 5, and so on until 20 x 20. We underline that the time is not
reported for less than 16 nodes, i.e., 1, 4, and 9, because of memory constraints:
the memory required to store the C;;’s exceeds the total memory available on
each node. For this reason, the speedup reported in the plots (gray bars) is
intended to be computed with respect to the minimum number of nodes suit-
able, giving unitary speedup for 16 nodes. Notice that the speedup is reported
for the total execution time only, and is simply computed as the ratio between
the total time for 16 nodes and the total time for the other configurations. The
computation time is dominated by the final stages of the computation, i.e., the
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Figure 6.4. Strong scaling tests on Piz Dora as a function of the number of
nodes involved on matrix af shell3. Grey bars (right axes) show speedup
obtained.

collection and update of the entries of the diagonal (green circles). This phase
is communication-bounded, since it requires the usage of parallel, dense linear
algebra libraries, BLACS, involving MPI communication routines. The infor-
mation belonging to the single processes is collected by the master process to
assemble C~!;; and C~!,,—these operations correspond to the loop beginning
at line[11]in Algorithm

Analyzing the speedup, one can see that from 16 to 400 nodes (25x), the
total execution time is reduce by a factor spanning from around 14x to 16x.
We observe that a factor 25 in the number of nodes means that the size of the
process grid changes from 4 x 4 to 20 x 20, i.e., the number of columns in
the process grid handling the 1D distribution of the blocks B,’s and Y;’s increase
from 4 to 20 (only 5x). Finally, looking at the speedup for the “pwtk” case (Fig-
ure we notice a small loss of performance when passing from 196 to 256
ranks. We observed that the reordering computed by PARDISO in the factor-
ization phases using 256 nodes is slightly worse than the one computed when
using 196 nodes, cue to an unexpected inconsistent behavior in the reordering
software (METIS). We also notice that the communication phase (green circles)
presents a little bump in the execution time, revealing a possible system-related
issue in the communication between nodes. Except the small problem just pre-
sented, we consider the scalability satisfying.
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Figure 6.5. Strong scaling tests on Piz Dora as a function of the number of
nodes involved on matrix parabolic_fem. Grey bars (right axes) show speedup
obtained.

6.3 Weak scaling tests

For the weak scaling tests we designed a dataset where block A consists of 3D
Laplacian matrix, i.e., a 7-points finite difference discretization of the Poisson
equation on a 3D regular grid. Blocks B and D are dense and randomly gener-
ated. We fix n = 100 and choose an n x n x n regular grid, giving A have size
n, = n® = 10° and n?(7n—6) ~ 7e+06 nonzeros (see section and we couple

4
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Figure 6.6. Strong scaling tests on Piz Dora as a function of the number of
nodes involved on matrix pwtk. Grey bars (right axes) show speedup obtained.
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Figure 6.7. Weak scaling tests for the parallel Takahashi’s method. Every
processor works on a 10° x 10° 3D finite difference Laplacian matrix coupled
with 1000 dense rows and columns.

it with a dense block D of variable size n;. Considering an increasing number
of processors arranged in a p x p grid, for p =1,2,...,16,17,20, we consider
np, =10%p, i.e., n, = 1000, 2000, . ..,17000, 20000, in order to keep the work-
load constant on each processor. For every processor (i, j) in the grid, in fact,
the subblock C;; is constrained to be a (n, + 1000) x (1, + 1000) matrix consist-
ing of the sparse block A coupled with 1000 dense rows and columns, for a total
addition of around two billion nonzeros and reaching a total of 1+ % 1000 ~ 287
times the nonzeros in the Laplacian matrix (see section for details).

Using this configuration, we run the weak scaling experiments on Piz Dora,
keeping one MPI task per node, and test the scalability of both the Schur-
complement construction and the final communication routines. The plot in
Figure reports the performance for building the Schur-complement (blue
triangles), collecting and updating the final elements of the diagonal of the in-
verse (green circles), and the overall performance of the code (red squares).
Again, in order to evaluate the performance (speedup), we simply divide the
execution time for the single computing stages on one node by the correspond-
ing time on the other configurations. A value smaller than 1 indicates a loss of
performance with respect to the single-node execution, while a greater value
indicates a boost. In the plot we report the corresponding percentage, where
100% corresponds to speedup equal to 1. Looking at the speedup in details, one
can see that there is no loss nor gain bigger than 7%; additionally, the speedup
for the total execution time depends for the 57% on the Schur-complement
build and for the 43% on the collecting routines. This confirms that the good
scalability of the two most time-consuming parts makes the total execution time
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scale as well, despite the presence of other non-scaling operations, such as the
inversion of the Schur-complement.
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Chapter 7

(Gaussian process regression in genomic
prediction frameworks

We now present an application in the field of genetics where the scalable Taka-
hashi’s method can be successfully used. In genomic prediction, genetic data are
used to predict the performance of hybrid breeds to be developed in the future or
to detect superior genotypes in a population. The underlying statistical frame-
work requires the design of a linear mixed model allowing the simultaneous
modelling of both fixed effects and random effects assumed to be, in general,
normally distributed. This is a Gaussian process regression. In the case of plant
breeding, the effects of the genotypes may vary in different environmental con-
ditions, hence the model should include the so-called marker-by-environment
effects. Such effects are computationally challenging, since they make the size
of the matrices involved to grow consistently, however the sparsity of the data
can be exploited to reduce the computational burden. The parallel Takahashi’s
method fits perfectly the requirements a scalable fast solver should
have to tackle this problem, where the parameter estimation process requires
the computation of a selected inverse, precisely, the diagonal of the inverse. In
the following sections we introduce the genomic prediction problem and the lin-
ear mixed model, then we examine the performance of the parallel Takahashi’s
method in the maximum likelihood estimation process.

71
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7.1 Genomic prediction models for plant and animal
breeding

The field of genomic prediction studies the effects of environmental conditions
on plant and animal breeds. The design of a mathematical model describing
such effects requires the study of genetic markers usually referred to as SNP
(single-nucleotide polymorphism) markers. As an example, one way to ap-
proach breeding selection is to consider the effects of the environmental fac-
tors on the genotype of the single animals and include this contributions into
the final model for the selection of the phenotypes. Given a set of observations
of a characteristic important for breeding, each of the plants (or animals) can
be considered as a sample drawn from some definable population of elements.
Those members of the population presenting the same quality (e.g., a quantita-
tive measurement) do not necessarily share the same genome, so the random
variable describing the genetic value contributing to the development of the
physical characteristic mentioned above remains unobservable, although real-
ized. The goal of the genomic prediction analysis becomes then the definition of
a set of estimators for the parameters that would describe the genetic features
responsible for the interesting phenotypic traits [[Searle,|1997|]. One commonly
used method to model is the construction of a linear mixed model, where the
effects of the SNPs are drawn from a normal distribution. Additionally, quan-
titative traits important to breeders are usually regulated by a large number of
loci (i.e, the significant positions on a chromosome who can be occupied by a
gene or a genetic marker), giving high-density SNP information, for thousands
of markers. The introduction of genome-wide analysis has increased dramati-
cally the complexity of the method, although providing benefits to both plants
and animal breeders [Crossa et al., [2010j Aguilar et al., [2010]].

Especially in plants breeding, it is important to take into account the envi-
ronmental effects [[Cooper et al., 2005]]. In different environmental conditions,
different environment characteristics such as high soil moisture or low solar ra-
diation impact differently the phenotypic traits, and the markers may present
different effects. These effects are referred to as “genotype by environment”
effects and are usually assumed to be normally distributed. A relatively novel
approach [Hayes et al.,|2009; De Coninck et al., 2014]] suggests the inclusion of
the “marker by environment” effects in the model, in order to explicitly model
the interaction between markers and environment, an aspect that is ignored
when studying the simple genotype by environment effects. In the following
sections, we are going to study a linear mixed model including both the effects,
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for large-scale data. The inclusion of these effects leads to a huge number of
effects to be estimated, e.g., when studying the effects of a few hundreds of
environments on thousands of markers, leading to the order of 10° equations.
Considering, however, that observations are usually made in very specific en-
vironments, the modelling matrix is highly sparse, reducing, at a first glance,
the computational burden of large-scale datasets. We will analyze the structure
of the model and the nature of the mathematical structures involved, and ex-
ploit the presence of both dense and sparse data through the formulation of a
sparse/dense solver.

7.2 The linear mixed model for genomic prediction

The methods typically adopted to design genomic selection and prediction prob-
lems are called “linear mixed models” and couple fixed effects together with
random genetic effects [[Meuwissen et al., [2001]] in the form

y=Xb,+Zu,+27Z,u, +e. (7.1)
Here,

y is the vector of n observations, typically, phenotypic data,
b, is a vector of k fixed environmental effects,

u,, is a vector of [ random marker-by-environment interaction effects,

m

u, is a vector of m random genetic marker effects, and

e is the residual error term.

The random genetic effects modeled by u,, and u; are introduced by assigning
one effect to each marker used to genotype the individuals. The key assump-
tion that only a small portion of such markers has a significant effect on the
observations makes the matrices sparse: the design matrices for the effects are
X, (n x k, modeling the fixed effects), Z,, (n x m, model for the marker by en-
vironment interactions), and Z; (n x s, describing the random genetic effects).
Typical size ranges for the variables are listed in Table Notice that Z,, is
the encoding matrix for the marker by environment effects, defining whether a
particular allele is homozygous or no The coding standard defines a relation

!An allele is a variation of a gene, and the combination of one or more of them can result in
different phenotypic traits. If the most frequent allele at a locus (gene) coincide, we talk about
“homozygosity”, we talk about “heterozigosity” otherwise.
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Figure 7.1. Example of a marker by environment matrix Z,,. The sparsity
pattern (left) and a zoom on a square submatrix (right).

between the alleles of a chromosome and the environment effects and reports
a 0 if there is homozigosity on the most frequent allele, 1 for heterozigosity
on the most frequent, and 2 for heterozigosity in the less frequent one. The
0/1/2 standard is chosen to ensure the sparsity of the Z,, (refer to [[Strandén
and Christensen, 2011] for more details about allele coding).

Example. Let us consider now a small example considering n = 800 ob-
servations, m = 1575 QTLs (quantitative trait loci) and k = 10 environments.
Figure shows the nonzero pattern of Z,: we can see that the matrix is
sparse, with 4% nonzeros and about 640 nonzeros per row. On the right, there
is a zoom of the first 800 rows and columns. Analogously, also the matrix mod-
elling the fixed effects X, is highly sparse, with one nonzero per row. We see
that the chosen coding ensures high sparsity for the matrices. The random ef-
fects are instead modelled through Z, which is highly dense since about 40%
of the entries are nonzeros (Figure[7.2).

As mentioned before, genetic marker effects can be drawn from different
distributions, however it is common practice to adopt a normal distribution A4,
mainly for its simplicity, computational efficiency, and predictive performance
compared to other distributions [[De Coninck et al., 2014, 2015, 2016]. The
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Figure 7.2. First 100 rows and columns of the matrix Z;, modelling the random
environmental effects in the linear mixed model (7.1). The nonzeros cover
about 40% of the structure.

choice just described translates into the model

([ w E 0 O
u, |~A&4[0,0° 0 yG O
y ~ N (XD, V)
| V=0I,+¢ZEZ +vZGZ)

where the normal distribution has zero mean, I, is an identity matrix of order n,
and E and G are constant, symmetric, positive definite matrices of order [ and
k, respectively. Additionally, the parameters y and ¢, describing the variance
components of the regression model, are unknown a priori and will be estimated
through the maximization of the likelihood of the model. The assumption that
each random effect correlates to a small number of the remaining effects makes
the covariance matrices E and G to be sparse; this is the setup we are going to
consider throughout the chapter to compute the estimates and predictions of the
parameters in the model. We will see later that, under particular circumstances,
both E and G can be considered to be identity matrices.
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Name Description Range
n observations 10® — 10°
k environmental effects 10° — 102
l marker-by-environment effects 10* — 10°
m  genetic marker effects 103 —10°

Table 7.1. Typical sizes for the variables involved in the genomic prediction
problem.

7.3 The Average-Information Maximum Likelihood es-
timates

In order to predict the random effects and estimate the fixed ones, the first step
consists in computing the best linear unbiased predictions and estimates (BLUP
and BLUE), respectively. BLUPs and BLUEs are unbiased linear estimators and
predictors of the mixed model’s parameters that minimize the mean squared
error, and can be computed as the solutions of the mixed model equations, see
e.g., [[Henderson, 1963, equations (19) and (20)],

XeTXE XeT Zm XET ZS Ee XeTy

Zy' X, Zy Zy+ET Z,'Z o |=| z.Ty (7.3)
1-~— A

Z'X, Z2.'Z, Z Z,+ G i, Z'y

Here, f)e, i,,, and 1 are the estimates/predictions for b,, u,,, and u,, respectively,
and the vector of the observations y is known. The coefficient matrix of this
system, to be referred to as C, has the following block structure

XeTXe XeT Zm XET Zs
c=| Zu'Xe Zn Zn+GE"

A|B
ZmTZs == ( T ) 5 (74)
T T T 1,-~-1 B D
z'X, 7.7 1272,+1G

and blocks A, B, and D are defined by:

A:( XTFX XeTTZm X )
Zo'Xe Zn' Zym+$ET )
D=(2'Z+3G" ), and (7.5)

B N ( XETZS )
z.'Z. |
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Figure 7.3. Coeflicient matrix for the mixed model equations in genomic
prediction C. In blue, the sparse block A, in orange B (B' in yellow), and D
in green.

Considering the structure of the design matrices, block A is square and sparse.
This is true for mainly two reasons: first, as seen in the previous section, since
every observation in the model comes from a single environment, Z,, is highly
sparse and the product X,"Z,., even though dense, presents an exiguous num-
ber of nonzeros (no more than km). Second, assuming the observed population
to be unstructured, we can speculate to have null covariance across the environ-
ments and, including the hypothesis of homoscedasticity, the covariance matri-
ces equal the identity, i.e., E = I, and G = I,, [Piepho, 2009]]. Blocks B and D,
on the other hand, are considered to be dense, where D is also square and is
symmetric positive definite (SPD). The density of these blocks comes from the
fact that Z; is dense too, since genetic marker information are typically dense.
Find an example for matrix C in Figure where the colored parts represent
the sparsity pattern of the different blocks A, B, B" and D.

The bottom-right subblock of A and block D incorporate the reciprocals of
the variance components of the distributions of the random effects, ¢ and y.
As mentioned in the previous section, these quantities are unknown a priori,
and need to be estimated from the training data: the estimates can be com-
puted by maximizing the log-likelihood function of the model with respect to
the variance components [Gilmour et al., |[1995]. The methodology we use is
an iterative, gradient-based approach known as the “Average Information Re-
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stricted Maximum Likelihood” (AI-REML). The function to be maximized is the
REML log-likelihood which is computed on a reduced set of data and does not
take into accounts the parameters that are not interesting at a first stage (nui-
sance parameters). The expression for the REML log-likelihood ¢ reads

((o? ¢,7)= —%((n—k)logazﬂ log¢+mlog}/+logdetC+i2yTPy) , (7.6)
o

where P = V' — VIX,(X,TV1X,) "X,V (refer to [Gilmour et al., [1995]
and [|Searle et al., (1992, Chapter 6] for more technical details). At each iter-
ation of the AI-REML, an update vector containing the current guess for the
parameters must be computed. At the kth iteration, the update vector reads
5ty = (07, Py, yk)T and is obtained as the solution of the linear system

where the matrix H is the update matrix and V/{ indicates the gradient of /.
This iterative scheme is similar to the Newton’s method, however, matrix H
does not coincide with the Hessian of the objective function ¢, since the Hes-
sian can be very hard to construct. Such limitation is given by the complexity
of the second derivatives of £, hence the so-called Al matrix [[De Coninck et al.,
2014, Appendix A] is chosen as update transition matrix. The analytic expres-
sions for the partial derivatives of £ with respect to ¢ and vy, i.e., the score
functions, require the computation of the trace of the product of the inverse of
large matrices:

a¢ 2\ ¢ 2 022
ol 1(1{ tr(C_lzz)_ﬁsTﬁs)

ot 1(1 w(C™'yy) ﬁfnﬁm)

(7.8)

ay 2

Y 72 o2y2

By C7!}; and C™',, we indicate the top-left and bottom-right blocks of C™!,
corresponding to blocks A and D in (7.4)), however notice that C™';; # A~ and
C™1,, # D71, At a first glance, such blocks would require to know the whole
inverse C, however the fact that only the trace is actually required, one simply
needs to compute diag(C™1).

The AI-REML algorithm

Given the expression for the log-likelihood and the score functions (7.8),
the AI-REML method implements the iteration (7.7) in Algorithm [6] Starting
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Algorithm 6 . AI-REML-Average Information Restricted Maximum Likelihood
estimation.
Input: observation vectors y,u,,u,, mixed model matrix C, initial guess
(Y0, o], relative improvement e, maximum iterations maxit
Output: estimates [02,7, ¢ ]
1: function LOG_LIKELIHOOD(C, 02, v, ¢)

2: return —(klog(y) +llog(¢) + (n—m)log(c?) +logdet(C) + n— m)/2
3: end function
4 [v,d] < [vo, ¢ol
5: fork =1, ..., maxit do
6: [A,B, D] « UPDATE_C BLOCKS(C, v, ¢)
7: 0% « EVAL SIGMA(A, B, D, v, ¢)
8: [ «<LOG_LIKELIHOOD(C, 02, 7, ¢)
9: [S555,,54] < SCORE(C, y, 02, 7, ¢)
10: if(|sy/y| < 6) OR (|s¢/q5| < 6) OR (|Z — Lol /1al < e) then
11: break
12: end if
13: H < CALCULATE_AI MATRIX(Y, A, B, D) > [[De Coninck et al., 2014]]
14: & < SOLVE_SYSTEM(H, [s,,5,,54]) > compute update 6 = H'V/{
15 [o%y,¢]l<[0%y,01+5
16: end for

from an initial guess for the parameters o2,y and ¢, the expression for blocks
A and D are computed according to (7.5) and used to compute the value of the
log-likelihood (7.6). After that, the score functions and the gradient

ol ot
ve=(=, 2=
{ (8)/’3(}5)

are evaluated; this is where the trace of the inverse is required and using a
parallel solver might be necessary in order to make the computation feasible
and efficient. The values of the score functions are arranged in a vector (s, sy)T
used as a right-hand side for the linear system (7.7)). Notice that, since it does
not involve any selected inversion process, we omit the estimation of o2. We
just say that, provided that the values of (the estimates of) y and ¢ are available,
given the nature of £, 0> = ——y'Py. The solution of the linear system is the

n—m
direction update to be added to the current vector of the estimates (o2, 7, d))T.
This concludes the process, which should be iterated until at least one between
the relative update of the log-likelihood, the relative increment of y, or the
relative increment of ¢ is less than a fixed threshold e.
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7.4 Numerical results

The tests presented in this section are designed to show the performance and
capabilities of the sparse-dense treatment of genomic prediction data. The suc-
cessful use of the parallel Takahashi’s method results in the successful treat-
ment of large-scale cases. The sparse-dense genomic prediction framework is
designed for the estimation of parameters (y and ¢) to be chosen for maximiz-
ing the log-likelihood. The optimization process is presented in algorithm [6]
and uses the parallel Takahashi’s framework described in to com-
pute, at every iteration, the gradient of the log-likelihood, whose expression
requires the evaluation of the trace of large sparse matrices.

7.4.1 Setup of the numerical tests

The dataset we use is based on a series of simulated data, and presents a set of
trials for plants with 1575 QTLs and span a variety of parameters, from 10,000
to 250,000 observations, where the largest dataset consists of 100,000 obser-
vations on 100 different environments and a total of 157,500 marker by envi-
ronment effects. The software, additionally to the the phenotypic observations
(vector y), reads from input files the model matrices X,, Z,,, Z,. The first are
compressed in CSR format due to their sparsity, while Z;, encoding
the random genetic effects, is dense and stored in a binary file. The root pro-
cess reads the input and stores in its local memory the matrix-matrix products
X,'X,, Z,'X,, Z,' Z, and so on, and with these it completes two tasks: first,
it assembles a copy of B and stores it in its memory until it is sent in strips to
the processes for the parallel computation of the Schur-complement; second,
it allocates A, computes its entries using the initial guess for the parameter ¢,,
and sends it to all the other processes. All the processes read from file both
X, and Z,,, since they are sparse and this operation is in general quick, while
they read Z; stripe-by-stripe. The number and size of the Z; stripes needed
by each process to construct its own block D;; is of course determined by the
1D/2D cyclic distribution standard described by BLACS/ScalLAPACK protocol
and recalled in[chapter 6] Once that the input phase is completed, the AI-REML
iteration starts. The initial guess for both the parameters (y and ¢) is set to
0.001; the AI-REML iteration stops when either the ratio between two consecu-
tive estimates of the parameters or the relative increment of the log-likelihood
is less than 1%, hence we set e = 1072. If none of these conditions verifies
before the maximum number of iteration is hit, i.e., 20, the algorithm fails.
The software is an implementation of the method defined before in Algo-
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Table 7.2. Execution time and memory consumption for 1575 QTL genetic
markers. The average time is intended per iteration.

Obs. (1) Environm. M x E Size of Iter Average Max. mem.
effects (k) effects (1) block A wall time (s) per node (GB)

10,000 10 15,750 15,760 4 16.3 0.79

100,000 10 15,750 15,760 3 32.7 1.5

250,000 10 15,750 15,760 4 85.1 2.8

50,000 50 78,750 78,800 5 855 3.1

100,000 50 78,750 78,800 5 94.9 3.8

100,000 100 157,500 158,600 5 174.6 6.2

: marker by environment

rithm 2] (chapter 2)), and is a C/MPI/OpenMP framework. Analogously to what
described in the code is supported by the Intel MKL ScaLAPACK and
BLACS libraries [Blackford et al.,[1997]], and compiled with the GNU C++ com-
piler. All the tests are performed on a cluster consisting of 16 nodes, each one
equipped with two 10-core Intel Xeon E5-2650 v3 @2.3 GHz and 128 GB of
working memory. Each run is performed on 16 MPI tasks on 16 nodes, one task
per node, while PARDISO uses 8 OpenMP tasks.

7.4.2 Analysis of the results

The main results are shown in Table where we report the convergence of
the AI-REML algorithm, an overview of the wall time needed by the method,
and the average per-node memory. The dataset is ordered with respect to in-
creasing average wall time per iteration, which coincide with a reordering done
with respect to the environmental effects and the number of observations. An
increasing number of observations for a fixed number of fixed effects, however,
does not cause the memory consumption to grow excessively, although we see
that the computing time increases due to a higher time consumption needed for
the construction of the coefficient matrix.

We underline that the complexity of the AI-REML process would increase
dramatically should the matrices be handled as dense, since the factorization
and selected inversion process dominate the execution time. It is straightfor-
ward to see that the average time per iteration remains bounded by the cubic
complexity expected from an approach where the matrices are treated as dense.
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Chapter 8

Stochastic estimation of the
non-equilibrium Green'’s functions

The goal of this section is to illustrate the results achieved by applying the
stencil-based stochastic estimation of the diagonal of the inverse to the non-
equilibrium Green’s functions (NEGF) formalism in nanoelectronic device sim-
ulation.

The difficulties in simulating nanoscale semiconductors are due in large part
to the problems involved in building and operating devices only a few nanome-
ters in width. Modeling nanoscale transistors requires the effort of going be-
yond the classical drift-diffusion approach [Bank et al., (1983]] and other ef-
fective mass approximations. The main direction of recent research in these
areas aims at the reduction of the size of such electronic components, playing
a central role in modern technological industry. The challenges of the huge
size reduction experienced in the designed of transistors from the first models
created in the 1950s, are enormous and affect the whole industry, pushing the
producers to investigate alternatives to silicon transistors, such as single-atom
transistors [[Fuechsle et al., [2012]]. These alternatives require to reformulate
the existing models in order to substitute the previously made approximations
and assumptions with quantum and atomistic governing equations. As a result,
the community must implement an immense improvement in the class of sim-
ulations relying on computer aided design and based on first principles, i.e.,
without any empirical data, commonly referred to as “ab initio” simulations.
The reason why this kind of simulations is needed, is dictated by the fact that at
a nanometer scale empirical data and simulations previously made at a larger
scale (such as micrometer) become unreliable because of quantum phenomena.
Additionally, the quality of a device’s design might be tested and validated only
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after it is built, a process that could lead to a waste of resources due to the high
cost of producing such devices.

The problems arising from the ab-initio nanoelectronic device simulations
are faced relying on a density functional theory framework augmented with
quantum electron transport simulations. The setup of such a framework and
the engagement of the ab initio simulations entail numerous challenges; some
of them are successfully addressed by Calderara et al.|[[2015|], combining CP2K,
a package for density functional theory [VandeVondele et al., |2005]], and the
nanodevice simulator OMEN [[Luisier et al.,|2011[].In order to perform success-
fully said simulations, it is convenient to build a mathematical model based on
the nonequilibrium Green’s functions [Luisier et al., |2006]. This is one of the
most efficient techniques to perform this task and it has been widely used to
study the electronic and thermal properties of nanoscale transistors and molec-
ular switches on massively parallel architectures. In the following sections we
are going to introduce a technique to avoid the limitations of the state-of-the-art
methods used to compute the retarded Green’s function on three-dimensional
nanodevices, estimating its entries via a stochastic estimator based on the one
introduced in chapter [3] The estimator will be tested on a dataset design to
mimic the structures in OMEN, and we are presenting both its scaling perfor-
mance and its accuracy.

8.1 The NEGF formalism in nanoelectronic device sim-
ulations

The main goal for the simulation of quantum devices is the solution of the single-
particle stationary Schrodinger equation for every particle involved in the de-
sign of the device, in order to determine the energy state of the system [[Luisier
et al., 2011]]. The idea at the basis of density functional theory is the possi-
bility to use the electron density alone to express the energy of a system and,
therefore, the particles’ wave functions. For non-equilibrium systems such as
transistors—because of the presence of a current flowing on the device—we
need to also consider quantum electron transport. From here, some conceptual
computational complications arise: nanotransistors, in fact, should be treated as
finite systems, since they have finite boundaries, however they do not present,
in principle, periodic boundaries. This assumption collides with the fact that
transistors should be modelled with open boundary conditions (OBCs) to fit
the hypothesis of a flowing current [Calderaral, 2016, Chapter 2]. In order to
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treat nanotransistors or nanowires, it is possible to reduce the infinite domain
to a finite equivalent one. The idea is to split the domain intro three parts: the
active region and the two contact regions, L and R, on the boundary, immedi-
ately adjacent to the active region.The Hamiltonian of the system is computed
on the active region and on the contact regions, excluding however the concep-
tually infinite remainder of the contact region external to L and R. This setup
allows the use of the NEGF formalism, whose governing equations are

(1-H-2HE)-=XE))GRE) =1, (8.1)

where H is the block tridiagonal Hamiltonian matrix obtained by solving the
Schrédinger equation for the given nanostructure and expressed through local-
ized basis functions, X' and 2R are the self-energy matrices containing the open
boundary conditions, and I is the identity matrix. The unknown, GR(E), is the
retarded Green’s function at the energy level E for the injected electrons. Equa-
tion describes then a matrix inversion problem, where G*(E), unknown,
is the inverse of the quantity in parentheses; however, as described in [Lake
et al.,[1997] and [Calderara et al.,[2015]], in formula (8.1)), the only entries to
be explicitly evaluated are the ones on the diagonal of G*(E) and, in general, a
subset of the ones belonging to the nonzero pattern of A. This is a selected inver-
sion problem, according to definition[1], chapter[2] The solution of the selected
inversion problem just introduced is usually addressed either via the so-called
recursive Green’s function (RGF) algorithm [Svizhenko et al., |2002]] or using
other algorithms [Kuzmin et al., 2013; [Lin et al., 2011 Jacquelin et al., 2016}
Zhao et al., 2016]. In many ways, the type of matrix updates performed in
both algorithms is similar to those performed in the LU factorization and they
represent, e.g., the main computational task for each MPI process in OMEN.
The focus of the new scalable algorithms to be developed should be on the fast
evaluation of the diagonal of the inverse performing better than, e.g., the eval-
uation of the entire inverse matrix based on successive application of a sparse
direct LU decomposition of A. As the number of cores is expected to increase
significantly faster than the memory, extreme-scale algorithms for computing
the diagonal entries of the inverse matrix not only need to use a high number
of cores per compute node, but also should incorporate different memory hier-
archies and, in particular, should require much less memory per core compared,
e.g., to the RGF method.

The particular structure of the matrix involved in the selected inversion
problem recalls the structure of the finite difference discretization of the Laplace
operator on a regular grid [[Saad, 2003, Chapter 2]. In addition to that, the sup-
plementary blocks describing the boundary conditions encoded in the X’s are
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included. The discretization of the second order operator on a grid generates a
multidiagonal symmetric matrix with low bandwidth (that could become non-
symmetric when the boundary conditions are included). The peculiar structure
of these matrices shows up in various applications and it is of particular inter-
est, mainly since the action of such a matrix on vectors can be emulated with
stencil operations applied on a regular grid. This means that the matrix-vector
operations may be computed in a matrix-free fashion, using stencil code, pos-
sibly optimized. In the following section we introduce and discuss the aspects
of a selected inversion algorithm exploiting the stencil-related properties just
mentioned, and aiming at the evaluation of the diagonal of the inverse using an
implicit-matrix formulation for the basic linear algebra operations. The design
of a solver for the selected inversion problem in the NEGF formalism trans-
lates then into the design of a selected inversion algorithm that involves only
highly parallelizable matrix-vector and vector-vector operations. Recalling the
properties of the stencil-structured matrices (definition [3} [chapter 3)), and the
Krylov-subspace based formulation of the stochastic estimator for the diagonal
of the inverse (Algorithm 4] page[34)), we are going to apply the method to the
computation of the diagonal of the retarded Green’s function.

8.2 Stencil structure of the NEGF matrices

For the sake of simplicity, we define as A the NEGF matrix whose inverse is
GR(E), introduced in (8.1):

A:=1—H—-3YE)—ZRE). (8.2)

We want to study now the nonzero pattern of A and verify its stencil structure in
order to express the matrix-vectors products through a stencil. In order to un-
derstand the structure, recalling that H is the Hamiltonian of the nanostructure,
we introduce the finite difference discretization matrix for the Laplace operator.

8.2.1 The discretized Laplace operator on a regular grid

Let us consider a finite closed domain D, e.g., a square in R?, and a regular
grid sampling D at equidistant points, analogous to the one introduced in Sec-

tion and in Figure [3.1}

th{xl]=(X0+ih,y0+jh),f0r1Sl,an}, h>0.
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Let us consider a function ¢ defined on €, describing a 1:1 mapping of the
points on the domain to another grid-shaped domain ¥, i.e., ¢ : Q, — ¥,
as the discretization (sampling) of a class C? function ¢ : D — (D) such

that ¢ (x;;) & ¢(x;;) for all i, j. We consider ¥ to be the image of the discrete
function, hence a grid of real values shaped like €2;,. Considering the central
finite differences, one can discretize the first partial derivatives of ¢ at any point
in the grid as the mean of the values assumed by the function on the previous
and following point, in both directions

3_90 Xi) A Py — Pri—1)j

~

ox Y 2h

s (8.3)
¢ )~ ®ig+1) — Pi-1)
oy Y 2h

where ¢;; := p(x;;) = ¢(x;;). It follows immediately that, composing twice
these definitions, we obtain the following expressions for the second partial

derivatives:
%y Py —29i + Pa-n);
_(xij) R
ox2 h2 8.4)
% N Gigi+1) —2¢i + iimn) '
3y (i) ~ h2

From here, we can formulate a discretized version of the Laplace operator A =
2 .
V2 =3 Z5 as the stencil operator

L(xy) = Py T G-y T ¢}i;j+l) + @i(j-1) — 4P; ’

described on the left of Figure The value of the discretized Laplacian of
the function ¢ at point x;; is then computed as the weighted average of the
values assumed by the function at x;; and its four orthogonal neighbors; notice
that this expression can be easily extended to R® considering the six orthogonal
neighbors to a point x;;;, and analogously for higher dimensions. An example
is shown in Figure Given the discretized Laplace operator £, we address
the discretization of the Poisson’s differential equation Ay = § on D for a given
function § defined on the interior of D. Calling f the discretization of § on €,
then the equation can be discretized and translated into N = n? (for a two-
dimensional domain) or N = n® (in three dimensions) equations, one for each
point in the grid, in the form

(8.5)

4¢ij - ¢(i+1)j - ¢(i—1)j - ¢i(j+1) - ¢i(j—1) = hzfij 1<i,j<n



88 8.2 Stencil structure of the NEGF matrices

Xij (k+1)

Xi (j+1) k

X(i=1) jk

Xijk X(i+1)j k

Xi (-1 k

Xij(k-1)

Figure 8.1. Discrete three-dimensional grid with 5 x 5 x 5 points (left).
Weighted three-dimensional stencil example: the Laplace operator (right).

for f;; := f(x;;). All these equations can be rearranged in form of a linear sys-
tem reordering the N unknowns in a single vector containing the unknowns in
the natural ordering u = (¢11, P21, ---» Pu—1)n> Pnn) and assembling the corre-
sponding coefficient matrix (see [Saad, 2003 for further details).

Assuming that L is the coefficient matrix coming from the discretized Pois-
son equation, in the electronic nanodevice simulation environment, the matrix
shares the structure with L and, in addition, presents the contribution of
the OBCs defined in matrices ' and ZF [|Calderara, [2016]. The final nonzero

pattern of A is then
( )

N(A)=N(L) + #/(X) where X = . (8.6)

\ Bl

Notice that ¥ has only nonzero entires in the red blocks %! and %R, who are
the boundary self-energy matrices and include the open boundary conditions.
See a 2D example in Figure In the NEGF framework introduced before,
the diagonal of the inverse of matrix A in must be computed up to some
level of accuracy which is, in general, larger than machine precision; under this
particular circumstance, the usage of a stochastic estimator for the diagonal of
the inverse can be preferable among the suitable selected inversion techniques.

In the following section, we introduce the stochastic estimator based on the
sampling of the diagonal that can be successfully used to estimate the entries of
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Figure 8.2. Left: discrete two-dimensional 4 x 5 rectangular domain with
boundary conditions (in red). Right: resulting matrix, presenting the two
blocks I and %R in red.

the retarded Green’s function GR(E) introduced in (8.I). As an additional char-
acteristic, we are going to evaluate the diagonal of the inverse in a matrix-free
framework: the matrix-vector operations involving A will be performed using a
stencil operator via a function .«/, formulated according to (3.19). From (8.6)),
we extend the stencil £, to include also the action of the X’s, and we call it
<. We do this for computational purpose, exploiting the additivity of the two
nonzero patterns. The final expression of ./ is then

o =roLort,

where r is the reshape operator (3.18). The formulation of the implicit ma-
trix stochastic estimation algorithm reflect then Algorithm where
the Krylov-subspace method used is the stencil-based conjugate gradient (Algo-
rithm|[5) and f, = ..

8.3 Stencil-based, matrix-free Krylov-subspace kernel

for the NEGF model

We analyze now the implementation of the stochastic estimation algorithm for
the retarded Green’s function in a parallel, distributed memory C++ frame-
work, called SEDI (stochastic estimation of the diagonal of the inverse). In
the rest of the section we describe and test two different implementations: the
first is based on a pure MPI approach [Snir et al., 1998, while the second
includes the support of GridTools [Fuhrer et al., 2014]], a library—introduced
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later—optimized for taking advantage of efficient caching strategies in order
to increase the arithmetic intensity of the algorithm. Both the implementa-
tions present the implicit-matrix implementation of a scalable conjugate gradi-
ent algorithm with a simple Jacobi preconditioner (the cheapest preconditioner
to be implemented when working on an implicit matrix framework, requiring
simply the scaling of the stencil coefficients). The scalable matrix-free Krylov-
subspace implementation is based on a domain splitting technique allowing the
distributed computation of the stencils, making different MPI tasks evaluate
the stencils on different blocks of the 3D grid, and build the final result through
communication routines.

Introduction to GridTools

GridTools is a C++ template library providing a set of tools for PDE solvers on
grids [|Gysi et al., |2015]] and is very versatile, since it can be used in several
applications. Despite the apparent simplicity of stencil computations and the
fact that current hardware architectures are ideal for mapping the computa-
tion structure, a programmer might still need to perform some fine-tuning on
the computation paradigm in order to exploit the full computational power of
the platform. The GridTools library aims at raising the level of abstraction of
stencil computations, which allows application programmers to concentrate on
problem specific aspects instead of low-level details that are relevant for perfor-
mance. By doing so, the programmer is required to specify only the high-level
application model and provide the stencil operators. This should help to detach
the model developer from the implementation details, providing high-level ab-
straction and tools to translate stencil computations into a set of operators to
be applied to the data. As an example, we show the kernel of the GridTools
implementation of the 7-points 3D Laplacian operator in Figure In order
to simplify the abstraction from the user’s point of view, the user specifies sten-
cil operations at a high level of abstraction, leaving to the library’s developers
the burden of providing multiple hardware-specific implementations of differ-
ent code backends. Additionally, the computation of stencils is tightly related
to the prior communication of the different domain’s neighboring points (halo
update) so GridTools integrates a modified version of GCL (generic communi-
cation layer) [Bianco and Varetto, [2012]]. As a last, important characteristics,
GridTools applies a cache blocking strategy to achieve data reuse and mini-
mize data transfers from main memory, maximizing data locality. This feature
provides better performance when stencils with different shapes are grouped
together.
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struct d3point7{
using out = accessor<@, inout>;
using in accessor<l, in, extent<-1,1,-1,1,-1,1> >;

template <typename Evaluator> GT_FUNCTION
static void Do(Evaluatior eval) {
eval(out{}) = 6.0 * eval(in{})
- (eval(in{-1,0,0}) + eval(in{+1,0,0}))
- (eval(in{o,-1,0}) + eval(in{0,+1,0}))
- (eval(in{0,0,-1}) + eval(in{0,0,+1}));

Figure 8.3. Seven-points stencil for the 3D Laplace operator in GridTools.

8.3.1 The scalable SEDI implementation

Both the implementations of SEDI are based on the division of the discrete grid
Q;, into subdomains, one for each MPI task, where each subdomain computes
its local part of the solution. The subdomains are computed by splitting €,
into parallelepiped, slicing it using orthogonal planes. When a task starts the
computation of the stencil on the points belonging to the bordering faces of its
own region, it needs to know the values on the adjacent face (if it exists), who
will be owned by another MPI task. This communication of the boundary values,
commonly referred to as “halo layer”, could cause degrading of the performance
unless the computation and the communication are somehow overlapped.

At each iteration of the stochastic estimator, the components of the sam-
ple are either generated by the master process and sent to the others via MPI
send/receive calls (as in the GridTools implementation) or generated locally by
the different processes (as the pure MPI code does). In the second case, how-
ever, the separate generation of the values on different nodes may not guar-
antee the independence of the numbers, introducing bias empirically detected.
For this reason, the MPI implementation uses dedicated libraries for the gen-
eration of random numbers, guaranteeing to provide independent local parts
across the nodes. Once that the local subdomains are filled with random values
(the chunks of the vectors ¥ in algorithm [4), the conjugate gradient can start.
After the method has reached the convergence criterion, each of the MPI tasks
will own the local part of &, i.e., the sample required by the stochastic esti-
mator to evaluate the diagonal of the inverse. At this point, each of the tasks
can separately compute the Hadamard products of the local components of &,
and ¥ (lines [6H7). When all the processes have completed this task, a new
random right-hand side ¥, is generated and the conjugate gradient solves the
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new system.

This process is iterated until all the samples are processed; after that, each
task allocates a new local grid designated to host the estimate for the diagonal
of the inverse and fills it with the Hadamard ratio in line E] (local part of 2).
As a last step, all the chunks of 9 are collected by an MPI_Gather call on the
master process who assembles the complete grid, reshapes it in vector format,
and writes it into a file.

The MPI implementation

The pure MPI implementation takes care of the domain decomposition by defin-
ing the scopes of the single subdomains and takes care of the halo commu-
nication by implementing an overlap of the communication and computation
phases. In order to do so, the code integrates an asynchronous MPI communi-
cation scheme, by dividing the stencil operations into three stages: initiate,
compute_local, and finalize. In the first phase, the requests for asynchronous
border layer send/receive are posted. The compute phase performs a stencil op-
eration on the inner cells of the local domain, while the last stage waits for all
the communication routines to be completed and applies the stencil operator to
the borders of the local domain. This concerns the strictly stencil-related opera-
tions. The boundary conditions are evaluated in the finalize stage, since their
structure imposes a communication pattern within the two groups of processes
that hold corresponding entries of the domain, i.e., the points lying on the two
edges of the 3D domain. This requires the global MPI communicator to be split
into subcommunicators including only the processes that need to communicate
between each other, and allowing the use of collective MPI communication rou-
tines, namely, MPI_Allgather. In this way, the processes involved in the bound-
ary conditions computation can perform the dense matrix-vector multiplication
and add the result to the domain computed by the stencil operation.

The GridTools implementation

For creating the second implementation of SEDI, we have extended GridTools.
The computational kernel of the conjugate gradient is still the same as the one
in the pure MPI implementation, however we use the GridTools routines to
perform the virtual matrix-vector operations. Here, dot products are also rep-
resented by a simple stencil kernel of elementwise multiplication followed by
a global reduction performed over all local subdomains: this enables us to ap-
ply the GridTools library and its features in all the computational aspects of the
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conjugate gradient algorithms. The implementation is logically split into two
sections: a prologue and an iteration section. In the prologue, stencil operators,
iteration spaces, storages, and partitioning scheme are defined. The conjugate
gradient steps are translated into different stencils, one for each of the oper-
ations needed in the algorithm, i.e., matrix-vector to compute the residuals,
vector-vector (analogous to the BLAS’s AXPY routine) to update the search di-
rections and the residuals, and dot products to evaluate the scalar coefficients.
In the iterative part, instead, the stencils are finally applied to the distributed
domains defined in the prologue. Here, the explicit calls to the halo commu-
nication routines are performed as well as the communication related to the
evaluation of the boundary conditions, who requires to split the MPI communi-
cator since they are shared by a reduced set of processes.

8.4 Multinode scalability

In this section we present the performance of SEDI on a set of simulated NEFG
matrices. We start by analyzing the scaling of the domain-splitting strategy on
a multinode cluster, then we study the accuracy of the estimates. We do this
in two steps: first, by evaluating the validity of the code by pushing the Krylov
subspace method to operate on the diagonal of the inverse at a tolerance close
to machine precision, and then, by measuring the mean error of the estimates
for realistic tolerances of the conjugate gradient.

8.4.1 Benchmark setup

In order to evaluate the scalability of the code, we designed a dataset of matrices
shaped as the Laplacian, but with additional boundary conditions, structured
as in the NEGF problem in (8.6)), section The domain we considered is
the unitary 3D cube partitioned into a regular 3D grid made by n® equidistant
points for n € {128,256,512,1024}. We fixed the number of random samples
for the estimator (s) to a common number for all the problems, as well as the
number of iterations for the Krylov-subspace method, in order to force the code
to perform all of them, independently on the numerical convergence. By doing
so, we ensure the computational effort to be the same for the different imple-
mentations on each of the test cases even though the numerical results are not
accurate enough (the accuracy will be evaluated later on). The nonzero pat-
tern of the matrices is exactly the one coming from the nanoelectronic device
simulation described in (8.6)), section The values of the nonzeros, how-
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ever, reflect the ones of the Laplacian matrix L for the first part, while the two
self-energy matrices (encoding the open boundary conditions) %' and ¥R are
filled with fictitious values, preserving the symmetry of the stencils (hence, the
stencils). This configuration provides for the difficulty encountered in retrieving
real datasets, guaranteeing at the same time the equivalence in the performance
analysis.

The discrete domain €, is always partitioned into p; x p, X p; orthogonal
parallelepipeds, where the product p = p,p,p; equals the number of MPI ranks.
Once that p > 1 is fixed, the p,’s must be powers of two and are chosen to be “as
balanced as possible,” i.e., for p = 1 MPI rank we have (p;, p,,p;) = (1,1, 1),
and then the smallest number from the right is multiplied by 2 whenever the
number of ranks is doubled. The next configurations are then (1,1, 2), (1,2, 2),
(2,2,2), (2,2,4), and so on. The tests are performed on Piz Daint, a machine
presenting 1431 multicore compute nodes, each of them equipped with two
Intel Xeon E5-2695 v4 @ 2.10 GHz (2 x 18 cores, 64/128 GB RAM) located
at the Swiss National Supercomputing Center. We have empirically observed
that on this machine 4 MPI tasks per node can utilize the compute node while
the scaling still holds. Increasing the task density per node, instead, the scaling
starts to break down because the individual tasks compete for available node-
level memory, degrading in turn the overall performance. This general setting
is valid for both the MPI and the GridTools implementations.

8.4.2 Strong scaling results

As seen in Algorithm the estimation of the diagonal of the inverse
requires the generation of independent random vectors, the application of the
iterative method, and the update of the solution found at the previous iteration.
The solution of the linear systems with random right-hand sides is intuitively
the the most expensive part from the computational point of view, therefore we
focus the performance analysis on this area.

We report strong scaling performance of the MPI and GridTools implemen-
tations in Figures and respectively. We fixed 5 random samples and 50
CG iterations for this tests and report in the plots the time required by the in-
dividual components of the iterative algorithm: application of stencil operator
and boundary conditions, dot products, and halo layers communication. Both
the implementations perform reasonably with the smallest grid size used, 1282,
but only up to 64 MPI tasks. For such a grid size we notice that the dot products
included in the conjugate gradient solver generate a volume of communication
between the nodes that tends to break the scalability when the number of sub-
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domains becomes large. The same behavior can be verified on the 256° grid at
256 tasks for the MPI code and at 128 tasks for GridTools. For larger domain
sizes, instead, we observe nearly ideal linear scaling. Concerning the GridTools
implementation, dot products appear to be the most significant parallelization
bottleneck. The reason is that the library provides tools exclusively for local dot
products, while it is optimized for multiple stencils to be fused together, requir-
ing the user to complete the design of the communication pattern in order to
achieve the global result.

In both implementations, apart from the dot products and stencil computa-
tions, the remaining operations, such as the handling of the OBCs with £’ and
¥R are orders of magnitude lower in terms of compute time, therefore, they are
not critical for the overall performance. This is an extremely interesting result,
since the presence of the open boundary conditions does not affect significantly
the performance of the stencil code. In a matrix-based approach, on the other
hand, the boundary conditions translate into dense submatrices, see (8.6), that
could effect negatively the performance of a direct solver, while in both stencil
implementations they do not worsen the performance. This embodies the main
reason why we chose to explore the stochastic estimation process in NEGF-based
problems.

8.5 Accuracy results

In this section, we validate the implementation and test its accuracy and per-
formance with respect to the exact value of diag(A™') computed by the direct
solver PARDISO. The structure of the matrix used for both accuracy and perfor-
mance is the one introduced in section but the size is sensibly smaller:
the number of nonzeros in the LU factors computed by a direct method, in fact,
reaches almost 290 times the nonzeros of A for n = 256, a number of entries
that sparse direct solvers such as PARDISO cannot manage. We choose then
N = 16°,322,64°,128%, and 256°. For this kind of tests, of course, the bound
on the fixed number of iterations set before in the performance is removed, so
that the code is free to run up to convergence.

As a preliminary result, we compare the PARDISO and SEDI memory con-
sumption together with the PARDISO relative fill-in in Table We under-
line that the introduction of fill-in entries in the matrix factors caused by the
LU-based approach in PARDISO generates a dramatic growth of the memory
requirements. SEDI, on the other hand, thanks to its iterative nature, allows to
save a considerable amount of memory, up to 99%.
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8.5.1 Validity of the implementation

In order to validate the code, we prove the reliability of the computation of the
diagonal entries in a deterministic setup. We force SEDI to compute the esti-
mator on N right-hand sides consisting of the columns of the identity matrix,
e, for k = 1,...,N, and compare the estimates with the diagonal computed
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Table 8.1. PARDISO fill-in and memory usage for PARDISO and the MPI
implementation of SEDI.

Nonzeros PARDISO fill-in Memory [MB]
nnz(A) nnz(I+U) nnz(L+U)

n 06 106 nnz(A) PARDISO  SEDI % saved
16 0.016 (0.094%) 0.3 (1.8%) 17.5 26 49 —
32 0.129 (0.012%) 6.3 (0.59%) 49.1 210 746 —
64 1.040  (0.0015%) 129.4  (0.19%) 124.4 1130 1058 6.8%

128 8.356 (0.00019%) 2247.8 (0.051%) 269.7 17200 1420 91.7%
256  64.099 (0.000024%) 39389.6 (0.014%) 614.5 312000 1907 99.4%

by PARDISO. As expected, we verify that the algorithm converges very quickly
to the diagonal of the inverse varying the tolerance of the Krylov-subspace
method € (see Table . In particular, we see that e = 107° grants a rela-
tive error already on the order of 10712, while ¢ = 1078 is enough to provide
almost the same solution as PARDISO up to machine precision. Additionally,
decreasing e to 107'° does not produce substantial improvement any further.
Although it plays a central role in the deterministic setup, in the following sec-
tion, we will observe that big variations of the tolerance e affect the relative
error of the estimator in a negligible way.

8.5.2 Accuracy of the estimates

In order to measure the accuracy of SEDI, we again compare the error between
the output of SEDI and the diagonal of the inverse computed by PARDISO, for
different numbers of the samples s and tolerance values of the conjugate gra-
dient, €. The results, achieved for three different values of the grid size n, are
reported in Table the average error is computed as

1
ﬂ:ﬁz d 5

j=1 j

(8.7)

where d and d are the exact (computed by PARDISO) and estimated (computed
by SEDI) diagonals of the inverse, respectively; N is the order of the matrix
(N =nd).
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Table 8.2. Relative error between the diagonals computed by PARDISO
(called d) and the ones computed by the deterministic version of SEDI (d),
considering the N = n® columns of the identity as samples. The error is com-
puted as ||d —d I, /1ld|l, and is reported as decreasing values of the tolerance

of the conjugate gradient (€).

Tolerance e
n 1072 107 107° 1078 10710

16 3.75e-04 1.83e-08 1.30e-12 6.86e-16 5.98e-16
32 7.10e-04 4.20e-08 2.89e-12 1.14e-15 9.64e-16
64 1.27e-03 9.85e-08 6.57e-12 1.99e-15 1.64e-15

8.6 Numerical results

We know that the error of the stochastic estimator depends on three parame-
ters: the number s of random vectors considered, the accuracy of the iterative
method adopted (€), and the variance of the estimator (depending on the off-
diagonal values of the inverse matrix). While other works focus on different
heterogeneous types of matrix structures, as in [Bekas et al., 2009; Tang and
Saad, [2012][], the accuracy study presented in this section aims at the estimation
of the average error for the estimator ([3.15]) on NEGF matrices. Notice that, for
completeness, for the case n = 16 the estimates with 6400, 12800, and 25600
samples are reported, although the number of samples exceeds the order of
the matrix (16% = 4096) and, therefore, also exceeds the number of right-hand
sides needed by the application of a deterministic iterative method. For small
values of the grid size, the memory and time requirements for a direct solver
are more than affordable, so PARDISO remains the best approach; however, for
sufficiently large grid size, i.e., for considerably larger matrix size, the stochastic
estimator becomes a useful suitable choice in the NEGF framework, instead.

8.6.1 Independence from the Krylov-subspace tolerance

Table shows how a decreasing tolerance for the Krylov-subspace method
minimally affects the estimator, suggesting that the best practice to improve the
estimates is to increase the number of samples. We also observe that the usage
of a relatively small number of right-hand sides for the stochastic estimator
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Table 8.3. SEDI mean relative error, n = ]%ZJ |(dj —aj)/d]-|, as a function
of the number of samples s and the tolerance €. The underlined numbers
represent the configurations achieving 95% accuracy.

Grid size n 16 (N =16%)
Tolerance € 1072 10 107%
Samples Error n

400 0.0457 0.0461 0.0461
800 0.0330 0.0334 0.0334
1600 0.0232 0.0234 0.0234
3200 0.0167 0.0168 0.0168
6400 0.0116 0.0116 0.0116
12800 0.0083 0.0084 0.0084
25600 0.0058 0.0060 0.0059

32 (N =32%)

400 0.0658 0.0677 0.0677
800 0.0463 0.0476 0.0476
1600 0.0327 0.0336 0.0336
3200 0.0230 0.0236 0.0236
6400 0.0162 0.0167 0.0167
12800 0.0115 0.0118 0.0118
25600 0.0082 0.0083 0.0084

64 (N = 64%)

400 0.0902 0.0989 0.0989
800 0.0628 0.0683 0.0683
1600 0.0438 0.0476 0.0476
3200 0.0308 0.0335 0.0335
6400 0.0218 0.0236 0.0236
12800 0.0155 0.0167 0.0167
25600 0.0110 0.0118 0.0118

can provide interesting accuracy results. For instance, for n = 32, the use of
800 samples, i.e., less than 3% of the size of the matrix, guarantees a mean
relative error smaller than 5% (underlined in Tables and [8.4). The same
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level of accuracy is ensured for n = 16 with 400 samples (ca. 10%) and n = 64
with 1600 samples (<1%), in a fashion that appears to decrease linearly with
respect to the order of the grid n. A more detailed view of mean relative error n
is presented in Figure[8.6} the accuracy presents an initial exponential behavior
as a function of the random samples. The strong dependency of the accuracy on
the number of samples reveals an interesting characteristic of SEDI and suggests
its employment in a parallel multinode framework to best exploit its potential.

Mean relative error ()

1000 0.14

2000

3000 0.12

4000

5000

6000

0.08
7000
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8000
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9000

10000 004

11000

12000 0.02

6 10-8 10—10 10-12 10-14 10—16

CG tolerance (¢)

107

Figure 8.6. Mean relative error (1) of MPI-SEDI on the 32 x 32 x 32 grid as
a function of the number of samples s and the tolerance of the CG method €,
for s = 100,200, ...,12800 and e = 1072,107%,...,107%

8.6.2 Overall time consumption and scalability with respect to
the samples

The overall time required by the pure MPI implementation of SEDI is reported
in Table and it is compared with PARDISO. Both the solvers are required to
perform a complete selected inversion process for the evaluation of the diagonal
of the inverse (for PARDISO, this includes symbolic factorization, factorization,
and evaluation of the inverse entries). We report then the results for a sequential
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Table 8.4. Time consumption for single-threaded PARDISO and SEDI on a
single task for fixed tolerance € = 1072. The underlined numbers represent

the configurations achieving 95% accuracy (cf. Table .

n 16 32 64 128 256
PARDISO
1.72e-01 1.33e+00 5.09e+01 5.57e+03 OOM*
samples SEDI
400 2.24e-01 2.56e+00 2.30e+01 3.81e+02 4.39e+03
800 4.58e-01 4.90e+00 4.59e+01 7.39e+02 8.73e+03
1600  9.15e-01 9.86e+00 9.21e+01 1.49e+03 1.74e+04
3200 1.84e+00 1.92e+01 1.83e+02 3.00e+03 3.45e+04
6400 3.66e+00 3.88e+01 3.67e+02 5.97e+03 6.82e+04
12800 7.31e+00 7.71e+01 7.29e+02 1.19e+04 1.36e+05"

*: Out-of-memory.

T: Estimated time (execution time exceeds the allocation limits on Piz Daint).

version of PARDISO, i.e., using a single OpenMP thread, and MPI-SEDI on a
single MPI rank. The matrices used and the hardware involved are the ones
introduced before in section

Depending on the level of accuracy requested, SEDI is extremely competi-
tive and can easily replace a direct solver. Recalling the example introduced in
the previous section, in fact, we focus again on a 95% accuracy: looking at the
underlined cells in Table we can see how the stochastic estimation frame-
work demands an amount of time in the same order of magnitude as the time
consumed by PARDISO on large enough cases. For instance, on the 322 grid the
stochastic estimator is roughly 4 times slower, while it is roughly 2 times slower
for the 64° one. Assuming a “natural” behavior of the accuracy for larger grid
sizes, we speculate that, for the 1283 grid, the 95% accuracy threshold could be
reached for 3200 samples, i.e., in about % of the time needed by PARDISO.

Finally, We observe a nearly perfect linear dependence between the compu-
tation time and the number of samples. In the previous sections, we analyzed
the scalability of the code with respect to the domain splitting, now it is rea-
sonable to assume a scalable behavior of the stochastic estimator with respect
to the random right-hand sides provided they are independent and identically
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distributed. Looking again at Table [8.4]for a fixed value of n, in fact, we can see
that doubling the number of samples roughly doubles the execution time (the
multiplicative factor is 1.99, on average). This mainly comes from the fact that
each of the right-hand sides is randomly generated and the conjugate gradient
takes roughly the same number of iterations to converge to each solution vector,
on average. Concerning the case n = 256, the time consumed by PARDISO can-
not be reported due to an out-of-memory error (OOM), since the solver requires
more than the 120 GB available on the Piz Daint nodes (see Table[8.1)).



Chapter 9

Conclusions and outlook

In this work we have treated the selected inversion problem and interpreted
it from the point of view of different applications, proposing large-scale algo-
rithms for the evaluation of the diagonal of the inverse of sparse matrices.

We can ideally split the work into two parts, orthogonal to the chapters,
given the different nature of the arguments treated. In the first part of this
work, we approached the problem using a direct solver, based on the LU factor-
ization of the matrix and the Takahashi’s recursive formula. Keeping in mind
the field of application (genetics) and the structure of the mathematical models
it requires, we coupled the sparse formula with a distributed algorithm for the
computation of the Schur-complement. The combination of the two leads to
the formulation of a sparse/dense approach to the evaluation of the diagonal of
the inverse suitable for any dense matrix presenting a large, sparse block. The
performance of the algorithm have been enhanced following two lines of ac-
tion: (i) the use of the block-wise recursive Takahashi’s formula to achieve the
best performance for the dense part, i.e., where the BLAS, PBLAS, and LAPACK
libraries are used; (ii) the formulation of the parallel Schur-complement com-
putation, allowing the distributed evaluation of the Schur-complement block
from different MPI tasks; (iii) the memory- and computation-oriented optimiza-
tion of resources allowing the software to reduce to the minimum redundant
computations, reusing the LU factorization of the sparse blocks computed by
PARDISO in different parts of the code (selected inverse, solution of systems,
computation of the Schur-complement). These aspects completed the design of
the large-scale, scalable, sparse/dense framework for selected inversion (sec-|
[tion 2.7). We analyzed the scaling performance of the solver on sparse/dense
datasets (chapter 6) on the Swiss National Supercomputing Center’s (CSCS)
Cray cluster, up to 400 nodes. The weak scaling tests revealed an almost ideal
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scaling for the distributed parallel Schur-complement evaluation, keeping an
optimal load balance on the different nodes. The strong scaling tests, on the
other hand, showed a general worsening of the performance due to the com-
munication routines and the one-dimensional distribution of the data, however
good enough compared to the direct solution through a sparse solver.

The parallel Takahashi’s scheme have been successfully tested in the Al-
REML framework designed for the estimation of parameters in the Gaussian re-
gression process designed for genomic prediction problems. The sparse/dense
approach was tailored to fit the requirements of the maximum-likelihood opti-
mization algorithm for the prediction of fixed and random environment effects
on SNP markers of plant breeds: the inclusion of marker-by-environment effects
into the datasets introduces a rather high number of equations into the linear
mixed models, leading towards large-scale problems. Fortunately enough, the
inclusion of these effects increases the sparsity of the coefficient matrix, hence
we treat the evaluation of the trace of its inverse, required to compute the gra-
dient of the likelihood function to be maximized, exploiting the sparse/dense
potential of our frameworks.

In the second part, instead, we studied how to evaluate the diagonal of the
inverse of a large, sparse matrix using a stochastic approach. We analyzed the
design of the Hutchinson’s estimator for the trace of a matrix and a state-of-
the-art strategy to extend it to the evaluation of the trace of the inverse. The
combination of the estimator and the Monte Carlo-like method for the sam-
pling of the action of the inverse have been combined in a single framework,
always keeping in mind the application perspective. Considering the NEGF in
quantum device simulations, we have formulated a parallel, scalable stochas-
tic estimation scheme to be suitable for a set of large-scale simulations. The
presence of the open boundary conditions has been considered an obstacle for
state-of-the-art solvers in the treatment of three-dimensional nanotransistors,
causing computational issues and sometimes prohibitive execution times, mem-
ory limitation problems, and expensive simulations. We studied then a parallel
matrix-free version of the problem (SEDI: stochastic estimation of the diagonal
of the inverse) based on a Krylov-subspace solver, able to overcome the limi-
tations given by the boundary conditions and allowing an agile treatment of
large-scale datasets.

In we have established the scaling performance and accuracy of
the stencil-based SEDI on a set of simulated data. The stencil-like structure of
the NEGF matrices inspired a stencil-based formulation of the conjugate gra-
dient method for the solution of linear systems, where the matrix-vector and
vector-vector operations are expressed by applying appropriate stencils to a grid
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of numerical values. The tests made on SEDI and the study of its accuracy in
function of the number of random samples required to estimate the diagonal
revealed good results, achieving a 95% accuracy by solving a number of linear
systems in the order of 10% of the matrix size. We also analyzed the paralleliza-
tion of two different implementations, based on a domain-splitting technique,
revealing close to ideal scaling for increasing values of the matrix size on up to
1024 MPI tasks on 256 nodes the CSCS Cray supercomputers. We compared
the SEDI’s time requirements with PARDISO, proving that the execution time
for SEDI can be kept in the order of magnitude of PARDISO’s time for the 95%
accuracy case. Finally, we proved that our framework grants a memory reduc-
tion up to 99.4% (compared with PARDISO), allowing the treatment of three-
dimensional NEGF problems on structured grids presenting up to billions of
grid points (1024 and more), avoiding the memory bottlenecks that direct LU-
based solvers may encounter during the factorization phase. The solid scaling
performance, the ease of parallelization, and the small memory requirements
make SEDI a valid alternative to the direct solvers and is sometimes the only
one suitable.

In conclusion, in this work we have provided two novel, application-oriented
strategies for solving heterogeneous selected inversion problems by combining
together state-of-the-art techniques for the treatment of sparse matrices, and
extending them for approaching large-scale data. Both the parallel Takahashi’s
algorithm and the parallel stochastic estimator for the diagonal of the inverse
contribute to the field of large-scale selected inversion.

In light of the results, we can focus the attention of the following main topics
to be further analyzed to extend them.

First, considering the parallel Takahashi’s performance, we may speculate
the possibility to enhance the scaling by reducing the communication between
nodes. The algorithm might benefit from the introduction of communication-
avoiding factorization in the parallel treatment of the Schur-complement. Addi-
tionally, a general redesign of the communication pattern among the processes
may be useful to increase the scaling factors, so far limited by the ScaLAPACK
performance.

Second, the considerations made while designing the stochastic estimator
for the diagonal of the inverse can be investigated in order to extrapolate heuris-
tics for optimizing the execution time. For a given, required accuracy of the
estimates, the study of the spectral properties of the NEGF matrices, and other
stencil-structured ones, might suggest an optimal number of samples and toler-
ance for the Krylov-subspace method in order to achieve said accuracy. Second,
a new framework for the parallel computation of several samples might be de-
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signed for exploit the scalability with respect to the samples.
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