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ABSTRACT 

This work presents first-principle calculations on the pressure-dependence of the stabilities, 

structures, and electronic properties of several polymorphs of ZnV2O6 under the pressure range 0-30 

GPa. These properties are analyzed and discussed in detail using the different parameterizations of the 

exchange-correlation functional (B3LYP, HSE06, and PBE), and the results are compared with 

available experimental data. An extensive search process was carried out on the potential energy 

surface for a set of twelve possible polymorphs. Ten of them are stationary points, but only five have 

positive frequency values in the range of 0-30 GPa, i.e., monoclinic brannerite (C2/m and C2), 

orthorhombic columbite (Pbcn), trigonal CaAs2O6-type (P321), and triclinic NiV2O6-type (P1̅). The 

monoclinic ThTi2O6-type (C2/c) phase presents a very low imaginary frequency around 50 cm-1. 

Orthorhombic SrV2O6-type and BaV2O6-type, tetragonal trirutile and trigonal PbSb2O6 -type structures 

show several imaginary negative frequencies between -400 and -100 cm-1. These imaginary 

frequencies are indicative of structural instabilities. All attempts to try to converge the calculations to 

obtain the MoLa2O6-type and HgV2O6-type polymorphs, by using the three functionals, have been 

unsuccessful. For both brannerite,ThTi2O6-type, columbite, CaAs2O6-type, NiV2O6-type structures 

numerical and analytical fittings were performed to obtain the lattice parameters, the bulk modulus, B, 

and their pressure derivative, B′, and the energy-volume relationship of phases are analyzed. 

Vibrational calculations were performed at each pressure for each polymorph and compared with 

available experimental data. 

This study reports, for the first time, a complex and unexpected structural and chemical 

behavior as a function of pressure. An analysis of the results shows that brannerite monoclinic 

polymorphs present similar energies, suggesting that both structures may coexist in the range of 

pressures that were studied. Theoretical prediction reveals that, as the pressure increases, the most 

stable polymorph of ZnV2O6 moves from the monoclinic phase, C2/m (and C2), to the orthorhombic 



columbite structure (Pbcn) and the corresponding transition pressure is computed to be 5 GPa at the 

B3LYP level; however, using the HSE06 and PBE functionals, the FeNb2O6-type structure is the most 

stable polymorph from ambient pressure up to 30 GPa. In addition the calculations show that the 

ThTi2O6-type phase (C2/c) becomes more stable than the other two monoclinic structures above 15, 

13, and 8 GPa using the B3LYP, HSE06, and PBE functionals, respectively. The findings reported 

here indicate that the method used to predict relative phase stabilities and phase transitions should be 

chosen carefully, and that the results should be scrutinized with a critical eye. We analyze the variations 

of different vibrational frequencies and V−O and Zn−O bond lengths as pressure is applied, and the 

results confirm that Badger’s lineal relationships were not found for the monoclinic polymorphs (C2/m, 

C2, and C2/c) due to the presence of a charge transfer process from the ZnO6 to the VO6 polyhedra. In 

addition, we determined the stability of ZnV2O6 against binary oxides (VO2, V2O5, and ZnO), or metals 

(Zn and V) and oxygen, and the results reveal that the decomposition channels are not energetically 

feasible. The present work provides a new perspective on the variations of crystal structures and 

physical properties at high pressure in ZnV2O6 polymorphs. With the wealth of data presented, this 

study aims to encourage further basic and experimental research on an interesting case of ZnV2O6-

based materials with novel properties that may be the basis of important innovations for industrial 

applications.  

 

 

 

 

  



1 Introduction  

 

The response of materials to pressure is a growing scientific domain, especially in condensed-

matter physics, crystal chemistry, geophysics, biology, and materials science, for the analysis of new 

phenomena1-4 and it is an attractive area for fundamental theory and simulations.3,5-15 By applying 

pressure, the physical and chemical properties of condensed matter can be significantly altered due to 

the fact that the atoms approach each other by modifying the interatomic distances with concomitant 

changes in the local environment and bonding patterns, which may lead to the formation of new 

structures (polymorphs) through phase transitions.16-18 Therefore, high pressure can continuously 

modulate crystal and electronic structures, revealing the underlying transformation mechanism and 

giving rise to new materials with unexpected physical and chemical properties that are not accessible 

under ambient conditions.19-21 Knowledge of how these basic interactions within the system evolve 

under extreme conditions is fundamental to help understand their technological applications.  

High pressure experiments on materials, such as static pressure using a diamond anvil cell22 

and dynamic pressure using shock waves,23 are of considerable interest from both a basic and an 

applied point of view. However, high pressure is not easy to achieve/access and control in X-ray 

diffraction experiments using these techniques. In this context, using and applying reliable theoretical 

methods which simulate such properties would help significantly. Atomic-level information is the key 

to the exploration of the properties of materials. The utilization and application of reliable theoretical 

methods and computational models which simulate such properties would be a valuable aid, in 

particular by performing first-principles calculations, mainly within the framework of density 

functional theory (DFT).16,24 In this context our group is engaged in a large research project devoted 

to finding crystal structures under pressure on different complex metal oxides such as Zn2SnO4,
25 

CaSO4,
26 Ag2MoO4,

27 and AgVO3.
28  

The existence of at least two different crystal structures of the same compound, known as 

polymorphism, is well known.29 Metavanadate MeV2O6 (Me = divalent metal ions) compounds at 

normal pressures have the brannerite structure and a rich variety of possible polymorphs that are 

dependent on pressure and temperature, i.e., orthorhombic columbite (Pbcn),30 tetragonal trirutile 

(P42/mmm) and trigonal PbSb2O6 (P3̅1m) structures have been reported.31 Beck32 developed the 

coordination number rule and the rule of hardness to rationalize inorganic coordination structures and 

the available structures for the compounds with AB2O6 stoichiometry, as occurs in ZnV2O6, and this 

author proposes the following polymorphs: CaAs2O6 (P321),33 FeNb2O6 (Pbcn),34 CaV2O6 (C2/m),35 



SrV2O6 (Pnma),36 BaV2O6 (C222),37 HgV2O6 (Pbca)38 NiV2O6, (P1̅),39 MoLa2O6 (I4̅2m),40 ThTi2O6 

(C2/c),41 and ThTi2O6 (C2/m).42  

ZnV2O6 is a representative member of the AB2O6 family31 and has been studied intensively due 

to its technological importance, and very recently Butt et al.43 and Sun et al.16 reported large-scale 

synthesis of ZnV2O6 nanostructures, highlighting its potential as a material for energy 

storage/conversion. Their monoclinic brannerite-type structure had been refined in space group C2 by 

earlier work, but subsequent studies showed that a reasonable description of the “average” structure 

should be achieved in the centrosymmetric space group C2/m.44 More recently, Tang et al.45 concluded 

that subtle changes induced by an external pressure are capable of causing a reversible structural phase 

transition at ZnV2O6 between the brannerite C2 and C2/m polymorphs.  

The lack of systematic investigations on the solid state chemistry, energetic stability, and 

corresponding properties for all the available polymorphs of ZnV2O6 greatly precludes a full 

understanding of the structural determination and their corresponding physical and chemical 

properties. Thus, the unusual transition behaviors in the corresponding polymorphs with unusual 

properties drew our attention and led us to investigate their unopened transformation phases over a 

broad pressure range, with the aim of exploring their novel characteristics. 

Herein, we report on the first extensive quantum-chemical calculations on the geometry, 

electronic structure, and relative stability of all available polymorphs of ZnV2O6 in a range of pressure 

from 0 to 30 GPa. These compounds are theoretically characterized by calculating the geometry and 

the electronic and vibrational properties using first principles DFT. The influence of different 

parameterizations of the exchange-correlation functional (B3LYP, HSE06, and PBE) on the properties 

investigated is discussed in detail, and the results are compared with available experimental data. The 

different bond compressibility and the possible phase transformations, explored by analyzing the 

respective equations of state (EOS) and obtaining the corresponding bulk modulus and transition 

pressures, are studied. The characterization the electronic structures, including the density of states 

(DOS) and band structures have been calculated, and we also perform an analysis of the energetic 

stability of the decomposition channels toward the corresponding metals and oxygen and binary metal 

oxides. Such a systematic approach is especially important for ZnV2O6 because the energetic 

separation and the structural differences between the various polymorphs are small and therefore 

potentially sensitive to details of the computational procedure. The results obtained here can enrich 

the structural properties of ZnV2O6 based materials but also are beneficial to provide an important 

reference for their application in practice. We believe that our study can further stimulate experimental 

and theoretical efforts on ZnV2O6 polymorphs.  



The paper is organized as follows. Section 2 describes the computational details. Our results 

are discussed in four separate subsections within section 3: structural, energetic, vibrational, and 

electronic properties. The main conclusions are summarized in the last section, section 4. 

 

2 Computational details  

First-principles total-energy calculations were carried out within the periodic DFT framework 

using the CRYSTAL14 program package 46. The density functional approximations applied were the 

popular B3LYP 4748 and HSE06 49 hybrid functionals, as well as the widely used PBE functional.50 Zn, 

V, and O centers have been described by 86-4111d41G, 86-411d3G, and 6-31d1G all electron basis 

sets, respectively, which are available at the CRYSTAL basis-set site.51  

The diagonalization of the Fock matrix was performed on adequate k-point grids in the 

reciprocal space, which depend on the phase under treatment, using Pack–Monkhorst/Gilat shrinking 

factors (IS=ISP=4), the total number of k-points being 24, 24, 68, 27, 64, 64, 52, 30, 40, 34, 34, and 

112 for the C2/m, C2, C2/c, Pbcn, Pnma, Pbca, C222, I4̅2m, P42/mmm, P321, P3̅1m, and P1̅ ZnV2O6 

structures, respectively. In addition, 27, 12, 8, and 12 k-points were used for the V2O5 (Pmmn), ZnO 

(P63mc), V (Im3m), and Zn (P63/mmc) phases, respectively. The use of a different number of k-points 

is because of the different symmetry of the corresponding unit cells. Thresholds controlling the 

accuracy of the calculation of Coulomb and exchange integrals were set to 10-8 (ITOL1 to ITOL4) and 

10-14 (ITOL5), which ensure a convergence in total energy better than 10-7 hartree in all cases, whereas 

the percentage of Fock/Kohn-Sham matrices mixing was set to 40 (IPMIX = 40).46 

In order to take into account van der Waals interactions, which can in fact play a significant 

role in this type of systems, the semiempirical Grimme extension of the standard DFT method 

(DFT+D) is an effective way of incorporating dispersion interactions, and it has proven its ability to 

provide reliable modeling of geometries and a better description of this type of interaction in metal 

oxides. Therefore, the empirical correction scheme to energy that considers the long-range dispersion 

contributions proposed by Grimme52 and implemented by Bucko et al.53 for periodic systems was used. 

The basic strategy in the development is to restrict the density functional description to shorter electron 

correlation lengths scales and to describe situations with medium to large interatomic distances by 

damped 𝐶6
𝑖𝑗

· 𝑅𝑖𝑗
−6 terms, where 𝐶6

𝑖𝑗
 denotes the dispersion coefficient for atom pair ij, and 𝑅𝑖𝑗 is the 

corresponding interatomic distance.52 

The choice of the exchange–correlation functional is of critical importance here as it has a 

significant influence on the properties obtained. (C. Freysoldt, B. Grabowski, T. Hickel, J. 

Neugebauer, G. Kresse, A. Janotti and C. G. van de Walle, Rev. Mod. Phys., 2014, 86, 253). To study 



the influence of different approximations for exchange and correlation on the DFT results for ZnV2O6, 

we performed a complete structure optimization by using the B3LYP, HSE06, and PBE functionals. 

The electronic structures, including the DOS and band structures, were calculated based on the 

optimized geometries. The vibrational frequencies calculation in CRYSTAL was performed at the 

point within the harmonic approximation, and the dynamic matrix was computed by the numerical 

evaluation of the first derivative of analytical atomic gradients. The Raman intensities were obtained 

by a coupled-perturbed Hartree-Fock/Kohn-Sham approach calculation under Placzeck 

approximation54 and their values were normalized to the most intense peak. 

In this work, we characterized the mechanical properties of the structures considered by 

investigating their bulk moduli. The bulk modulus describes the ability of an object to change its 

volume under the influence of uniform hydrostatic compression. The optimization followed a Quasi-

Newton scheme. Gradients were evaluated every time the total energy was computed and the second 

derivative matrix (i.e., Hessian matrix) was built from the gradients. The default choice for the initial 

Hessian matrix was obtained from a Hessian model, as proposed by Schlegel and updated by using the 

Broyden-Fletcher-Goldfarb-Shanno algorithm.55-59 All the structures were fully relaxed at the different 

pressures whenever possible (from 0 to 30 GPa) to their equilibrium configuration through the 

calculation of the forces on atoms and the stress tensor. In the relaxed configurations, the forces on the 

atoms were less than 0.0001 hartree/bohr = 0.005 eV/Å, and deviations of the stress tensor from a 

diagonal hydrostatic form were less than 0.1 GPa. An explicit estimation of the Pulay forces are not 

available for the time being in the CRYSTAL14 version, yet we are confident about our results because 

the Pulay stress is partly neglected when using a relatively large basis set, such as in the present work, 

as stated in other studies.60 The mechanical stability for the ThTi2O6-type phase (C2/c) was analyzed 

by calculating the corresponding symmetrized elastic constant at several pressures. From these elastic 

constants we applied the Born criteria61 for the confirmation of the stable structure. 

The CRYSTAL program can perform an automated scan over the volume to compute energy 

E vs. volume V curves that are then fitted to the third-order Birch-Murnaghan (BM) EOS.62 For each 

volume, a full V-constrained geometry optimization was performed. As a result, the pressure 

dependence of the atomic and electronic structure was determined, such as zero pressure bulk modulus, 

B0, and its pressure derivative, B0’, values as well as the volume/pressure dependence of the total 

energy and enthalpy. Following this procedure, enthalpy−pressure curves were obtained for the three 

ZnV2O6 polymorphs and the corresponding values of pressure for induced phase transitions were 

calculated. 



To consider the effect of pressure on the vibrational-frequencies of this system, we optimized 

geometrical parameters and internal positions of all phases, at a number of fixed external pressures. 

Three types of decomposition channels were studied and the corresponding decomposition enthalpy, 

∆𝑑𝐻0, at ambient temperature was calculated using the following equations:  

(i) Formation of metal oxides 

∆𝑑𝐻0 = ∑ 𝐻¡
0

𝑚𝑒𝑡𝑎𝑙 𝑜𝑥𝑖𝑑𝑒𝑠

¡
− 𝐻𝑍𝑛𝑉2𝑂6

0  

(ii) Formation of metal oxides, metals, and oxygen 

∆𝑑𝐻0 = ∑ 𝐻¡
0

𝑚𝑒𝑡𝑎𝑙𝑠 + 𝑚𝑒𝑡𝑎𝑙 𝑜𝑥𝑖𝑑𝑒𝑠

¡
+ 𝐻𝑂2

0 − 𝐻𝑍𝑛𝑉2𝑂6

0  

(iii) Formation of metals and oxygen 

∆𝑑𝐻0 = ∑ 𝐻¡
0

𝑚𝑒𝑡𝑎𝑙𝑠

¡
+ 𝐻𝑂2

0 − 𝐻𝑍𝑛𝑉2𝑂6

0  

where 𝐻𝑖
0 = (𝐸𝐸𝐿 + 𝐸0 + 𝑝𝑉). Here, 𝐸𝐸𝐿 is the total electronic energy, 𝐸0 is the zero point energy, and 

for both metal oxides and single metals the most stable solid polymorphs at ambient pressure and 

temperature were considered in our calculations. The equilibrium structures were obtained by 

optimizing all the geometric parameters. 

To minimize errors due to incorrect estimation of the O2 binding energy, which was significantly 

overestimated by 1-1.5 eV when the standard DFT functionals were used,63-65 we employed a water 

reference instead of a molecular oxygen-based reference,66 following the equation: 
1

2
𝐻𝑂2

0 = 𝐻𝐻2𝑂
0 −

 𝐻𝐻2

0 . 

 

3 Results and discussion  

3.1 Searching ZnV2O6 polymorphs 

First, we performed an intensive search process for the characterization and analysis of the 

possible polymorphs of ZnV2O6, some of which were found experimentally while others have been 

proposed in the bibliography.16,30-32,43-45 The following twelve polymorphs were studied at the B3LYP, 

HSE06, and PBE computational levels: orthorhombic (C222, Pbcn, Pnma, Pbca), monoclinic (C2, 

C2/m, and C2/c), trigonal (P3̅1m and P321), tetragonal (I4̅2m and P42/mmm), and triclinic (P1̅). The 

results can be summarized as follows: the C2, C2/m, Pbcn, P321, P1̅, C2/c, Pnma, C222, P42/mmm 

and P3̅1m were localized and characterized as stationary points in the potential energy surface (PES), 

whose first derivative of the energy with respect to the nuclear coordinates was zero, while the second 



derivatives of the energy (which are proportional to the square root of the vibrational frequency) 

presented positive (real) values for the C2, C2/m, Pbcn, P321, and P1̅ polymorphs and they were 

minima in the range of pressures that were studied: 0-30 GPa. The C2/c polymorph displays one 

imaginary frequency around a very low value of about -50 cm-1, with the three functionals. The Pnma, 

C222, P42/mmm, and P3̅1m polymorphs presented several imaginary frequencies in the range of -400 

to -100 cm-1, except Pnma, which did not converge with any of the three functionals at pressures in 

the range 15-30 GPa. These imaginary frequencies associated to negative curvatures of the PES are 

indicative of structural instabilities. Any attempt to try to converge the calculations to obtain the I4̅2m 

and Pbca polymorphs, by using the three functionals, has been unsuccessful. These results will be 

analyzed and discussed in detail in the next subsections. 

 

3.2 Structural properties 

Calculated parameters of the monoclinic C2/m, C2 and C2/c, orthorhombic Pbcn, trigonal 

P321, and triclinic P1̅ structures together with the available experimental data are reported in Table 1, 

while polyhedral representations of these six structures are depicted in Figure 1. In addition, atomic 

positions for these structures are collected in the supporting information (Table S1).  For the Pnma, 

C222, P42/mmm, and P3̅1m polymorphs, the corresponding geometrical parameters and polyhedral 

representations are shown in the supporting information (Table S2 and Figure S1). 

Insert Table 1 and Figure 1 

For the sake of simplicity, the results of the B3LYP calculations are discussed first, and when 

discrepancies with respect to the results obtained with the other two functionals are detected, the 

corresponding differences will be commented on. In the monoclinic C2/m structure (Figure 1a) the Zn 

ions are octahedrally coordinated forming ZnO6 clusters and the V cations have an irregular six-fold 

coordination, VO6, while the O ions form a distorted cubic close-packed network. The distorted ZnO6 

clusters present two types of O anions, O1 and O2, with different values of the Zn-O distances, while 

the distorted VO6 present five different values of V-O: V-O1, where O1 are coordinated to both Zn and 

V cations, O1´, two identical V-O2´, O3´ and O4´ (see Table 2). The ZnO6 octahedra linked by their 

edges form anionic rows along the b axis, and the VO6 octahedra joined by opposite vertices form 

chains also running parallel to the [010] direction and link the anionic layers.  

Insert Table 2 

A comparison of the reported values of monoclinic C2 and C2/m polymorphs shows that the 

both structures present similar geometries, and C2 is just a distortion from C2/m. (see Figure 1a and 1b, 



and Table 2). The monoclinic C2/c structure (Figure 1c) presents layers of distorted VO6 octahedra in 

the (011) plane joined by distorted ZnO6 octahedra along the [100] direction. There are three different 

Zn-O distances: Zn-O1, Zn-O2 and Zn-O3, while the distorted VO6 octahedra present five different V-

O distances (see Figure 1c and Table 2). The oxygen anions O1 and O3 belong to the local coordination 

of both Zn and V cations (see Figure 1c). In the orthorhombic structure Pbcn (Figure 1d and Table 2) 

the ZnO6 octahedra, linked by the edges, form anionic rows along the [011] direction, whereas the VO6 

are also linked by the edges and are parallel to the [011] direction. ZnO6 clusters are distorted with 

three different Zn-O distances (Zn-O1, Zn-O2 and Zn-O3), while VO6 octahedra present six different 

V-O distances. The O1 and O3 anions are located at the common vertex shared by both distorted ZnO6 

and VO6 octahedra (see Figure 1d). 

The trigonal P321 polymorph (Figure 1e) is composed of alternate parallel layers of ZnO6 and 

VO6 triangular prisms, the ZnO6 being linked by the vertices with an array of triangular VO6 prisms 

joined to each other by the edges running parallel to the [001] direction. There are six equal Zn-O1 

distances, and two different V-O distances (V-O1 and V-O1’). The O1 and O1’ anions share both ZnO6 

and VO6 triangular prisms. In the triclinic P1̅ structure (Figure 1f) there are two different ZnO6 

octahedra linked by the edges forming rows along the c axis, joined to one another by chains of VO6 

and VO4 polyhedra also running parallel to the [001] direction.  

By fitting our theoretical B3LYP results to a third-order BM EOS for the C2/m phase, the 

following values have been calculated: bulk modulus: B0 = 146.74 GPa, and B0’ = 5.11, to be compared 

with those obtained from experimental data 45 B0 =147 GPa and B0’ fixed to 4. It is important to remark 

that we find that the cell parameters are overestimated (a= 9.296 Ǻ, b=3.592 Å, c= 6.579 Å, and β 

=112.87º) and Grimme’s correction is needed to obtain values (a=9.242 Ǻ, b=3.528 Å, c= 6.573 Å, 

and β =111.13º) in better agreement with the reported experimental data (see Table 1 (a)). 

For the C2/m polymorph, the values of the optimized lattice parameters differ from the 

experimental values44 by less than 0.25%, 1.08%, and 2.28%, at the B3LYP, PBE, and HSE06 levels, 

respectively. Table 1 (b) displays the calculated structural parameters of the C2 phase (a= 9.240 Ǻ, 

b=3.529 Å, c= 6.574 Å, and β =111.05º at the B3LYP level), which are very similar to those obtained 

for the C2/m phase and are also in good agreement with the experimental data. We obtain a bulk 

modulus B0 = 137.25 GPa, and B0’ = 6.24 for the C2 polymorph. The results presented in Table 1 (d) 

show that the calculated values of the structural parameters for the orthorhombic Pbcn phase also agree 

well with the experimental values, 0.48%, 0.73%, and 1.81% at the PBE, B3LYP, and HSE06 levels, 

respectively, and an analysis of the optimized calculated parameters shows that the results obtained at 

the B3LYP and PBE levels are very close (see Table 1 (c, e, f)), the compressibility of the P321 and 



C2/c polymorphs being similar to that of the C2/m phase, whereas the P1̅ phase is slightly more 

compressible.  

The Pbcn, P321, C2/m, C2, C2/c and P1̅ polymorphs have been optimized at different 

pressures, and the calculated B3LYP values of interatomic distances are listed in Table 2. An analysis 

of the results reveals that similar values of both C2/m and C2 monoclinic space groups can be sensed. 

In the C2/m, C2, and C2/c monoclinic structures, the V cations show a 5 + 1 coordination with the six 

nearest oxygen ions, whereas the Zn cations always present a less distorted octahedral coordination, 

both ZnO6 and VO6 polyhedra being slightly more distorted in the C2 and C2/c phases.  

In the case of the orthorhombic Pbcn, we also find a 5 + 1 local coordination around the V 

cations and the values of the V-O distances are in the range 1.663–2.223 Å, while in the C2/m, C2, and 

C2/c phases, the corresponding values are in the range of 1.662–2.447 Å, 1.662–2.446 Å and 1.702–

2.172 Å, respectively. The ZnO6 octahedra of the Pbcn phase are slightly more distorted than those of 

the monoclinic structures. The trigonal P321 phase presents an ordered six-fold coordination around 

the Zn cations with a Zn-O distance of 2.143 Å at ambient pressure and a 3 + 3 local coordination 

around the V cations with two different V-O distances of 1.721 and 2.100 Å, respectively. The triclinic 

P1̅ structure presents three different types of polyhedra around the V cations, two of them with 5 + 1 

coordination (noted as VO6-1 and VO6-2 in Figure 1f) with the values of the V - O distances in the 

range of 1.608–2.353 and 1.616–2.315 Å, respectively, and one VO4 distorted tetrahedra with four 

different V-O distances between 1.666 and 1.779 Å. There are also two different ZnO6 polyhedra, one 

of them with 3 different Zn1-O distances between 2.031 and 2.052 Å, and the other with 6 different 

Zn2-O distances in the range of 2.015–2.167 Å. 

The axial compressibility of different polymorphs has been explored being the variation of the 

cell parameters with the pressure is not isotropic. As we can see in Table 2 the values of the V-O and 

Zn-O distances decrease monotonically as a function of pressure. We calculated the bond 

compressibility, , defined as: −
1

𝑑((𝑍𝑛/𝑉)𝑂)

𝜕 𝑑((𝑍𝑛/𝑉)𝑂)

𝜕𝑃
, where d((Zn/V)O) are the (Zn/V)-oxygen 

distances from the values in Table 2. As expected, the compressibility of the longest V-O4’ distance is 

higher for the C2/m (and C2) monoclinic phase than that of the short V-O(1-3’) distances. In the case 

of the C2/c monoclinic phase the compressibility of the largest V-O4’ bond is also higher than the other 

short V-O(1-3’) bonds but with a lower value with respect to the other two monoclinic structures, C2/m 

and C2, the VO6 octahedra being less distorted in this case. For C2/m (and C2) Zn-O the bonds are 

also less compressible than the V-O4’ bond but more compressible than the rest of the V-O(1-3’) bonds. 



For the Pbcn polymorph, the V-O5’ bond is more compressible than the other V-O(1-4’) bonds, 

while the Zn-O3 distance is the most compressible, followed by the V-O5’ distance (see Table 2 and 

Figure 1d). At the P321 polymorph, the Zn-O bonds present a higher compressibility than the V-O 

ones. In the P1̅ structure, the Zn2-O6 bond of the more distorted ZnO6-2 octahedra is the most 

compressible followed by the long V(1,2)-O8 bonds of both VO6-1 and VO6-2 octahedra.  

In Table 2 we present the pressure variation of the Jahn Teller (JT) distortion parameter, 𝜎𝐽𝑇 , 

defined as:67 𝜎𝐽𝑇(𝑍𝑛/𝑉) = √∑ (𝑑((𝑍𝑛/𝑉)𝑂)𝑖 − 𝑑((𝑍𝑛/𝑉)𝑂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))26
𝑖=1   (where 𝑑((𝑍𝑛/𝑉)𝑂)𝑖 are the six 

metal-oxygen distances of the (Zn/V)O6 octahedra and 𝑑((𝑍𝑛/𝑉)𝑂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) is the average (Zn/V)O distance). 

From the optimized distances we found that the 𝜎𝐽𝑇 for the VO6 octahedra in both the C2/m and the 

C2 monoclinic phases are reduced from 0.667 Å at ambient pressure to 0.467 Å at 30 GPa. Hence, 

compression induces a 30% decrease in the VO6 JT distortion whereas the ZnO6 JT distortion is almost 

insensitive to pressure, showing values of around 0.34 Å (C2/m and C2). The 𝜎𝐽𝑇 for the VO6 octahedra 

in the C2/c monoclinic phase is reduced by 20% from 0.451 at ambient pressure to 0.356 Å at 15 GPa 

and an additional 14% reduction to 0.296 Å at 30 GPa, in contrast to the ZnO6 polyhedra, which show 

a very low 𝜎𝐽𝑇. 

For the Pbcn orthorhombic phase, the value of VO6 𝜎𝐽𝑇 in the same pressure interval is reduced 

by 20%, lower than in the monoclinic structure. This result can be associated with the smaller 

compressibility of the V-O6 bond (see Table 2), its values being 0.484 Å at ambient pressure and 0.384 

Å at 30 GPa. Orthorhombic ZnO6 𝜎𝐽𝑇 also decreases with pressure, its values varying from 0.224 Å at 

ambient pressure and 0.202 Å at 5 GPa to 0.153 Å at 30 GPa.  

The trigonal P321 phase has six equal Zn-O distances, and its corresponding 𝜎𝐽𝑇 is zero, while 

the two different (3+3) V-O distances lead to a VO6 𝜎𝐽𝑇 of 0.464 Å at ambient pressure and 0.343 Å 

at 30 GPa.  

The results reported in Table 2 show that the two different ZnO6 𝜎𝐽𝑇 of the P1̅ structure present 

an opposite behavior, the more regular one presents very low 𝜎𝐽𝑇 , which increases by 78% up to 30 

GPa, while in the more distorted ZnO6 𝜎𝐽𝑇 decreases by 79%, having a value of 0.026 Å at 30 GPa. 

Conversely, the VO6-1 and VO6-2 polyhedra show a reduction of 𝜎𝐽𝑇 of 24% and 20% in the overall 

range of pressures studied.  

 

3.3 Energetics 



The total energy for the studied phases, its variation relative to the C2/m structure as a reference, 

and the volume per formula unit calculated at the B3LYP level are presented in Table 3. The enthalpy 

variation relative to the C2/m structure, as a reference at the B3LYP level, ∆𝐻, as a function of pressure 

for the C2/m, C2, C2/c, Pbcn, P321, and P1̅ structures, as well as that of the sum of V2O5 and ZnO 

oxides, are depicted in Figure 2. 

Insert Table 3 and Figure 2 

An analysis of the results from Figure 2 shows that the ∆𝐻 − 𝑃 curves of the C2/m and C2 

monoclinic structures are very close to each other; therefore, both monoclinic structures may coexist 

in the range of pressures studied. B3LYP results indicate a pressure-induced transition between the 

monoclinic and the orthorhombic Pbcn structure at 5.0 GPa, and also show that above 15 GPa the C2/c 

phase becomes more stable than the other two monoclinic C2/m and C2 structures. The enthalpy of 

columbite Pbcn structure presents a sharp relative stabilization with respect to the brannerite C2/m due 

to sudden volume decreases. In contrast, the HSE06 and PBE functionals reveal that the orthorhombic 

phase has the lowest enthalpy in the pressure range from 0 to 30 GPa, whereas C2/c presents lower 

enthalpy than the other two monoclinic structures (above 13 GPa and 8 GPa, respectively). The trigonal 

P321 always has the highest enthalpy of all the polymorphs studied, and that of the triclinic P1̅ is 

always slightly superior to that of the C2/m structure. 

A note of caution is mandatory here. DFT is the most renowned computational approach to 

study and characterize solids68-70 but for its success it relies on the availability of good approximations 

to the unknown exchange-correlation energy functional. However, it is well known that the choice of 

an accurate parameterization of the ground state local density approximation to this functional plays a 

decisive role in the ensuing rise in DFT.71 In particular, the exchange-correlation functional as well as 

the fraction of exact exchange in various hybrid functionals alter the phase stability of oxide systems, 

72-79 as occurs in the present study, in which the relative energies between the monoclinic and 

orthorhombic polymorphs as a function of an external pressure are very dependent on the functionals 

employed. However, the optimized geometries and values of the calculated vibrational frequencies 

obtained by using the three functionals are similar.  

To calculate the energetics for the processes of ZnV2O6 decomposition into their constituent 

binary oxides, metals, and oxygen, 𝑉2𝑂5, 𝑉𝑂2, 𝑍𝑛𝑂, 𝑉 and 𝑍𝑛 structures have been optimized from 

ambient pressure up to 30 GPa. Table 4 reports the calculated values for the variations in enthalpy, 

∆𝑑𝐻0 at ambient pressure and temperature for the dissociation channels that were investigated. An 

analysis of the results shows that all channels have positive ∆𝑑𝐻0 values, and the decomposition 



channel 𝑍𝑛 𝑉2𝑂6 →   𝑉2𝑂5 + 𝑍𝑛𝑂 presents the lowest value (0.72 eV) of all the decomposition 

channels investigated. Therefore, for this process we studied the stability of ZnV2O6 against the binary 

oxides V2O5 and ZnO at different pressures.  

Insert Figure 3 and Table 4 

Figure 3 shows that the sum of the volumes of the ZnO and V2O5 is always greater than the 

C2/m ZnV2O6 structure with a V value of 14.82 Å3 at ambient pressure. On the other hand, the 

volumes of the Pbcn structure are lower than those of the monoclinic structure for all pressures, the 

decrease in the corresponding volume at 5 GPa being 5.7%. At 15 GPa there is a decrease in volume 

of 4.2% from the C2/m to C2/c structure. 

 

3.4 Vibrational properties  

Lattice vibrations and their behavior under pressure provide useful information regarding 

structural instabilities and phase transformations. Group theoretical considerations lead to the 

following vibrational representation at the  point for the C2/m structure in the standard notation:  

= 8Ag(Raman active) + 4Bg(Raman active) + 4Au(IR active) + 8Bu(IR active) 

to which the acoustic modes (Au + 2Bu) should be added.80 

As described above, the frequency calculations are performed without taking into account the 

anharmonicity effects. This fact and the well-known over-estimation in the frequency values obtained 

with the B3LYP method can explain the discrepancy with the experimental values. The calculated 

values for the frequencies of the Raman-active modes were corrected by a scaling factor of 0.92; the 

intensities as well as the Grüneisen parameters, 𝛾 = [
𝐵0

𝜔0
⁄ ] 𝑑𝜔

𝑑𝑃⁄  have been calculated with the B0 

value reported in Table 2, and the corresponding values are listed in Table 5 together with the available 

experimental data. The frequencies of Raman-active modes for the C2, C2/c, Pbcn, P321, and P1̅ 

polymorphs have also been calculated (see Tables S3-S7) in the Supporting Information). 

Insert Table 5 

The analysis of the Raman-active modes in Table 5 shows that the C2/m phase presents one 

soft mode, i.e., Bg at 288.97 cm-1 at ambient pressure. This mode is characterized by a decrease in the 

vibrational frequency with pressure (negative parameter 𝛾). This feature suggests that at higher 

pressure a monoclinic brannerite-type structure should undergo a transition involving a strong coupling 

between a zone-centre optic mode and a strain of Bg symmetry. The C2 phase also shows a soft mode 

with negative 𝛾, i.e., B at 288.51 cm-1, and in addition a second mode, A at 308.61 cm-1, with negative 



𝛾. The C2/c structure present along a Bg rotational mode with a negative frequency with a value of -

58.16 cm-1 at ambient pressure, -65.72 cm-1 at 5 GPa, -70.86 cm-1 at 15 GPa, -37.46 cm-1 at 20 GPa, 

and -62.71 cm-1 at 30 GPa shows the existence of a slight dynamical instability across all the range of 

studied pressures. For the C2/c monoclinic structure we calculated the elastic properties at pressures 

from ambient to 30 GPa and the Born criteria was applied being this monoclinic structure always 

mechanical stable. The 13 corresponding elastic coefficients (in GPa) of the elastic tensor at ambient 

pressure and at 15 GPa are shown in Table S8 of the Supporting Information, that follows the criteria 

for mechanical stability. The P321 trigonal phase presents one rotational E soft mode at ambient 

pressure with a frequency of 53.64 cm-1, with a Grüneisen parameter of -10.82. This mode has a 

negative frequency above 15 GPa. In the case of the remaining orthogonal Pbcn and the triclinic 

P1̅ structures, all the frequencies increase on raising the pressure. 

We employed Badger's rule 81 to analyze the presence of electron charge processes along with 

the compression of different polymorphs. This rule states that the strength of a bond correlates with 

the frequency (ω) of its vibrational mode, ω = A/(rMO − B)3/2, where A and B are constants and rMO is 

the metal−oxygen distance. If this rule is followed by the breathing vibrational modes of the ZnO6 and 

VO6 polyhedra, we can state that the behavior of the frequencies with pressure is due only to 

geometrical factors, while if the rule is not fulfilled, charge transfer or other factors are involved. 

Badger’s rule is fulfilled for the Pbcn, P321, and P1̅ polymorphs, indicating that the variation in the 

structure of these three polymorphs with pressure has a geometrical origin. In contrast, for the 

monoclinic C2/m, C2, and C2/c polymorphs, Badger’s rule is not followed by two Ag breathing modes 

(854.11 and 989.02 cm-1) in the case of C2/m, by two breathing modes A (855.29 cm-1) and B (912.74 

cm-1) in the case of C2, and by one Ag breathing mode (869.91 cm-1) in the case of C2/c. In addition, 

as shown in Figure 4 for the C2/m-ZnV2O6 structure and in Figures S2 and S3 in the supporting 

material for the C2 and C2/c polymorphs, there is a trend shift around 5 GPa in the plot of 3/2 versus 

(1/d). The stabilization of the monoclinic structures is mainly due to electronic factors (see the next 

section). 

 

Insert Figure 4 

3.5 Electronic properties  

Figure 5 shows the calculated B3LYP bulk band structure along the adequate symmetry lines 

of the Bravais lattices and the total DOS and that projected on atoms, for the ZnV2O6 polymorphs 

studied. 

Insert Figure 5 



The transition is indirect in monoclinic, orthorhombic, trigonal, and triclinic band structures. 

For the C2/m and C2 phases, the valence band (VB) maximum and the conduction band (CB) minimum 

are located at L (½,0,½) and V (0,0,½) k-points, respectively. Contrary to the case of the other two 

monoclinic structures, for the C2/c polymorph, the VB maximum is located near Γ (0,0,0), whereas 

the bottom of the CB is at the k-point (0,0,⅓) near V (0,0,½). For the Pbcn lattice, the VB maximum 

is located at Γ (0,0,0) and the bottom of the CB is in the vicinity of the Y (0,¼,0) k-point for the P321 

polymorph, at Γ (0,0,0) and L (½,0,½) k-points, respectively, whereas in the case of the triclinic 

P1̅ polymorph, they are at Y (½,0,0) and A (½,½,0) and k-points, respectively. For the C2/m and the 

other two monoclinic structures, calculations predict that the top of the VB is composed mostly of O 

2p orbitals, while at the bottom of the CB the contribution of V 3dyz, and 3dxy orbitals predominate 

over 3dz
2 and 3dxz orbitals, and Zn 4s. In the case of the remaining Pbcn, P321, and P1̅ structures, the 

top of the VB is also mostly due to the O 2p orbitals, while the bottom of the CB consists predominantly 

of V 3dz
2, 3dyz and 3 22 yx

d


orbitals. Therefore these states will dominate the behavior of the band gap 

as observed in other vanadates.82,83} 

Insert Figure 6 

The band gaps (Eg) are 3.87, 3.88, 3.83, 3.63, 3.27, and 3.90 eV for the C2/m, C2, C2/c, Pbcn, 

P321, and P1̅ polymorphs, respectively. The effect of pressure on the band structures of the studied 

polymorphs has also been examined in the present study. Under compression, the O states move toward 

higher energies faster than the V states, thereby producing a small reduction in Eg. The hydrostatic 

band-gap deformation potential,84 ag, can be defined as the product of the bulk modulus and the 

variation of Eg with pressure 𝑎𝑔 = 𝐵0
𝑑𝐸𝑔

𝑑𝑃
⁄ . Figure 6 shows the pressure dependence of the indirect 

Eg for the monoclinic C2/m, C2, C2/c, orthorhombic Pbcn, trigonal P321, and triclinic P1̅ ZnV2O6 

structures up to 30 GPa. As commented above, all polymorphs have an indirect band gap. An analysis 

of the results shows that the band gap of the C2/m and C2 phases decreases with pressure from 3.88 to 

3.62 eV, while for C2/c it decreases from 3.83 to 3.33 eV, the Pbcn phase being less sensitive to 

pressure. Conversely, the P321 structure shows the lowest Eg values, from 3.27 at ambient pressure to 

3.10 eV at 30 GPa, and for the triclinic P1̅ Eg decreases from 3.90 to 3.59 eV, their ag values being: -

1.27, -1,19, -2.59 ,+0.06, -0.85 and -1.28 eV, respectively. 

In order to evaluate the influence of the electronic factors on the pressure behavior of the 

different structures, we calculated the Mulliken atomic charges, focusing mainly on the monoclinic 

C2/m, C2, and C2/c phases with the aim of explaining why Badger’s rule is not fulfilled in these 

polymorphs. The choice of the Mulliken partition is arbitrary because there is no single method of 



performing the partition of the charge density. However, the choice of the given scheme remains 

extremely useful when comparing the results of calculations performed using similar basis sets.85  

Due to the small changes in the values of the Mulliken atomic charges, it is more convenient 

to plot the relative changes of the sum of the values for the atomic charges of the ZnO6 and VO6 units 

with respect to the value of zero pressure. In Figure 7 the relative variation of the sum of the Mulliken 

charges of the ZnO6 and VO6 polyhedra from ambient up to 30 GPa is presented for the C2/m 

monoclinic polymorph (for C2 and C2/c, see Figures S4 and S5 in the supporting information). An 

analysis of the results shows that a charge transfer takes place from the ZnO6 to the VO6 units when 

an external pressure is applied, this transfer being of 0.061 e- at 30 GPa (0.024 e- for the C2 structure 

at 20 GPa, and 0.098 e- for the C2/c structure at 30 GPa). This behavior can explain why Badger’s rule 

is not fulfilled by the monoclinic-ZnV2O6. 

  

4 Conclusions 

 

The properties of solids as a function of pressure are of fundamental interest to a wide range of 

areas in condensed matter physics and chemistry. High pressure could alter the properties of materials 

and chemical bonds, giving rise to some novel structures (polymorphs) and exhibiting phenomena, and 

physical and chemical properties that are not accessible under ambient conditions. Pressure-induced 

phase transitions are a critical phenomenon, which describes the interplay between the intermolecular 

and intramolecular distances. However, from the experimental side, high pressure is not easy to 

achieve/access and control in X-ray diffraction experiments in a diamond anvil cell. In this context, 

the utilization and application of reliable theoretical methods and techniques are widely acknowledged 

ways of obtaining the properties and behavior of materials under high pressure. 

An understanding of the origins and atomistic mechanisms of the structural transformations is 

essential to improve the performance of existing materials and for a rational design of new ones with 

even better characteristics. For this purpose, in this work, a systematic investigation has been 

performed using first-principle calculations, at the DFT level, on the stability, geometry, and electronic 

properties of the six stable ZnV2O6 phases found. The objective of the present paper was to explore, 

analyze, and find metastable polymorphs of ZnV2O6 that can be accessible through high-pressure 

synthesis. As the energetic separation and the structural differences between the polymorphs are small 

and thus potentially sensitive to details of the computational procedure, we have placed special 



emphasis on the influence of different approximations for the exchange-correlation functional 

(B3LYP, HSE06, and PBE). 

On the basis of our calculations, the behavior of this compound under pressure can be 

rationalized in terms of both local polyhedral, and the corresponding structural changes can be 

associated to Zn-O and V-O bond distances of ZnO6 octahedra and VO6 octahedra, and the relative 

compressibility of Zn−O and V−O bonds of each polymorph. 

Our findings can be summarized as follows:  

1) From the twelve polymorphs studied, ten thermodynamically stable structures have been 

successfully identified as stationary points in the potential energy hypersurface at ambient pressure, 

while only five of them are minima in the range of 0-30 GPa, i.e., C2, C2/m, Pbcn, P321, P1̅ phases; 

additionally, the C2/c structure displays one very low imaginary frequency in the range of ambient up 

to GPa, and is also considered as a possible stable polymorph. The Pnma, C222, P42/mmm, and P3̅1m 

polymorphs present structural instabilities as shown by the presence of several imaginary frequencies 

between -400 and -100 cm-1 over the entire range of pressures studied. The optimization of ZnV2O6 

within the I4̅2m and Pbca space groups has been unsuccessful. 

2) C2/m and C2 monoclinic structures show very close ∆𝐻 − 𝑃 curves and they coexist in the 

range of 0-30 GPa. In both cases, V cations show a distorted octahedral coordination with oxygen ions, 

the V-O5 distance being very sensitive to pressure.  

3) Calculated values derived from the enthalpy-pressure representation show that the 

monoclinic structure (C2/m or C2) transforms to the Pbcn orthorhombic structure at 5.0 GPa at the 

B3LYP level. On the other hand, the C2/c polymorph becomes more stable than the other two 

monoclinic (C2/m and C2) structures at 15 GPa. However, the calculations performed by using the 

HSE06 and PBE functionals show that the C2/c becomes the most stable of the monoclinic structures 

above 13 and 8 GPa, respectively, and that the orthorhombic structure is the most stable polymorph in 

the range 0-30 GPa, and. These results indicate that the relative energies between the monoclinic and 

orthorhombic polymorphs as a function of an external pressure are very dependent on the functionals 

that are employed; however, the optimized geometries and values of the calculated vibrational 

frequencies obtained by using the three functionals are similar. 

4) Badger’s rule is fulfilled for the Pbcn, P321, and P1̅ polymorphs, indicating that the 

variation of the structure with pressure has a geometrical origin. In contrast, the monoclinic C2/m and 

C2 structures each present two breathing modes and C2/c has one mode that do not follow Badger’s 

rule due to a charge transfer from the ZnO6 to the VO6 polyhedra. 



5) An analysis of the results shows that all channels have positive ∆𝑑𝐻0 values and so the 

decomposition channels are not energetically feasible. 

6) Monoclinic (C2/m, C2, C2/c), orthorhombic (Pbcn), trigonal (P321), and triclinic (P1̅) 

phases present semiconductor behavior with large indirect band gaps. The band gap of the C2/m, C2, 

C2/c, and P1̅ phases decreases with pressure, their diminution from 0 to 30 GPa being 6.7, 6.7, 13.0, 

and 8.0%, respectively, whereas that of the Pbcn structure is less sensitive to pressure and rises slightly 

on increasing the pressure. The trigonal P321 structure presents the lowest band gaps, which decrease 

by 5.3% with pressure, from P=0 to 30 GPa. 

  



The present work provides insight into fundamental scientific issues and the current results will 

pave the way for further experimental exploration of the presence of metastable polymorphs of ZnV2O6 

materials. We expect that these encouraging results will stimulate the material science community to 

transform our in silico proposed ZnV2O6 polymorphs into the real world, e.g. by obtaining ZnV2O6-

based materials using high-pressure synthesis. 
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Table Captions 

 

Table 1. Calculated and available experimental values of the cell parameters and bulk modulus, B0, 

and its pressure derivative, B0´, for the ZnV2O6 geometries (a) brannerite C2/m, (b) brannerite C2, 

(c) ThTi2O6-type C2/c, (d) columbite Pbcn, (e) CaAs2O6-type P321, and (f) NiV2O6-type P1̅.  

Table 2. Optimized values, at the B3LYP level, of the Zn-O and V-O bond lengths and JT parameters 

(in Å) of the ZnO6 and VO6 distorted octahedra from 0 GPa to 30 GPa, their multiplicity, and the 

corresponding bond compressibility, . 

http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-sam


Table 3. The total energy for all the phases studied at the B3LYP level, its variation relative to the 

brannerite C2/m structure as a reference, and the volume per molecular unit. 

Table 4. B3LYP calculated values of the decomposition enthalpy, ∆𝑑𝐻0, for different dissociation 

channels of 𝑍𝑛𝑉2𝑂6 toward binary oxides (𝑉2𝑂5, 𝑍𝑛𝑂 𝑎𝑛𝑑 𝑉𝑂2), metal (𝑉 and 𝑍𝑛), and oxygen. 

Table 5. B3LYP calculated, corrected with a scaling factor of 0.92, and observed Raman mode 

frequencies of brannerite C2/m, as well as calculated intensities at ambient pressure (in arbitrary 

units) and Grüneisen parameters ().  

 

Figure Captions 

 

Figure 1. Polyhedral representation of the brannerite C2/m (a), brannerite C2 (b), ThTi2O6-type C2/c 

(c), columbite Pbcn (d), CaAs2O6-type P321 (e), and NiV2O6-type P1̅ (f) structures. 

Figure 2. B3LYP enthalpy variation values, ∆𝐻, in (eV) as a function of pressure for brannerite C2/m, 

brannerite C2, ThTi2O6-type C2/c, columbite Pbcn, CaAs2O6-type P321 and NiV2O6-type 

P1̅ structures, and for the binary oxides V2O5 and ZnO (taking the C2/m structure as a reference). 

Figure 3. Calculated variation in B3LYP volume with pressure of ZnV2O6 phases and the binary oxides 

V2O5 and ZnO. (b) Calculated variation in B3LYP volume with pressure of ZnV2O6 phases. 

Figure 4. Badger’s plot for the two Ag (854.11 and 989.02 cm-1 at ambient pressure) breathing modes 

of the brannerite C2/m phase. 

Figure 5. B3LYP band structure and total DOS and projected DOS on atoms for brannerite C2/m (a), 

ThTi2O6-type (b), columbite (c), CaAs2O6-type (d), and NiV2O6-type (e) ZnV2O6 polymorphs. 

Figure 6. Evolution of Eg with pressure for brannerite C2/m, brannerite C2, ThTi2O6-type C2/c, 

columbite Pbcn, CaAs2O6-type P321 and NiV2O6-type P1̅ ZnV2O6 structures, calculated at the 

B3LYP level. 

 

Figure 7. Variation of the sum of the Mulliken atomic charges of the ZnO6 and VO6 polyhedra versus 

pressure for the brannerite C2/m ZnV2O6 structure. 

 

  



Table 1.  

(a)   C2/m 

 B3LYP HSE06 PBE Ref. 44 Ref. 43 Ref. 45 

a (Å) 9.242 9.166 9.234 9.265 9.245 9.245 

b (Å) 3.528 3.505 3.547 3.524 3.528 3.533 

c (Å) 6.573 6.439 6.521 6.589 6.576 6.579 

 (º) 111.13 112.99 112.57 111.37  111.7 

V0 (Å
3) 199.908 186.602 197.219    

B0 (GPa) 146.74 152.18 147.39   147 

B0’ 5.11  5.54 5.09   4 fixed 

 

(b)   C2 

 B3LYP HSE06 PBE Ref. 38 Ref. 45 

a (Å) 9.240 9.167 9.234 9.242  

b (Å) 3.529 3.505 3.548 3.526  

c (Å) 6.574 6.439 6.521 6.574  

 (º) 111.05 113.00 112.59 111.55  

V0 (Å
3) 200.033 190.419 197.207   

B0 (GPa) 137.25 152.35 147.51  137 

B0’ 6.24 5.53 5.08  4 fixed 

 

(c)   C2/c 

 B3LYP HSE06 PBE 

a (Å) 10.064 9.979 10.027 

b (Å) 8.356 8.290 8.362 

c (Å) 4.955 4.902 4.931 

 (º) 118.50 118.54 118.63 

V0 (Å
3) 366.216 356.210 362.860 

B0 (GPa) 151.38 160.09 149.27 

B0’ 4.96 4.96 4.86 

 

 

 



(d)   Pbcn 

 B3LYP HSE06 PBE Ref. 30 

a (Å) 13.483 13.389 13.644 13.579 

b (Å) 5.548 5.488 5.604 5.589 

c (Å) 4.793 4.757 4.812 4.824 

V0 (Å
3) 358.572 349.515 357.565  

B0 (GPa) 163.73 210.27 166.15  

B0’ 5.50 4.73 5.03  

 

(e)   P321 

 B3LYP HSE06 PBE 

a (Å) 4.693 4.646 4.684 

c (Å) 4.907 4.864 4.886 

V0 (Å
3) 93.589 90.929 92.853 

B0 (GPa) 147.77 157.89 147.88 

B0’ 5.40 5.41 5.33 

 

(f)   P1̅ 

 B3LYP HSE06 PBE 

a (Å) 4.753 4.711 4.744 

b (Å) 7.105 7.044 7.079 

c (Å) 8.808 8.727 8.770 

 (º) 102.17 102.18 102.14 

 (º) 90.23 90.27 90.19 

 (º) 94.24 94.40 94.86 

V0 (Å
3) 289.920 282.159 286.824 

B0 (GPa) 122.82 128.72 124.10 

B0’ 5.74 5.45 5.29 

  



Table 2. 

 

Zn-O/V-O 

distances (Å) 

0 GPa 5 GPa 15 GPa 30 GPa Multiplicity  (10-3 GPa-1) 

C2/m       

Zn-O1 1.950 1.928 1.892 1.854 2 1.64 

Zn-O2 2.217 2.199 2.167 2.125 4 1.40 

JT(Zn) 0.334 0.339 0.343 0.338   

V-O1 1.662 1.660 1.655 1.649 1 0.25 

V-O1’ 1.681 1.682 1.678 1.669 1 0.25 

V-O2’ 1.844 1.833 1.816 1.794 2 0.90 

V-O3’ 2.102 2.093 2.077 2.054 1 0.77 

V-O4’ 2.447 2.353 2.247 2.162 1 3.88 

JT (V) 0.667 0.597 0.522 0.467   

C2       

Zn-O1 1.950 1.928 1.892 1.854 2 1.64 

Zn-O2’ 2.217 2.198 2.167 2.125 4 1.40 

JT (Zn) 0.309 0.314 0.318 0.313   

V-O1 1.662 1.660 1.655 1.649 1 0.26 

V-O1’ 1.681 1.682 1.678 1.669 1 0.25 

V-O2’ 1.844 1.833 1.816 1.794 2 0.90 

V-O3’ 2.102 2.093 2.076 2.053 1 0.78 

V-O4’ 2.446 2.353 2.247   2.163 1 3.86 

JT (V) 0.667 0.597 0.522 0.467   

C2/c       

Zn-O1 2.072 2.047 2.025 1.976 2 1.77 

Zn-O2 2.101 2.075 2.031 1.996 2 1.89 

Zn-O3 2.113 2.082 2.036 2.000 2 2.01 

JT (Zn) 0.041 0.036 0.031 0.025   

V-O1’ 1.702 1.705 1.707 1.710 1 -0.17 

V-O1 1.723 1.721 1.718 1.715 1 0.16 

V-O2’ 1.749 1.746 1.741 1.737 1 0.26 



V-O3 2.035 2.015 1.984 1.956 2 1.51 

V-O4’ 2.172 2.128 2.065 2.016 1 2.71 

JT (V) 0.451 0.413 0.359 0.296   

Pbcn       

Zn-O1 1.995 1.976 1.944 1.906 2 1.49 

Zn-O2 2.065 2.050 2.023 1.987 2 1.26 

Zn-O3 2.214 2.176 2.118 2.059 2 2.34 

JT (Zn) 0.224 0.202 0.175 0.153   

V-O3 1.663 1.659 1.651 1.640 1 0.46 

V-O1 1.755 1.754 1.751 1.743 1 0.22 

V-O1’ 1.763 1.760 1.755 1.746 1 0.31 

V-O2’ 2.010 1.994 1.962 1.925 1 1.41 

V-O4’ 2.051 2.032 1.999 1.961 1 1.47 

V-O5’ 2.223 2.195 2.151 2.102 1 1.82 

JT (V) 0.484 0.461 0.423 0.384   

P321       

Zn-O1 2.143 2.112 2.066 2.014 6 2.01 

V-O1 1.721 1.719 1.715 1.708 3 0.27 

V-O1’ 2.100 2.072 2.031 1.988 3 1.80 

JT (V) 0.464 0.432 0.387 0.343   

P1̅       

Zn1-O1 2.031 2.010 1.977 1.945 2 1.41 

Zn1-O2 2.034 2.011 1.981 1.950 2 1.37 

Zn1-O3 2.052 2.040 2.015 1.981 2 1.12 

JT (Zn) 0.023 0.034 0.042 0.041   

Zn2-O1 2.015 1.999 1.972 1.941 2 1.23 

Zn2-O2 2.036 2.020 1.992 1.957 2 1.29 

Zn2-O3 2.040 2.023 1.993 1.959 2 1.34 

Zn2-O4 2.049 2.027 1.994 1.961 2 1.44 

Zn2-O5 2.089 2.060 2.018 1.961 2 2.05 

Zn2-O6 2.167 2.098 2.024 1.978 2 2.91 

JT (Zn) 0.123 0.079 0.043 0.026   



V1-O3 1.608 1.611 1.611 1.607 1 0.02 

V1-O4 1.704 1.697 1.689 1.681 1 0.44 

V1-O5 1.876 1.864 1.846 1.824 1 0.93 

V1-O6 1.983 1.977 1.962 1.941 1 0.70 

V1-O7 2.098 2.085 2.054 2.012 1 1.36 

V1-O8 2.353 2.287 2.220 2.157 1 2.77 

JT (V) 0.606 0.560 0.511 0.463   

V2-O1 1.616 1.615 1.612 1.607 1 0.18 

V2-O2 1.703 1.698 1.690 1.683 1 0.39 

V2-O5 1.859 1.850 1.835 1.816 1 0.77 

V2-O6 1.989 1.981 1.966 1.947 1 0.71 

V2-O7 2.110 2.096 2.062 2.014 1 1.48 

V2-O8 2.315 2.262 2.208 2.157 1 2.27 

JT (V) 0.583 0.547 0.506 0.466   

V3-O1 1.666 1.669 1.6573 1.643 1 0.46 

V3-O2 1.676 1.670 1.6697 1.668 1 0.17 

V3-O3 1.778 1.768 1.7555 1.743 1 0.65 

V3-O4 1.779 1.769 1.758 1.746 1 0.62 

  



Table 3. 

 

Phase E/ZnV2O6  (arb. units) E (eV) V/ZnV2O6 (Å
3) 

C2/m -4118.712588 0.000 99.954 

C2 -4118.712585 8·10-5 100.016 

C2/c -4118.698727 0.377 91.554 

Pbcn -4118.711334 0.034 89.643 

Pnma -4118.681592 0.843 93.858 

C222 -4118.658351 1.475 113.233 

P42/mmm -4118.667094 1.237 88.360 

P3̅1m -4118.680377 0.876 89.009 

P321 -4118.611619 2.746 93.589 

P1̅ -4118.709097 0.094 96.640 

 

 

 

Table 4. 

 

Dissociation channel ∆𝑑𝐻0(eV) 

𝑍𝑛 𝑉2𝑂6 →   𝑉2𝑂5 + 𝑍𝑛𝑂 0.72 

𝑍𝑛 𝑉2𝑂6 →  𝑉2𝑂5 + 𝑍𝑛 +
1

2
𝑂2 

2.59 

𝑍𝑛 𝑉2𝑂6 →  2𝑉𝑂2 +
1

2
𝑂2 + 𝑍𝑛𝑂 

3.22 

𝑍𝑛 𝑉2𝑂6 →  2𝑉 + 𝑍𝑛 + 3𝑂2 18.89 

  



Table 5. 

Raman Mode  (cm-1)  (cm-1)*0.92 Intensity (arb. units$  Ref. 45 Assignment# 

Bg 170.09 156.48 0.00 0.60 143 (VO2)
b+(OV2)

b 

Ag 177.11 162.94 22.29 1.31 168 (VO2)
b 

Ag 245.24 225.62 32.81 1.00 218 (VO2)
b 

Bg 288.97 265.85 0.00 -0.13 267 (OZnOVO)b 

Bg 328.69 302.39 0.00 0.64 300 (VO2)
b 

Ag 329.97 303.57 127.32 0.34  (VO2)
b+(VO2)

b 

Ag 387.66 356.65 98.37 0.63 348 (VO2)
b 

Ag 491.05 451.77 1000.00 0.64 431 (VO2)
b 

Ag 555.42 510.99 57.36 0.42 514 (VO2)
b+(OV2)

b 

Bg 744.71 685.13 0.00 0.69 716 (VO)str 

Ag 854.11 785.78 13.00 0.38 784 (VO)str 

Ag 989.02 909.90 17.81 0.28 914 (VO)str 

 
$ Intensities do not take into account temperature or frequency of the incoming laser and are normalized to the highest 

peak, arbitrarily set to 1000.00. 
# str, stretching; b, bending 
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