
INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de Electrónica e Telecomunicações e de
Computadores

Domain Specific Language generation based on a XML
Schema

LUÍS CARLOS DA SILVA DUARTE

Licenciado em Engenharia Informática e de Computadores

Dissertação para obtenção do Grau de Mestre
em Engenharia Informática e de Computadores

Orientador : Doutor Fernando Miguel Gamboa de Carvalho

Júri:

Presidente: [Doutor José Manuel de Campos Lages Garcia Simão]

Vogais: [Doutor António Paulo Teles de Menezes Correia Leitão]
[Doutor Fernando Miguel Gamboa de Carvalho]

Novembro, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico de Lisboa

https://core.ac.uk/display/188425594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de Electrónica e Telecomunicações e de
Computadores

Domain Specific Language generation based on a XML
Schema

LUÍS CARLOS DA SILVA DUARTE

Licenciado em Engenharia Informática e de Computadores

Dissertação para obtenção do Grau de Mestre
em Engenharia Informática e de Computadores

Orientador : Doutor Fernando Miguel Gamboa de Carvalho

Júri:

Presidente: [Doutor José Manuel de Campos Lages Garcia Simão]

Vogais: [Doutor António Paulo Teles de Menezes Correia Leitão]
[Doutor Fernando Miguel Gamboa de Carvalho]

Novembro, 2018

Aos meus pais.

Acknowledgments

Ao meu orientador, por todo o apoio que me deu ao longo da realização desta
dissertação. A todos os meus amigos que me acompanharam, ajudaram e ani-
maram nesta jornada. E em particular, um grande agradecimento aos meus pais,
sem eles nada disto seria possível.

vii

Acronyms and Abreviations

The list of acronyms and abbreviations are as follow.

API Application Programming Interface . 3

DOM Document Object Model . 34

DSL Domain Specific Language . xi

HTML HyperText Markup Language . xi

IDE Integrated Development Environment . 61

JAR Java ARchive . 77

JMH Java Microbenchmark Harness . 73

JVM Java Virtual Machine . 29

POM Project Object Model . 60

SAX Simple Application Programming Interface for eXtensive Markup Language . . 34

SQL Structured Query Language . 2

XHTML eXtensive HyperText Markup Language .34

XML eXtensive Markup Language . 1

XSD eXtensive Markup Language Schema Definition .xi

ix

Abstract

The use of markup languages is recurrent in the world of technology, with HyperText
Markup Language (HTML) being the most prominent one due to its use in the Web.
The requirement of tools that can automatically build well formed documents
with good performance is clear. Yet, the most used solution is template engines,
which neither ensures well-formed documents nor presents good performance,
due to the use of external text files.

To tackle the first issue we propose to define HTML templates as first-class func-
tions instead of using text files. To that end, these HTML template functions use a
Java Domain Specific Language (DSL) to write HTML. Our main goal is to create the
required tools that automatically generate that DSL based on its language defini-
tion from an eXtensive Markup Language Schema Definition (XSD) file. The resulting
DSL should enforce the restrictions of the given language which are specified in
the XSD file. By removing the use of text files we are also suppressing the file
load overhead and reducing String manipulation, which in turn increases the
overall performance and solves the second issue.

My proposal, named xmlet, includes a set of tools that are able to: 1) parse and
extract the rules from a XSD file, 2) generate the adequate classes and methods to
define the DSL that reflects the language rules, 3) handle the use of the resulting
DSL through the implementation of the Visitor pattern. Finally we validated this
solution not only for the HTML language, but also with the Android layouts and
the regular expressions languages.

By comparing the developed solution to some state-of-art solutions, including
template engines and some other solutions with specific innovations, we obtained

xi

xii

very favorable results with the suggested solution being the best performance-
wise in all the tests we performed. These results are important, specially consid-
ering that apart from being a more efficient solution it also introduces validations
of the language usage based on its syntax definition.

Keywords: XML, eXtensive Markup Language, XSD, eXtensive Markup Lan-
guage Schema Definition, Automatic Code Generation, Fluent Interface, Domain
Specific Language.

Resumo

Actualmente a utilização de linguagens de markup é recorrente no mundo da tec-
nologia, sendo o HTML a linguagem mais utilizada graças à sua utilização no
mundo da Web. Tendo isso em conta é necessário que existam ferramentas ca-
pazes de escrever documentos bem formados de forma eficaz. No entanto, a
abordagem mais utilizada, template engines, tem dois problemas principais: 1)
não garante a geração de documentos bem formados, 2) não garante um bom de-
sempenho, devido à utilização de ficheiros de texto como ficheiros de template.

Para resolver o primeiro problema propomos que um template HTML passe a
ser definido como uma first-class function. Para isto é necessário criar uma lin-
guagem específica de domínio para que estas funções possam manipular a lin-
guagem HTML. O nosso objectivo principal é criar as ferramentas necessárias
para gerar linguagens específicas de domínio com base no ficheiro de definição
da linguagem, explícito num ficheiro XSD. A linguagem de domínio gerada deve
também garantir que as restrições da respectiva linguagem são verificadas. Re-
movendo os ficheiros textuais que definem templates minimizam-se também os
problemas de desempenho introduzidos pelo carregamento de ficheiros de texto
e reduzem-se o número de operações sobre Strings.

A minha proposta, chamada xmlet, inclui ferramentas que possibilitam: 1) a
análise e a extração de informação de um ficheiro XSD, 2) a geração de classes e
métodos que definem uma linguagem específica de domínio que reflete as regras
presentes no ficheiro XSD, 3) a abstração da utilização da linguagem de domínio
gerada, com a utilização do padrão Visitor. Para validar esta solução criaram-se
linguagens de domínio não só para HTML como também para a linguagem utili-
zada para definir layouts visuais para Android e para a linguagem das expressões
regulares.

xiii

xiv

Comparando a solução desenvolvida com soluções semelhantes, incluindo tem-
plate engines e algumas soluções com inovações face à abordagem dos template
engines, obtemos resultados favoráveis. Verificamos que a solução sugerida é a
mais eficiente em todos os testes feitos. Estes resultados são importantes, es-
pecialmente considerando que apesar de ser a solução mais eficiente introduz
também a verificação das restrições da linguagem utilizada tendo em conta a sua
definição sintática.

Palavras-chave: XML, eXtensive Markup Language, XSD, eXtensive Markup
Language Schema Definition, Geração Automática de Código, Interface Fluente,
Linguage Specífica de Domínio.

Contents

List of Figures xix

List of Tables xxi

List of Listings xxiii

1 Introduction 1

1.1 Introduction to Domain Specific Languages 1

1.2 Template Engines . 4

1.2.1 Dynamic Views . 4

1.2.2 Handicaps . 6

1.3 Thesis Statement . 7

1.4 Document Organization . 9

2 Problem Statement 11

2.1 Motivation . 11

2.2 Problem Statement . 17

2.3 Approach . 21

3 State of Art 23

3.1 XSD Language . 23

3.2 The Evolution of Template Engines 24

xv

xvi CONTENTS

3.2.1 HtmlFlow 1 . 24

3.2.2 J2html . 25

3.2.3 Rocker . 26

3.2.4 KotlinX Html . 29

3.2.5 HtmlFlow 3 . 31

3.2.6 Feature Comparison . 32

4 Solution 33

4.1 XsdParser . 34

4.1.1 Parsing Strategy . 34

4.1.2 Reference solving . 40

4.1.3 Validations . 42

4.2 XsdAsm . 42

4.2.1 Supporting Infrastructure . 44

4.2.2 Code Generation Strategy . 45

4.2.3 Type Parameters . 45

4.2.4 Restriction Validation . 48

4.2.4.1 Enumerations . 51

4.2.5 Element Binding . 52

4.2.6 Using the Visitor Pattern . 53

4.2.7 Performance - XsdAsmFaster 55

4.3 Client . 60

4.3.1 HtmlApi . 60

4.3.2 Using the HtmlApi . 63

4.3.3 HtmlFlow 3 . 67

5 Deployment and Validation 71

5.1 Maven . 71

5.2 Sonarcloud . 72

5.3 Testing metrics . 72

5.3.1 Spring Benchmark . 73

5.3.2 Template Benchmark . 73

CONTENTS xvii

6 Conclusion 81

6.1 Main Contributions . 82

6.2 Concluding Remarks and Future Directions 84

Bibliography 87

List of Figures

1.1 Student Object . 5

1.2 The Template Engine Process that Combines a Template Document
with a Context Object . 6

4.1 Fluent Interfaces - The Supporting Infrastructure 45

5.1 XsdParser with the Respective Sonarcloud Badges in Github 72

5.2 Benchmark Presentation - Results Gathered using One Thread . . . 77

5.3 Benchmark Stocks - Results Gathered using One Thread 78

5.4 Benchmark Presentations - Results Gathered using Four Threads . 78

5.5 Benchmark Stocks - Results Gathered using Four Threads 79

xix

List of Tables

3.1 Template Engines Feature Comparison 32

xxi

List of Listings

1.1 Regular Expression Example . 2

1.2 jMock Use Example . 2

1.3 Static View Example with HtmlFlow 3

1.4 HTML Template of Student Information in Mustache Idiom 4

1.5 HTML Document with Student Information 5

1.6 Xmlet Template with Student Information 8

2.1 Badly Formed HTML Document . 12

2.2 Invalid Html Element Containing a Div Element 13

2.3 HTML Template with Placeholders 14

2.4 Template Engine with a Valid Context Object 14

2.5 Template Engine with a Context Object with a Wrong Key 14

2.6 Template Engine with a Context Object with a Wrong Type 14

2.7 List of Student Names - Template Definition using Pebble 15

2.8 List of Student Names - Template Building in Java using Pebble . . 16

2.9 List of Student Names - Template Definition using HtmlFlow with
xmlet . 16

2.10 List of Student Names - Template Building using HtmlFlow with
xmlet . 17

2.11 <hmtl> Element Description in XSD 18

2.12 Html Class Corresponding to the XSD Element Named html 19

xxiii

xxiv LIST OF LISTINGS

2.13 Body Class Corresponding to the XSD Element Named body 19

2.14 Head Class Corresponding to the XSD Element Named head 19

2.15 AttrManifest Class Corresponding to the XSD Attribute Named
manifest . 20

2.16 GlobalAttributes Interface Corresponding to the XSD Attribute Group
Named globalAttributes . 20

3.1 HtmlFlow Version 1 Code Example 25

3.2 J2html Code Example . 26

3.3 Rocker Template Example . 27

3.4 Rocker Java Class Example . 28

3.5 Rocker Use Example . 29

3.6 Kotlin Template Example . 30

4.1 Simplified Version of the Generated XsdAnnotation Class 34

4.2 DOM Document Parsing . 35

4.3 XsdParser Parsing the XsdSchema Node, which triggers the pars-
ing of the whole XSD document . 35

4.4 XsdSchema Extracting Information from the received Node 36

4.5 ComplexContent element with Restriction and Attribute children . 36

4.6 XsdComplexContentVisitor Class . 37

4.7 XsdParseSkeleton Function - Parsing Children From a Node 38

4.8 Parsing Concrete Example . 39

4.9 Reference Solving Example . 40

4.10 ASM Example - Code Generation Objective 43

4.11 ASM Example - Required Code . 43

4.12 Example of the Explicit Use of Type Arguments 46

4.13 Example of the Implicit Use of Type Arguments 46

4.14 AbstractElement Class Type Arguments 47

4.15 Html Class Type Arguments . 48

4.16 TableChoice0 Interface Type Arguments 48

LIST OF LISTINGS xxv

4.17 Restrictions Example XSD . 49

4.18 Attribute Class Receiving a List . 49

4.19 Attribute Constructor Enforcing Restrictions 50

4.20 RestrictionValidator Class - The Validation Methods 50

4.21 Example of an Enumeration in XSD Definition 51

4.22 Example of a Generated Enumeration Class 51

4.23 Attribute Receiving An Enumeration Instance 51

4.24 Binder Usage Example . 52

4.25 Visitor with Binding Support . 53

4.26 ElementVisitor Generated by XsdAsm - The Core Methods 54

4.27 ElementVisitor Generated by XsdAsm - The Specific Methods . . . 55

4.28 AbstractElement Class Generated by XsdAsm 55

4.29 Html Class Generated by XsdAsm 56

4.30 HTML5 Tree Creation using XsdAsm 56

4.31 HTML5 Tree Visit using XsdAsm . 57

4.32 Html Class Generated by XsdAsmFaster 57

4.33 ElementVisitor Generated by XsdAsmFaster 58

4.34 Fluent Interface Creation . 60

4.35 Maven - Compiling Classes using a Plugin 61

4.36 Maven - The Code that creates the Fluent Interface Classes (cre-
ate_class_binaries.bat) . 61

4.37 Maven - Decompiling Classes Using the Fernflower Plugin 62

4.38 Maven - The Code to Decompile the Generated Classes (decom-
pile_class_binaries.bat) . 62

4.39 Custom Visitor Example that Implements the ElementVisitor Gen-
erated by XsdAsm . 63

4.40 HtmlApi - The Definition of the Element Tree 65

4.41 HtmlApi - The Result of the Element Tree Visit 66

4.42 HtmlFlow - Static View Example . 67

xxvi LIST OF LISTINGS

4.43 HtmlFlow - Xmlet Template with Student Information 67

4.44 Li Class - The dynamic method . 68

4.45 HtmlFlow Partial Views . 70

5.1 Stocks Template Defined in the Mustache Idiom 74

5.2 Stocks Data Type . 75

5.3 Presentations Template using the Mustache Idiom 75

5.4 Presentation Data Type . 76

1
Introduction

The research work that I describe in this dissertation is concerned with the im-
plementation of a Java framework, named xmlet, which allows the automatic
generation of a Java fluent interface[7] recreating a DSL[7] specified by an eXtensive
Markup Language (XML) schema. The approach described in this work can be fur-
ther applied to any other strongly typed environment. As an example of DSL gen-
eration we used xmlet to automatically generate a Java DSL for HTML5, used by
HtmlFlow[5]. A DSL for HTML can be used as a type safe template engine that re-
sults in an improvement in the numerous existing template engines. Furthermore,
HtmlFlow outperforms state-of-the-art Java template engines, namely Rocker[21],
Pebble[19], Trimou[24] or Mustache[17], in some of the more challenging bench-
marks such as template-benchmarks[4] and spring-comparing-template-engines[20].

1.1 Introduction to Domain Specific Languages

High-level programming languages such as Java, C#, JavaScript and others were
created with the objective of being abstract, in the sense that they do not compro-
mise with any specific problem. Using these programming languages is usually
enough to solve most problems but in some specific situations solving problems
using exclusively those languages is counter-productive. A good example of that
counter-productivity is thinking about regular expressions. In the Martin Fowler
DSL book[7] we can find the regular expression presented in Listing 1.1.

1

1. INTRODUCTION 1.1. Introduction to Domain Specific Languages

1 \d{3}-\d{3}-\d{4}

Listing 1.1: Regular Expression Example

Looking at the expression of Listing 1.1 the programmer understands that it
matches a String similar to 123-321-1234. Even though the regular expres-
sion syntax might be hard to understand at first glance, it may become under-
standable after a while. It may be easier to use and manipulate by experts than
implementing the same set of rules to verify a String using control instructions
such as if/else and String operations. It also makes the communication be-
tween experts easier when dealing with this concrete problem because there is a
standard syntax with well-known rules. Regular expressions are just one of the
many examples that show that creating an explicit language to deal with a very
specific problem simplifies said problem. Other examples of DSLs are languages
such as Structured Query Language (SQL)[6], Apache Ant[28] or make[15].

DSLs can be divided in two types: external or internal. External DSLs are lan-
guages created without any affiliation to a concrete programming language. An
example of an external DSL is the regular expressions DSL, since it defines its
own syntax without any dependency of programming languages. On the other
hand an internal DSL is defined within a programming language, such as Java.
An example of an internal DSL is jMock[11], which is a Java library that provides
tools for test-driven development as shown in Listing 1.2.

1 final GreetingTime gt = context.mock(GreetingTime.class);

2 Greeting g = new Greeting();

3 g.setGreetingTime(gt);

4

5 context.checking(new Expectations(){{

6 one(gt).getGreeting();

7 will(returnValue("Good afternoon"));

8 }});

Listing 1.2: jMock Use Example

In Listing 1.2 we can see that jMock uses a DSL to create expectations. In the
concrete example it obtains the value of a Greeting, in line 6 of Listing 1.2,
and asserts if the value of the Greeting matches the expected value, which is
Good afternoon, shown in line 7 of Listing 1.2. In this case the semantics of
the methods used by jMock aim to simplify the programmer’s understanding of
the tests that are being performed.

Internal DSLs can also be referred to as embedded DSLs since they are embedded

2

1. INTRODUCTION 1.1. Introduction to Domain Specific Languages

in the programming language where they are used. Another common term for an
internal DSL is fluent interface or fluent Application Programming Interface (API).
The term fluent is inspired by the fluent way that the DSL usage can be read.

Concluding, there are some advantages on internal DSLs over external DSLs,
namely: a single compiler, removal of language heterogeneity and in some sit-
uations, performance improvements and overall a less complex solution.

From a simple point of view, one of the main goals of this research work is to pro-
pose an approach and develop a platform, i.e. xmlet, which enables the conver-
sion of a XML based external DSL into an internal DSL. One of the requirements
of this approach is that the external DSL’s rules must be defined by an XSD docu-
ment. Thus, on one hand we have a XSD document that defines a set of elements,
attributes and rules that together define their own XML language. From a Java
environment point of view this XML language is qualified as an external DSL
since it is defined in XML, which is a markup language that does not depend of the
Java programming language. All the information present in the XSD document
is used to generate a Java fluent interface, which, in this case, is an internal DSL
since it uses the Java syntax to define the DSL.

Using this approach we are going to generate a fluent interface for the HTML5 lan-
guage, based on its XSD document. The result of our approach is the automatic
code generation of Java classes and interfaces that will reflect all the information
present in the XSD document. When we analyze the end result of this work,
what we achieve is a Java interface to use a DSL, in this case HTML, which can
be used for anything related with HTML manipulation with the upside of hav-
ing the guarantee that language rules are verified. One of those usages is writing
well-formed HTML documents and defining dynamic views that will be filled with
information received in runtime. An example of a static view is presented in List-
ing 1.3.

1 private static void staticView(StaticHtml view){

2 view.html()

3 .body()

4 .h1()

5 .text("This is a static view h1 element.")

6 .__()

7 .__()

8 .__();

9 }

Listing 1.3: Static View Example with HtmlFlow

3

1. INTRODUCTION 1.2. Template Engines

The static view of Listing 1.3 shows how an internal DSL guarantees the rules of
the language by using Java to enforce them. In this concrete example we can see
that the logic of element organization of the HTML language is translated to Java
methods, ensuring that, for example, the html element can only contain either
head or body element as children, as stated by the HTML5 specification.

1.2 Template Engines

Template engines are solutions that use views, more specifically dynamic views, to
build documents. A view is the output representation of information used to
build the user interface of an application. Regarding web applications the view
may be defined using the HTML language.

1.2.1 Dynamic Views

In this context, a dynamic view is a template with two distinct components, as
shown in Listing 1.4, a static component, represented in blue, which defines
the structure of the document and a dynamic component, represented in green,
which is represented by placeholders that are replaced by information received at
runtime. A simple example of a dynamic view can be an HTML template with the
information of a given Student object, as shown in Listing 1.4.

1 <html>

2 <body>

3

4 {{#student}}

5

6 {{name}}

7

8

9 {{number}}

10

11 {{/student}}

12

13 </body>

14 </html>

Listing 1.4: HTML Template of Student Information in Mustache Idiom

4

1. INTRODUCTION 1.2. Template Engines

To generate the resulting HTML page from the template of Listing 1.4 we need ex-
ternal input, received at runtime, to resolve the dynamic component of the view.
In the previous example, Listing 1.4, the view needs to receive a value for the
variable named {{student}}. The type that the student variable represents
should be a type that contains two fields, a number and a name field. An example
of an object with that characteristics is presented in Figure 1.1.

Figure 1.1: Student Object

After the template in Listing 1.4 receives the context object presented in Figure 1.1
the resulting HTML document should match the one shown in Listing 1.5.

1 <html>

2 <body>

3

4

5 Luis

6

7

8 39378

9

10

11 </body>

12 </html>

Listing 1.5: HTML Document with Student Information

Template engines are responsible for generating an HTML document based on a
template. Template engines are the most common method to manipulate dynamic
views. Template engines are responsible for performing the combination between
the dynamic view, also named template, and a data model object, known as context
object, which contains all the information required to generate the final document.
The example depicted in Figure 1.2 shows the combination of a template docu-
ment with a context object, which is an instance of the Student types.

5

1. INTRODUCTION 1.2. Template Engines

Figure 1.2: The Template Engine Process that Combines a Template Document
with a Context Object

Since the Web appearance there is a wide consensus around the use of template
engines to build dynamic HTML documents. From the vast list of existing web
template engines[27] all of them share the same approach based on a textual tem-
plate file. The template engine scope is also wide, even that they are mostly asso-
ciated with Web, they are also widely used to generate other types of documents
such as emails and reports.

1.2.2 Handicaps

Although there is a wide consensus in the use of template engines, this approach
still has some handicaps, which we will further analyze.

• Safety and Type Check - There are no validations of the language used in
the templates nor the dynamic information. This can result in documents
that do not follow the language rules.

• Performance - This aspect can be divided in two, one regarding the text
files that are used as templates that have to be loaded and therefore slow

6

1. INTRODUCTION 1.3. Thesis Statement

the overall performance of the application and the heavy use of String
operations, which are inherently slow.

• Flexibility - The syntax provided by the template engines is sometimes very
limited and restricts the operations that can be performed in the template
files to few control flow instructions such as if/else operations and the
for operation to loop data.

• Complexity - It introduces one more syntax in the programming environ-
ment. For example a Java application using the Mustache[17] template engine
forces the programmer to use three distinct languages: Java, the Mustache
syntax in the template file and the HTML language.

1.3 Thesis Statement

This dissertation thesis is that it is possible to reduce the problems that exist
within the use of template engine solutions. To suppress these handicaps we pro-
pose the creation of a process that automatizes the generation of DSLs based on
an existing DSL specified by one XSD document. This process is implemented by
the xmlet platform, which allows the automatic generation of a strongly typed
and fluent interface for a DSL based on the rules expressed in the XSD document
of that respective language, such as HTML. The resulting DSL addresses the
handicaps of the template engines in the following way:

• Safety and Type Check - The generated Java DSL will guarantee the imple-
mentation of the language rules defined in the XSD file by reflecting those
restrictions in the generated fluent interface.

• Performance - Text templates files are replaced by pure Java functions, ac-
cording to my approach a template is a first-class function.

• Flexibility - The syntax used to perform operations on templates is replaced
with the Java syntax without any restriction to the use of all its features.

• Complexity - It replaces the heterogeneity of using three programming lan-
guages, i.e. Java, HTML and the template engine specific idiom, with the use
of a single programming language, i.e. Java.

A brief view of the generated fluent interface is presented in Listing 1.6, which
shows how the previous example in the Mustache idiom, i.e. Listing 1.4, will be

7

1. INTRODUCTION 1.3. Thesis Statement

recreated using the xmlet solution. The specific details on how the code pre-
sented in this example works will be provided in Chapter 4.

1 String document = DynamicHtml.view(CurrentClass::studentView)

2 .render(new Student("Luis", 39378));

3

4 static void studentView(DynamicHtml<Student> view, Student student){

5 view.html()

6 .body()

7 .ul()

8 .li().dynamic(li -> li.text(student.getName())).__()

9 .li().dynamic(li -> li.text(student.getNumber())).__()

10 .__()

11 .__()

12 .__();

13 }

Listing 1.6: Xmlet Template with Student Information

To implement the xmlet process we created three distinct components:

• XsdParser - Parses the DSL described in a XSD document in order to extract
information needed to generate the internal Java DSL.

• XsdAsm - Uses XsdParser to gather the required information and uses it to
generate the internal Java DSL.

• HtmlApi - A concrete Java DSL for the HTML5 language generated by Xs-
dAsm using the HTML5 XSD document.

The use case for this dissertation will be the HTML language but the process is
designed to support any domain language that has its definition described in the
XSD syntax. This means that any XML language should be supported as long as
it has its set of rules properly defined in a XSD file, as well as any other domain
language that can describe its rules in the XSD syntax. To show that this solution
is viable with other XSD files we created two additional fluent interfaces:

• Android Layouts - Based on a preexisting XSD document detailing the lan-
guage used to create Android visual layouts;

• Regular Expressions - Based on a created XSD document detailing the op-
erations available in the regular expressions syntax.

8

1. INTRODUCTION 1.4. Document Organization

1.4 Document Organization

This document will be separated in six distinct chapters. The first chapter, this
one, introduces the concept that will be explored in this dissertation. The sec-
ond chapter introduces the motivation for this dissertation. The third chapter
presents existent technology that is relevant to this solution. The fourth chapter
explains in detail the different components of the suggested solution. The fifth
chapter approaches the deployment, testing and compares xmlet to other preex-
isting solutions. The sixth and last chapter of this document contains some final
remarks and description of future work.

9

2
Problem Statement

In the first chapter we presented template engines and discussed their theoretical
handicaps, in this chapter we will further analyze other limitations that are pre-
sented while using them in a practical setting. This analysis aims to show how
fragile the usage of this type of solution can be and the problems that are inher-
ited by using it.

2.1 Motivation

Text has evolved with the advance of technology resulting in the creation of
markup languages [1]. Markup languages work by adding annotations to text, the
annotations being also known as tags, which allow to add additional information
to the text. Each markup language has its own tags and each of those tags add a
different meaning to the text encapsulated within them. In order to use markup
languages the users can write the text and add all the tags manually, either by fully
writing them or by using some kind of text helpers such as text editors with Intel-
liSense1, which can help diminish the errors caused by manually writing the tags.
But even with text helpers the resulting document can violate the restrictions of
the respective markup language because the editors do not actually enforce the lan-
guage rules since there is not a process similar to a compile process that can either
pass of fail. The most that a text editor can do is highlight the errors to the user.

1https://www.techopedia.com/definition/24580/intellisense

11

https://www.techopedia.com/definition/24580/intellisense

2. PROBLEM STATEMENT 2.1. Motivation

The most well-known markup language is HTML, which is highly used in Web
applications. Other uses of the HTML language are in emails, writing reports,
etc.

Now we will present different issues resulting from the use of template engines
to build HTML views. The examples provided in this section use eight differ-
ent template engines: Freemarker[2], Handlebars[12], Mustache[17], Pebble[19],
Thymeleaf[23], Trimou[24], Velocity[25] and Rocker[21]. The templates used in
these experimental tests were the same used for different benchmarks presented
in Chapter 5. The three issues that will be addressed are:

• Issue 1 - Guarantees of well formed documents;

• Issue 2 - Validation of the HTML language rules;

• Issue 3 - Validation of context objects.

We will start with the most basic aspect that we expect from a HTML document,
it should be well formed. Let us start with a very simple example as shown in
Listing 2.1.

1 <html>

2 <!-- -->

3 </html>

Listing 2.1: Badly Formed HTML Document

Let us imagine that for some typing mistake the red characters are missing, which
means that the opening <html> tag is not properly written and its closing tag is
not present. It would be expected that in the very least the template engine would
issue an error while reading the file at run time. But all template engines used in
this experiment have not issued any kind of error. This is problematic, because
the error was not caught neither at compile time nor at run time. These kind
of errors would only be observable either on a browser or by using any kind of
external tool to verify the resulting HTML page. This is the case where an internal
DSL such as the one presented in Listing 1.3 suppresses this problem, since the
responsibility of creating tags and properly opening and closing them belongs to
the DSL library and not to the person who is writing the template.

Addressing the second issue, the rules of the used language should be validated.
The HTML language specification specifies many restrictions, either on attribute

12

2. PROBLEM STATEMENT 2.1. Motivation

types or regarding the organization of the element tree. For example, let us think
about the html element, the specification states that the only elements that can
be direct children of the html element are head and body elements. That means
that if we try to define a template as shown in Listing 2.2 the template engines
should inform us that we are violating the language rules.

1 <html>

2 <div>

3 <!-- -->

4 </div>

5 </html>

Listing 2.2: Invalid Html Element Containing a Div Element

After trying to use the template of Listing 2.2 with the eight template engines that
we are using, none of them issued any compile time error, nor any run time error.
This means that this error would have to be manually detected by the person
who is writing the template, and taking the nature of these rules in consideration
it would be hard to verify them manually. By using an approach such as xmlet
we would discover this error at compile time, as many other similar errors. The
organization of elements can be validated at compile time as well as the primitive
attribute types. Some validations, such as types with complex restrictions, have
to be validated at run time, but even then the feedback is immediate and the user
receives a detailed error message.

The third issue that we are going to pinpoint is the use of context objects. Every
template engine uses them, since it contains the information that the template engine
will use to fill out the placeholders defined in the textual template file. But what
problems arise from their usage?

13

2. PROBLEM STATEMENT 2.1. Motivation

1 <html>

2 <body>

3

4 {{#student}}

5

6 {{name}}

7

8

9 {{number}}

10

11 {{/student}}

12

13 </body>

14 </html>

Listing 2.3: HTML Template with Placeholders

The template of Listing 2.3 receives a Student object that contains a name and
number fields. Most template engines use a Map<String, Object> as the con-
text object. In this case, a valid context object should look like the Map object created
in Listing 2.4.

1 Map<String, Object> context = new HashMap<>();

2 context.put("student", new Student("Luis", 39378));

Listing 2.4: Template Engine with a Valid Context Object

The context object defined in the previous example, Listing 2.4, is valid. The con-
text object is valid since it defines a pair with the key student associated with a
Student object, which contains a name and number fields. This definition cor-
responds with the usage performed in the template defined in Listing 2.3. Yet, in
Listing 2.5 and Listing 2.6 we show another context object definitions which are in-
valid, since their contents do not match the information expected by the template
defined in Listing 2.3.

1 Map<String, Object> context = new HashMap<>();

2 context.put("teacher", new Student("Luis", 39378));

Listing 2.5: Template Engine with a Context Object with a Wrong Key

1 Map<String, Object> context = new HashMap<>();

2 context.put("student", new Teacher("MEIC", "ADDETC"));

Listing 2.6: Template Engine with a Context Object with a Wrong Type

14

2. PROBLEM STATEMENT 2.1. Motivation

The first context object, Listing 2.5, has a wrong key, teacher, whereas the tem-
plate is expecting an object with the student key. The second context object,
Listing 2.6, has the right key but has a different type, which does not match the
fields expected by template of Listing 2.3.

With this information in mind how will the eight template engines react when re-
ceiving these invalid context objects? The Rocker template engine is the only one
which deals with it in a safe way since its template defines the type that will be
received. Moreover its template file is used in the generation of a Java class at
compile time, which reflects the template information, and its usages are all safe
regarding the context object, because the Java compiler validates if the object re-
ceived as context object matches the expected type. The remaining seven template
engines have no static validations. None of them issue any compile time warning.

Regarding runtime safety only Freemarker issues an exception with a similar ex-
ample to Listing 2.5 and in the second case, Listing 2.6, only Freemarker and
Thymeleaf throw an exception. The remaining solutions ignore the fact that
something that is expected is not present and delay the error finding process until
the generated file is manually validated.

In this case the use of an internal DSL suppresses this problem, as the template
is defined by a Java function where the context object is an argument validated at
compile time.

Another improvement of using an internal DSL over the use of template engines
is the language homogeneity. For example, even for the simplest templates we
have to use at least three distinct syntaxes. In the following example we will use
the Pebble template engine, one of the less verbose templates. In this example we
define a template to write an HTML document that presents the name of all the
Student objects present in a Collection as shown in Listing 2.7.

1 <html>

2 <body>

3

4 {% for student in students %}

5 {{student.name}}

6 {% endfor %}

7

8 </body>

9 </html>

Listing 2.7: List of Student Names - Template Definition using Pebble

15

2. PROBLEM STATEMENT 2.1. Motivation

In this template alone we need to use two distinct syntaxes, the HTML language
and the Pebble syntax to express that the template will receive a Collection

that should be iterated and create li tags containing the name field of the
Student type. Apart from the template definition we also need the Java code
to generate the complete document, as shown in Listing 2.8.

1 PebbleEngine engine = new PebbleEngine.Builder().build();

2 template = engine.getTemplate("templateName.html");

3 StringWriter writer = new StringWriter();

4

5 Map<String, Object> context = new HashMap<>();

6 context.put("students", getStudentsList());

7

8 template.evaluate(writer, context);

9

10 String document = writer.toString();

Listing 2.8: List of Student Names - Template Building in Java using Pebble

Even though the template in Listing 2.7 is simple the usage of multiple syntaxes
introduces more complexity to the problem. If we scale the complexity of the
template and the number of different types used in the context object mistakes
are bound to happen, which would be fine if the template engines gave any kind
of feedback on errors, but we already shown that most errors are not reported.
Let us take a peek of how this same template would be presented in the latest
HtmlFlow version with the definition of the template in Listing 2.9 and the tem-
plate building in Listing 2.10.

1 static void studentListTemplate(DynamicHtml<Iterable<Student>> view,

2 Iterable<Student> students){

3 view.html()

4 .body()

5 .ul()

6 .dynamic(ul ->

7 students.forEach(student ->

8 ul.li().text(student.getName()).__()))

9 .__()

10 .__()

11 .__();

12 }

Listing 2.9: List of Student Names - Template Definition using HtmlFlow with
xmlet

16

2. PROBLEM STATEMENT 2.2. Problem Statement

1 String document = DynamicHtml.view(CurrentClass::studentListTemplate)

2 .render(getStudentsList());

Listing 2.10: List of Student Names - Template Building using HtmlFlow with
xmlet

With this solution we have a very compact template definition, where the context
object, i.e. the Iterable<Student> students, shown in line 2 of Listing 2.9,
is validated by the Java compiler in compile time, which guarantees that any
document generated by this solution will be valid since the program would not
compile otherwise. This solution internally guarantees that the HTML tags are
created properly, having matching opening and ending tags, meaning that every
document generated by this solution will be well formed regardless of the defined
template.

2.2 Problem Statement

The problem that is being presented revolves around the handicaps of template
engines, the lack of compilation of the language used within the template, the
performance overhead and the issues resulting from the increase of complexity, as
presented in Section 1.2.2. To tackle those handicaps we suggested the automated
generation of a strongly typed fluent interface. To show how that fluent interface
will effectively work we will now present a small example that consists on the
html element, Listing 2.11, described in XSD of the HTML5 language definition.
The presented example is simplified for explanation purposes. In the examples
that are presented below we will use a common set of types that serve as a basis
to every fluent interface generated by xmlet, these classes will be presented in
Section 4.2.1.

17

2. PROBLEM STATEMENT 2.2. Problem Statement

1 <xsd:attributeGroup name="globalAttributes">

2 <xsd:attribute name="accesskey" type="xsd:string" />

3 <!-- Other global attributes -->

4 </xsd:attributeGroup>

5

6 <xsd:element name="html">

7 <xsd:complexType>

8 <xsd:choice>

9 <xsd:element ref="body"/>

10 <xsd:element ref="head"/>

11 </xsd:choice>

12 <xsd:attributeGroup ref="globalAttributes" />

13 <xsd:attribute name="manifest" type="xsd:anyURI" />

14 </xsd:complexType>

15 </xsd:element>

Listing 2.11: <hmtl> Element Description in XSD

With this example there are a multitude of classes and members that need to be
created:

• Html Class - A class that represents the html XSD element defined in line
6 of Listing 2.11. The resulting class is presented in Listing 2.12, deriving
from AbstractElement.

• body() and head() Methods - These methods are present in the Html

class, lines 12 and 14 of Listing 2.12 respectively. These methods use the
addChild(Element e)method to add instances of the Body type, shown
in Listing 2.13, and Head type, shown in Listing 2.14, to the Html class
children list. These methods belong in the Html class since they are de-
fined as possible children of the html XSD element, with the usage of the
<xsd:choice> element in line 8 of Listing 2.11.

• attrManifest(String manifest) Method - A method present in
Html class, line 8 of Listing 2.12, which uses the addAttr(Attribute

a) method to add an instance of the AttrManifest type, shown in List-
ing 2.15, to the Html attribute list. This method is present in the Html class
because the html XSD element defines an XSD attribute named manifest

with the type xsd:anyURI, which is mapped to the AttrManifest type,
shown in Listing 2.15.

18

2. PROBLEM STATEMENT 2.2. Problem Statement

1 class Html extends AbstractElement implements GlobalAttributes {

2 public Html() { }

3

4 public void accept(Visitor visitor){

5 visitor.visit(this);

6 }

7

8 public Html attrManifest(String attrManifest) {

9 return this.addAttr(new AttrManifest(attrManifest));

10 }

11

12 public Body body() { return this.addChild(new Body()); }

13

14 public Head head() { return this.addChild(new Head()); }

15 }

Listing 2.12: Html Class Corresponding to the XSD Element Named html

• Body and Head Classes - Classes created based on the body and head XSD
elements. The classes are shown in Listing 2.13 and Listing 2.14 respectively.
These classes will be generated using the same process used to generate
the Html class, with the differences between the classes depending on the
contents of their respective XSD elements.

1 public class Body extends AbstractElement {

2 //Similar to Html, based on the contents of

3 //<xsd:element name="body">

4 }

Listing 2.13: Body Class Corresponding to the XSD Element Named body

1 public class Head extends AbstractElement {

2 //Similar to Html, based on the contents of

3 //<xsd:element name="head">

4 }

Listing 2.14: Head Class Corresponding to the XSD Element Named head

• AttrManifest Class - A class that represents the manifest XSD at-
tribute, defined in line 13 of Listing 2.11. The AttrManifest class is shown
in Listing 2.15, deriving from BaseAttribute.

19

2. PROBLEM STATEMENT 2.2. Problem Statement

1 public class AttrManifest extends BaseAttribute<String> {

2 public AttrManifest(String attrValue) {

3 super(attrValue);

4 }

5 }

Listing 2.15: AttrManifest Class Corresponding to the XSD Attribute Named
manifest

• GlobalAttributes Interface - An interface representing the
globalAttributes XSD attribute group, defined in line 1 of Listing
2.11. This interface has default methods for each attribute it contains, e.g.
the accesskey attribute defined in line 2 of Listing 2.11 is used to generate
the attrAccesskey method shown in line 2 of Listing 2.16. The default
methods objective is to add a certain attribute to the attributes list of the
type that implements the interface. This interface is implemented by all the
generated classes that are based on a XSD element that contains a reference
to the attribute group that this interface represents, e.g. the Html class
implements the GlobalAttributes interface because the html XSD
element contains a reference to the globalAttributes XSD attribute
group, line 12 of Listing 2.11.

1 public interface GlobalAttributes extends Element {

2 default Html attrAccesskey(String accesskeyValue) {

3 this.addAttr(new AttrAccesskey(accesskeyValue));

4 return this;

5 }

6

7 // Similar methods for the remaining attributes

8 // present in the globalAttributes attributeGroup.

9 }

Listing 2.16: GlobalAttributes Interface Corresponding to the XSD Attribute
Group Named globalAttributes

By analyzing this little example we can observe how xmlet implements one of
its most important features that was lacking in the template engine solutions, the
user is only allowed to generate a tree of elements that follows the rules specified
by the XSD file of the given language, e.g. the user can only add Head and Body

instances as children to the Html class and the same goes for attributes as well,
to add attributes to an Html instance the user can only use methods that add

20

2. PROBLEM STATEMENT 2.3. Approach

an instance of the AttrManifest class or the default methods provided by the
GlobalAttributes interface. This solution effectively uses the Java compiler
to enforce most of the specific language restrictions. The other handicaps are also
solved, since the template can now be defined within the Java language eradi-
cating the requirement of textual files that still need to be loaded into memory
and resolved by the template engine. The complexity and flexibility issues are also
tackled by moving all the parts of the problem to the Java language, removing
language heterogeneity and allowing the programmer to use the Java syntax to
create the templates.

2.3 Approach

The approach to achieve a solution was to divide the problem into three distinct
aspects, as previously stated in Section 1.3.

The XsdParser project is an utility project that is required in order to parse all the
external DSL rules present in the XSD document into structured Java classes.

The XsdAsm project is the most important aspect of xmlet, since it is the aspect
that will deal with the generation of all the bytecodes that make up the classes of
the Java fluent interface. This project should translate as many rules of the parsed
language definition, its XSD file, into the Java language in order to make the
resulting fluent interface as similar as possible to the language definition.

The HtmlApi is the main use case for xmlet. It is a concrete client of the Xs-
dAsm project, it will use the HTML5 language definition file in order to request
a strongly typed fluent interface, named HtmlApi. This use case is meant to be
used by the HtmlFlow library, which will use HtmlApi to manipulate the HTML
language to write well formed documents.

21

3
State of Art

In this chapter we are going to introduce the technologies used in the develop-
ment of this work, such as the XSD language in order to provide a better under-
standing of the next chapters, and also introduce the latest solutions that moved
on from the usual template engine approach and in different ways tried to innovate
in order to introduce safety and reliability to the process of generating HTML
documents.

3.1 XSD Language

The XSD language is a description of a type of XML document. The XSD syn-
tax allows the definition of a set of rules, elements and attributes that together
define an external DSL. This specific language defined in a XSD document aims
to solve a specific issue, with its rules serving as a contract between applications
regarding the information contained in the XML files that represent information
of that specific language. The XSD main purpose is to validate XML documents,
if the XML document follows the rules specified in the XSD document then the
XML file is considered valid otherwise it is not. To describe the rules and restric-
tions for a given XML document the XSD language relies on two main types of
data: elements and attributes. Elements are the most complex data type, they can
contain other elements as children and can also have attributes. Attributes on the
other hand are just pairs of information, defined by their name and their value.

23

3. STATE OF ART 3.2. The Evolution of Template Engines

The value of a given attribute can be restricted by multiple constraints existing on
the XSD syntax. There are multiple elements and attributes present in the XSD
language, which are specified in the XSD Schema rules[26]. In this dissertation
we will use the set of rules and restrictions of the provided XSD documents to
build a fluent interface that will enforce the rules and restrictions specified by the
given file.

3.2 The Evolution of Template Engines

We have already presented the idea behind template engines in Section 1.2 and
their handicaps in Section 1.2.2, but here we are going to present some recent
innovations that some template engines introduced in order to solve or minimize
some of the problems listed previously. We are going to compare the features each
solution introduces and create a general landscape of the preexisting solutions
similar to the use case that xmlet will use.

3.2.1 HtmlFlow 1

The HtmlFlow[5] library was the first to be approached in the developing pro-
cess of xmlet. The HtmlFlow motivation is to provide a library that allowed its
users to write well formed type-safe HTML documents. The HtmlFlow version
that existed prior to this project, which will be named HtmlFlow 1, only sup-
ported a subset of the HTML language, whilst implementing some of the rules of
the HTML language. This solution was a step in the right direction, it removed
the requirement to have textual files to define templates by moving the template
definition to the Java language. It also provided a very important aspect, it per-
formed language validations at compile time, which is great since it guarantees
that those problems will be solved at compile time instead of run-time. The main
downside of this solution was that it only supported a subset of the HTML lan-
guage, since recreating all the HTML language rules manually would be very
time consuming and error prone. This problem led to the requirement of creating
an automated process to translate the language rules to the Java language. By
using this version of HtmlFlow we observe code that is very similar to the cur-
rent version, HtmlFlow 3, which uses xmlet, as shown in Listing 3.1. The most
notable issue while using HtmlFlow 1 is the lack of the whole HTML syntax and
poor navigation on the generated element tree.

24

3. STATE OF ART 3.2. The Evolution of Template Engines

1 HtmlView<?> taskView = new HtmlView<>();

2 taskView

3 .head()

4 .title("Task Details")

5 .linkCss("https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/

bootstrap.min.css");

6 taskView

7 .body().classAttr("container")

8 .heading(1, "Task Details")

9 .hr()

10 .div()

11 .text("Title: ").text("ISEL MPD project")

12 .br()

13 .text("Description: ").text("A Java library for serializing objects

in HTML.")

14 .br()

15 .text("Priority: ").text("HIGH");

Listing 3.1: HtmlFlow Version 1 Code Example

3.2.2 J2html

J2html[9] is a Java library used to write HTML. This solution does not verify the
specification rules of the HTML language either at compile time or at runtime,
which is a major downside. But on the other hand it removes the requirement of
having text files to define templates by defining the templates within the Java lan-
guage. It also provides support for the use of most of the HTML language, which
is probably the reason why it has more garnered more attention than HtmlFlow
1. This library also shows that the issue we are trying to solve with the HtmlFlow
is relevant since this library is quite popular, currently having 442 stars on the
project Github page1. In Listing 3.2 we show the required code using J2html
to generate the example template defined in Listing 1.4. Regarding its use, it is
simple to use since it has a similar syntax to HTML, which makes it easily under-
standable. The way it uses parameters to pass children elements also helps keep
track of depth in the element tree.

1https://github.com/tipsy/j2html

25

https://github.com/tipsy/j2html

3. STATE OF ART 3.2. The Evolution of Template Engines

1 Student student = new Student(39378, "Luis Duarte");

2

3 String document =

4 html(

5 body(

6 ul(

7 li(student.getName()),

8 li(student.getNumber())

9)

10)

11).render();

Listing 3.2: J2html Code Example

3.2.3 Rocker

The Rocker[21] library is very different from the two libraries presented before.
Its approach is at is core very similar to the classic template engine solution since it
still uses a textual file to define the template. But contrary to the classic template
engines the template file is not used at run-time. This solution uses the textual
template file to automatically generate a Java class to replicate that specific tem-
plate in the Java language. This means that instead of resorting to loading the
template defined in a text file at run time it uses the automatically generated
class to generate the final document, by combining the static information present
in the class with the received input. This is very important, by two distinct rea-
sons. The first reason is that this solution can validate the type of the context
objects used to create the template at compile time. The second reason is that this
solution has very good performance due to all the static parts of the template be-
ing hardcoded into the Java class that defines the specific template. This was by
far the best competitor with xmlet regarding performance. The biggest down-
side of this solution is that it does not verify the HTML language rules or even
well formed XML documents. Regarding its use, Rocker is a bit more complex.
It has three distinct aspects: the template, the generated Java class and the Java
code needed to render it. In Listing 3.3 we show the Rocker template which is
required to replicate the template of Listing 1.4.

26

3. STATE OF ART 3.2. The Evolution of Template Engines

1 @import com.mitchellbosecke.benchmark.model.Student

2 @args (Student student)

3 <html>

4 <body>

5

6

7 @student.getName()

8

9

10 @student.getNumber()

11

12

13 </body>

14 </html>

Listing 3.3: Rocker Template Example

After defining the template and compiling the project, Rocker generates a Java
class based on this template, i.e. the template defined in Listing 3.3. The gen-
erated class is shown in Listing 3.4. The class presented here is simplified, but
it still gives a good overview of what Rocker does. It defines a context object of
type Student, in line 4 and receives a value for it in line 11 of Listing 3.4. The
template itself is separated into Strings, e.g. in the current example we have
two placeholders the @student.getName() and @student.getNumber(),
so Rocker stores three Strings in static variables: the String before the first
placeholder, i.e. field PLAIN_TEXT_0_0 in line 34 of Listing 3.4, the String in
between placeholders, i.e. field PLAIN_TEXT_1_0 in line 36 of Listing 3.4, and
lastly the String after the second placeholder, i.e. field PLAIN_TEXT_2_0 in
line 38 of Listing 3.4. The __doRender method, line 26 of Listing 3.4, joins the
different template Strings with the placeholders.

27

3. STATE OF ART 3.2. The Evolution of Template Engines

1 public class studentTemplate extends DefaultRockerModel {

2

3 private Student student;

4

5 public studentTemplate student(Student student) {

6 this.student = student;

7 return this;

8 }

9

10 static public studentTemplate template(Student student) {

11 return new studentTemplate().student(student);

12 }

13

14 static public class Template extends DefaultRockerTemplate {

15

16 protected final Student student;

17

18 public Template(studentTemplate model) {

19 super(model);

20 this.student = model.student();

21 }

22

23 @Override

24 protected void __doRender() throws IOException,RenderingException{

25 __internal.writeValue(PLAIN_TEXT_0_0);

26 __internal.renderValue(student.getName(), false);

27 __internal.writeValue(PLAIN_TEXT_1_0);

28 __internal.renderValue(student.getNumber(), false);

29 __internal.writeValue(PLAIN_TEXT_2_0);

30 }

31 }

32

33 private static class PlainText {

34 static private final String PLAIN_TEXT_0_0 =

35 "\n<html>\n <body>\n \n \n ";

36 static private final String PLAIN_TEXT_1_0 =

37 "\n \n \n ";

38 static private final String PLAIN_TEXT_2_0 =

39 "\n \n \n </body>\n</html>";

40 }

41 }

Listing 3.4: Rocker Java Class Example

28

3. STATE OF ART 3.2. The Evolution of Template Engines

Lastly, the code required to define the context object and render the template is
the shown in Listing 3.5. Here the code is quite simple, the only requirement is to
pass a valid context object, which is validated by the Java compiler since the context
object type is defined in the textual template file, line 1 of Listing 3.3, which Rocker
uses to as parameter to the template method in generated the class, shown in
Listing 3.4.

1 String document =

2 templates.studentTemplate

3 .template(new Student(39378, "Luis Duarte"))

4 .render()

5 .toString();

Listing 3.5: Rocker Use Example

3.2.4 KotlinX Html

Kotlin[13] is a programming language that runs on the Java Virtual Machine (JVM).
The language main objective is to create an inter-operative language between
Java, Android and browser applications. Its syntax is not compatible with the
standard Java syntax but both languages are inter-operable. The main reasons
to use this language is that it heavily reduces the amount of textual information
needed to create code by using type inference and other techniques.

Kotlin is relevant to this project since one of his children projects, KotlinX Html,
defines a DSL for the HTML language. The solution KotlinX Html provides is
quite similar to what the xmlet will provide in its use case.

• Elements - The generated Kotlin DSL will guarantee that each element only
contains the elements and attributes allowed as stated in the HTML5 XSD
document. This is achieved by using type inference and the language com-
piler.

• Attributes - The possible values for restricted attributes values are not veri-
fied.

• Template - The template is embedded within the Kotlin language, removing
the textual template files.

• Flexibility - Allows the usage of the Kotlin syntax to define templates, which
is richer than the regular template engine syntax.

29

3. STATE OF ART 3.2. The Evolution of Template Engines

• Complexity - Removes language heterogeneity, the programmer only pro-
grams in Kotlin.

KotlinX[14] HTML DSL is the most similar solution to xmlet. The only differ-
ence is that xmlet takes advantage of the attributes restrictions present in the
XSD document in order to increase the verifications that are performed on the
HTML documents that are generated by the generated fluent interfaces. Both solu-
tions also use the Visitor pattern in order to abstract themselves from the concrete
usage of the DSL. The main difference between KotlinX Html and xmlet is per-
formance, the Kotlin DSL is slow compared to other template engines solutions.
Having a library as popular as the Kotlin HTML DSL, currently with 518 stars
on its Github page2, providing a solution so similar to xmlet also shows that
the approach makes sense and tackles a real world problem. To use it, we must
start by creating an HTML document, and then we can start to add elements to
it. An example is shown in Listing 3.6, defining the same template defined in
Listing 1.4. Using it feels pretty straightforward, its quite similar to the code we
get while using J2html, with the advantage of guaranteeing the implementation
of the HTML syntax rules.

1 val student = Student(39378, "Luis Duarte")

2

3 val document = createHTMLDocument()

4 .html {

5 body {

6 ul {

7 li { student.name }

8 li { student.number }

9 }

10 }

11 }.serialize(false)

Listing 3.6: Kotlin Template Example

2https://github.com/Kotlin/kotlinx.html

30

https://github.com/Kotlin/kotlinx.html

3. STATE OF ART 3.2. The Evolution of Template Engines

3.2.5 HtmlFlow 3

After developing xmlet and adapting the HtmlFlow library to use it some char-
acteristics changed. This version of HtmlFlow that uses xmlet will be referred
as HtmlFlow 3 from now on. The safety aspects of HtmlFlow 1 are kept since the
general idea for the solution is kept with the usage of the HtmlApi generated by
xmlet. Regarding the negative aspects of HtmlFlow 1, four of them were solved:

• Small language subset - Solved by using the automatically generated Htm-
lApi, which defines the whole HTML language within the Java language.

• Attribute value validation - The HtmlApi validates every attribute value
based on the restrictions defined for that respective attribute in the HTML
XSD document.

• Performance - Improved HtmlFlow performance by using a caching strat-
egy provided by HtmlApi.

• Maintainability - Since it uses an automatically generated DSL if any change
occurs in the HTML language specification the only change needed is to
generate a new DSL based on the new language rules defined in the XSD
file.

By using xmlet the HtmlFlow library was also able to improve its performance.
With the mechanics created by the usage of xmlet it is now possible to replicate
the performance improvements of the Rocker solution. An example of its usage
was already shown in Listing 1.6. Its syntax ends up being similar to the other
solutions presented in this chapter, with the most notable difference being the
fact that it allows to use Java functions to create template, as shown on line 4 of
Listing 1.6.

31

3. STATE OF ART 3.2. The Evolution of Template Engines

3.2.6 Feature Comparison

To have a better overview on all the previously presented solutions we will now
show a table that has a list of most important features and which solutions im-
plements them.

J2Html Rocker KotlinX HtmlFlow*

Template Within Language ! *1 ! !/!

Elements Validations # # ! !/!

Attribute Validations # # # #/!

Fully Supports HTML # ! ! #/!

Well-Formed Documents ! # ! !/!

Maintainability # ! ! #/!

Performance # ! # #/!

Table 3.1: Template Engines Feature Comparison
#- Feature not present
!- Feature present

HtmlFlow* - HtmlFlow 1 / HtmlFlow 3
*1 - Template class generated at compile time

As we can see in the Table 3.1, most of these solutions tend to move the template
definition from the textual files to the current language syntax, in this case Java.
This removes the overhead of loading the textual files and parsing them at run-
time. Another feature that the different solutions share is that they all create
well formed documents, apart from Rocker. The general problem that extends
to all the solutions that previously existed is the lack of validations that enforce
the HTML language rules. KotlinX Html is the solution that mostly resembles
the main goals of xmlet, however it is heavily handicapped when it comes to
performance, being one of the worst in the benchmarks performed, which will be
presented in Chapter 5.

32

4
Solution

This chapter will present xmlet, its different components and how they interact
between them. Generating a Java fluent interface based on a XSD file includes two
distinct tasks:

1. Parsing the information from the XSD file;

2. Generating the fluent interface classes based on the resulting information of
the previous task.

Those tasks are encompassed by two different projects, XsdParser, presented in
Section 4.1, and XsdAsm, presented in Section 4.2. In this case the XsdAsm has a
dependency to XsdParser.

The main use case of xmlet is the generation of a Java DSL for HTML. To that
end, the HtmlApi, presented in Section 4.3.1, specifies how the XsdAsm project
can be used, specifically using the HTML5 XSD file, to generate the Java HTML
fluent interface.

Finally, the HtmlFlow 3 is responsible for establishing the output of a concrete
HtmlApi usage. Some additional remarks regarding changes on the HtmlFlow
library will be provided in Section 4.3.3.

33

4. SOLUTION 4.1. XsdParser

4.1 XsdParser

XsdParser is a library that parses a XSD file into a list of Java objects. Each
different XSD tag has a corresponding Java class and the attributes of a given
XSD type are represented as fields of that class. All these classes derive from
the same abstract class, XsdAbstractElement. All Java representations of the
XSD elements follow the schema definition for XSD elements, referred in Sec-
tion 3.1. For example, the xsd:annotation tag only allows xsd:appinfo and
xsd:documentation as children nodes, and can also have an attribute named
id, therefore XsdParser has the following class as shown in Listing 4.1.

1 public class XsdAnnotation extends XsdAbstractElement {

2

3 private String id;

4 private List<XsdAppInfo> appInfoList = new ArrayList<>();

5 private List<XsdDocumentation> documentations = new ArrayList<>();

6

7 // (...)

8 }

Listing 4.1: Simplified Version of the Generated XsdAnnotation Class

4.1.1 Parsing Strategy

The first step of this library is handling the XSD file. The Java language has
no built in library that parses XSD files, so we needed to look for other op-
tions. The main libraries found that address this problem were Document Object
Model (DOM) and Simple Application Programming Interface for eXtensive Markup
Language (SAX). After evaluating the pros and cons of those libraries the choice
ended up being DOM, since a XSD file is a tree of XML elements. This choice
was based mostly on the fact that SAX is an event driven parser and DOM is a
tree based parser, which is more adequate for the present issue. DOM is a library
that maps HTML, eXtensive HyperText Markup Language (XHTML) and XML files
into a tree structure composed by multiple elements, also named nodes. This is
exactly what XsdParser requires to obtain all the information from the XSD files,
which is described in XML.

This means that XsdParser uses DOM to parse the XSD file and obtain its root
element, a xs:schema node, performing a single read on the XSD file, avoiding
multiple reads, which are less efficient (Listing 4.2).

34

4. SOLUTION 4.1. XsdParser

1 private Node getSchemaNode(String filePath)

2 throws IOException, SAXException, ParserConfigurationException {

3 DocumentBuilderFactory dbFactory =

4 DocumentBuilderFactory.newInstance();

5 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

6 Document doc = dBuilder.parse(xsdFile); //Parses the XSD file.

7

8 // Obtains the first node of the document, which

9 // should be the xs:schema node.

10 return doc.getFirstChild();

11 }

Listing 4.2: DOM Document Parsing

After obtaining the root node of the XSD file the XsdParser verifies if that node
is a XsdSchema node as shown in Listing 4.3. If that is the case it proceeds by
performing the parse function of the XsdSchema class.

1 Node schemaNode = getSchemaNode(filePath);

2

3 if (isXsdSchema(schemaNode)){

4 XsdSchema.parse(this, schemaNode);

5 }

Listing 4.3: XsdParser Parsing the XsdSchema Node, which triggers the parsing
of the whole XSD document

The XsdSchema element parse function, shown in line 13 of Listing 4.4, converts
the Node attributes into a Map object, which XsdSchema receives in the construc-
tor. Each class extracts their field information from the received attribute Map

object in their constructor methods, e.g. XsdSchema constructor in line 2 of List-
ing 4.4. To guarantee that the information parsed by the classes is compliant with
the XSD syntax we perform multiple validations. To validate the possible values
for any given attribute, e.g. the finalDefault attribute from the xsd:schema
element, we use Enum classes. Any parsed value that is meant to be assigned to
one of this Enum variables has its content verified to assert if the received value
belongs to the possible values for that attribute. In lines 5 and 6 of Listing 4.4 we
can see this behaviour, we first obtain the finalDefault attribute value from
the Map object and then we invoke belongsToEnum passing an instance of the
FinalDefaultEnum type and the parsed value. The belongsToEnum method
will assert if the received value is present in the possible values for the received
Enum class and if present it returns the Enum instance that represents the received
value, otherwise it will throw an exception.

35

4. SOLUTION 4.1. XsdParser

1 public class XsdSchema extends XsdAnnotatedElements {

2 private XsdSchema(XsdParser parser, Map<String, String> attributes){

3 super(parser, attributes);

4

5 String finalDef = attributes.getOrDefault("finalDefault", "");

6 this.finalDefault = belongsToEnum(FinalDefaultEnum.instance,

finalDef);

7

8 this.xmlns = attributes.getOrDefault(XMLNS, xmlns);

9

10 // Similar code used for the remaining attributes.

11 }

12

13 public static ReferenceBase parse(XsdParser parser, Node node) {

14 NamedNodeMap nodeAttributes = node.getAttributes();

15 Map<String, String> attributes = convertNodeMap(nodeAttributes);

16

17 return xsdParseSkeleton(node, new XsdSchema(parser, attributes));

18 }

19 }

Listing 4.4: XsdSchema Extracting Information from the received Node

The parsing of XsdSchema continues by parsing its children nodes. To parse
children elements of any given XsdAbstractElement type we have the
xsdParseSkeleton function present in the XsdAbstractElement class. This
function will iterate in all the children of a given node, line 5 of Listing 4.7, invoke
the respective parse function of each children, line 17/18 of Listing 4.7, and then
notify the parent element, using the Visitor pattern[8], line 20 of Listing 4.7.

In XsdParser the Visitor pattern is used to ensure that each concrete element de-
fines different behaviours for different types of children. This provides good
flexibility for implementing certain XSD syntax restrictions, e.g. the element
complexContent can only receive extension and restriction elements as
children.

1 <xsd:complexContent>

2 <xsd:restriction base="xsd:string"/>

3 <xsd:attribute name="dummy"/>

4 </xsd:complexContent>

Listing 4.5: ComplexContent element with Restriction and Attribute children

36

4. SOLUTION 4.1. XsdParser

1 class XsdComplexContentVisitor extends XsdAnnotatedElementsVisitor {

2

3 private final XsdComplexContent owner;

4

5 // ...

6

7 @Override

8 public void visit(XsdRestriction element) {

9 owner.setRestriction(ReferenceBase.createFromXsd(element));

10 }

11

12 @Override

13 public void visit(XsdExtension element) {

14 owner.setExtension(ReferenceBase.createFromXsd(element));

15 }

16 }

Listing 4.6: XsdComplexContentVisitor Class

Parsing the XSD of Listing 4.5, will result in the xsd:complexContent element
being parsed, followed by the parsing of its children, i.e. xsd:restriction

and xsd:attribute. When the xsd:restriction element is parsed the re-
sulting instance, i.e. the childElement variable in line 17 of Listing 4.7, ac-
cepts his parents Visitor instance, in line 20 of Listing 4.7. The accept method
of the XsdRestriction type will invoke the visit method which receives the
type XsdRestriction, which means that, in this case, it will invoke the visit
method of line 8 of Listing 4.6. In the XsdComplexContentVisitor of List-
ing 4.6 we can see that it only defines behaviour for the two children types it
supports, XsdRestriction and XsdExtension. This means that if a XSD file
defines an invalid element for the current context, such as the xsd:attribute
of Listing 4.5 which is not allowed as children of xsd:complexContent, the
parser will just ignore that parsed element, since there is no behaviour defined
for XsdAttribute elements on the XsdComplexContentVisitor.

37

4. SOLUTION 4.1. XsdParser

1 ReferenceBase xsdParseSkeleton(Node node, XsdAbstractElement element){

2 XsdParser parser = element.getParser();

3 Node child = node.getFirstChild();

4

5 while (child != null) { //Iterates in all children from node.

6 //Only parses element nodes, ignoring comments and text nodes.

7 if (child.getNodeType() == Node.ELEMENT_NODE) {

8 String nodeName = child.getNodeName();

9

10 //Searches on a mapper for a parsing functions

11 //for the respective type.

12 BiFunction<XsdParser, Node, ReferenceBase> parserFunction =

XsdParser.getParseMappers().get(nodeName);

13

14 //Applies the parsing functions, if any, and notifies

15 //the parent objects Visitor to the newly created object.

16 if (parserFunction != null){

17 XsdAbstractElement childElement =

18 parserFunction.apply(parser, child).getElement();

19

20 childElement.accept(element.getVisitor());

21 childElement.validateSchemaRules();

22 }

23 }

24

25 child = child.getNextSibling(); //Moves on to the next sibling.

26 }

27

28 ReferenceBase wrappedElement= ReferenceBase.createFromXsd(element);

29 parser.addParsedElement(wrappedElement);

30 return wrappedElement;

31 }

Listing 4.7: XsdParseSkeleton Function - Parsing Children From a Node

Having each element parsing their own children means that the only requirement
for parsing a XSD document will be parsing its root element, that should always
be a XsdSchema.

Based on the explanation provided above, we will give a more detailed descrip-
tion about the parsing process made by XsdParser using a small concrete ex-
ample extracted from the HTML XSD file, present in Listing 4.8.

38

4. SOLUTION 4.1. XsdParser

1 <xs:schema>

2 <xs:element name="html">

3 <!-- -->

4 </xs:element>

5 </xs:schema>

Listing 4.8: Parsing Concrete Example

Step 1 - DOM parsing:

The parsing starts with the DOM library parsing the code, Listing 4.8, which
returns the xs:schema node, i.e. schemaNode in Listing 4.3. XsdParser verifies
if the node is in fact a xs:schema node and after verifying that in fact it is, it
invokes the XsdSchema parse function (line 19 of Listing 4.4).

Step 2 - XsdSchema Attribute Parsing:

The XsdSchema parse function receives the Node object and converts it to
a Map object (line 21 of Listing 4.4). The map object is then passed to the
XsdSchema constructor, line 2 of Listing 4.4, which will extract the information
from the Map object to the class fields.

Step 3 - XsdSchema Children:

Parses the children of the XsdSchema. The xsdParseSkeleton function, List-
ing 4.7, is called (line 17 of Listing 4.4) and starts to iterate the xs:schema

node children, which, in this case, is a node list containing a single element, the
xs:element node.

Step 4 - XsdElement Attribute Parsing:

The parsing of the xs:element node is similar to xs:schema, it extracts the
attribute information from its respective node in its constructor.

Step 5 - XsdSchema Visitor Notification:

After parsing the xs:element node the previously created XsdSchema object is
notified using the Visitor pattern. This notification informs the XsdSchema object
that it contains the newly created XsdElement object. The XsdSchema should
then act accordingly based on the type of the object received as its children, simi-
lar to the behaviour shown in XsdComplexContentVisitor of Listing 4.6.

39

4. SOLUTION 4.1. XsdParser

4.1.2 Reference solving

After the parsing process described previously, there is still an issue to solve re-
garding the existing references in the XSD schema definition. In XSD files the
usage of the ref attribute is frequent to avoid repetition of XML code. This gen-
erates two main problems when handling reference solving, the first one being
the existence of elements with ref attributes referring non existent elements and
the other being the replacement of the reference object by the referenced object
when present. In order to effectively help resolve the referencing problem some
wrapper classes were added. These wrapper classes contain the wrapped ele-
ment and serve as a classifier for the wrapped element. The existing wrapper
classes are as follow:

• UnsolvedElement - Wrapper class to each element that has a ref at-
tribute.

• ConcreteElement - Wrapper class to each element that is present in the
file.

• NamedConcreteElement - Wrapper class to each element that is present
in the file and has a name attribute present.

• ReferenceBase - A common interface between UnsolvedReference

and ConcreteElement.

Having these wrappers on the elements allow for a detailed filtering, which is
helpful in the reference solving process. A concrete example of how this process
works is in Listing 4.9.

1 <xsd:schema>

2 <!-- NamedConcreteType wrapping a XsdGroup -->

3 <xsd:group id="replacement" name="flowContent">

4 <!-- (...) -->

5 </xsd:group>

6

7 <!-- ConcreteElement wrapping a XsdChoice -->

8 <xsd:choice>

9 <!-- UnsolvedReference wrapping a XsdGroup -->

10 <xsd:group id="toBeReplaced" ref="flowContent"/>

11 </xsd:choice>

12 </xsd:schema>

Listing 4.9: Reference Solving Example

40

4. SOLUTION 4.1. XsdParser

In this short example we have a XsdChoice element, line 8 of Listing 4.9,
that contains a XsdGroup element with a ref attribute, line 10 of Listing 4.9.
At this point the XsdChoice is contained in a ConcreteElement object and
the XsdGroup is contained in a UnsolvedReference object. When replac-
ing the UnsolvedReference objects the XsdGroup with the ref attribute, of
line 10 of Listing 4.9, is going to be replaced by a copy of the already parsed
XsdGroup with the name attribute, of line 3 of Listing 4.9, which is contained
into a NamedConcreteElement object. This is achieved by accessing the par-
ent of the element, in this case accessing the parent of the XsdGroup with the
ref attribute of line 10 of Listing 4.9, which is the XsdChoice element. After
accessing the XsdChoice object we can replace the XsdGroup of line 10 with the
XsdGroup of line 3 of Listing 4.9.

To resume this process, there are three steps:

• Step 1 - Obtain all the NamedConcreteElement objects since they may, or
may not, be referenced by an existing UnsolvedReference object.

• Step 2 - Obtain all the UnsolvedReference objects and iterate them
to perform a lookup search on the NamedConcreteElement objects ob-
tained in Step 1. This is achieved by comparing the value present in the
UnsolvedReference ref attribute with the NamedConcreteElement
name attribute.

• Step 3 - If a match is found then XsdParser performs a copy of the ob-
ject wrapped by the NamedConcreteElement and replaces the element
wrapped in the UnsolvedReference object that served as a placeholder.

Having created these classes it is expected that at the end of a successful file pars-
ing only ConcreteElement and/or NamedConcreteElement objects remain.
In case there are any remainder UnsolvedReference objects the programmer
can query the parser, using the function getUnsolvedReferences of the Xsd-
Parser class, to discover which elements are missing and where were they used.
The programmer can then correct the missing elements by adding them to the
XSD file and repeat the parsing process or just acknowledge that those elements
are missing.

41

4. SOLUTION 4.2. XsdAsm

4.1.3 Validations

As it was already referred in Section 4.1.1 the parser uses some strategies to vali-
date the rules of the XSD language. We already referred the usage of Enum classes
for attribute values that have a set of possible values but there are more valida-
tions. This solution also validates the types of data received, e.g. validating if a
given attribute is a positive Integer value. There are more intricate restrictions
relating to the organization between elements, for example the xsd:element el-
ement is not allowed to have a ref attribute value if the xsd:element is a direct
child of the top-level xsd:schema element. All those rules were extracted from
the XSD language standard and each time a concrete element is created the re-
spective rules are verified when the validateSchemaRules method is called,
in line 21 of Listing 4.7.

Each time any of these rules is violated a ParsingException is thrown con-
taining a message detailing the rule that was violated, either being an attribute
that does not match its expected type, an attribute that has a value that is not
within the possible values for that attribute or any other more complex rule of
the XSD language. With this strategy the user of the XsdParser solution has the
information needed to fix the existing problems in the XSD file.

4.2 XsdAsm

XsdAsm is a library dedicated to generate a Java fluent interface based on a XSD
file. It uses the previously introduced XsdParser library to parse the XSD file
contents into a list of Java objects that XsdAsm will use to obtain the information
needed to generate the correspondent classes.

To generate classes this library also uses the ASM[3] library, which is a library
that provides a Java interface that allows bytecode manipulation providing meth-
ods for creating classes, methods, etc. There were other alternatives to the ASM
library but most of them are simply libraries that were built on top of ASM to
simplify its usage. It supports the creation of Java classes up until Java 11 and is
still maintained, the most recent version, 7 beta, was release in 29 September of
2018. ASM also has some tools to help the new programmers understand how
the library works. These tools help the programmers to learn faster how the code
generation works and allows to generate more complex code. In Listing 4.10 we
present a class that is used as an example of code generation. It is a simple class,

42

4. SOLUTION 4.2. XsdAsm

with a field and a method. The ASM library provides a tool, ASMifier, which
receives a .class file and returns the ASM code needed to generate it, as shown
in Listing 4.11.

1 public class SumExample {

2

3 private int sum;

4

5 void setSum(int a, int b){

6 sum = a + b;

7 }

8 }

Listing 4.10: ASM Example - Code Generation Objective

1 ClassWriter classWriter = new ClassWriter(0);

2

3 classWriter.visit(V9, ACC_PUBLIC + ACC_FINAL + ACC_SUPER,

4 "Samples/HTML/SumExample", null, "java/lang/Object", null);

5

6 FieldVisitor fieldVisitor =

7 classWriter.visitField(ACC_PRIVATE, "sum", "I", null, null);

8 fieldVisitor.visitEnd();

9

10 MethodVisitor methodVisitor =

11 classWriter.visitMethod(0, "setSum", "(II)V", null, null);

12 methodVisitor.visitCode();

13 methodVisitor.visitVarInsn(ALOAD, 0);

14 methodVisitor.visitVarInsn(ILOAD, 1);

15 methodVisitor.visitVarInsn(ILOAD, 2);

16 methodVisitor.visitInsn(IADD);

17 methodVisitor.visitFieldInsn(PUTFIELD, "Samples/HTML/SumExample",

18 "sum", "I");

19 methodVisitor.visitInsn(RETURN);

20 methodVisitor.visitMaxs(3, 3);

21 methodVisitor.visitEnd();

22

23 classWriter.visitEnd();

24

25 writeByteArrayToFile(classWriter.toByteArray());

Listing 4.11: ASM Example - Required Code

The strategy while creating xmlet was to manually create classes that represent
a certain type of class that XsdAsm will need to generate, such as element and

43

4. SOLUTION 4.2. XsdAsm

attribute classes. By using the ASMifier tool with those template-like classes
the programming process was expedited.

There are other ways to generate code, such as tools that generate source code,
which can then be compiled into the binary class files. Those tools were not used
since we started by using this method, i.e. directly generating bytecodes, and
never ran into any type of issue that made us consider explore other options.

4.2.1 Supporting Infrastructure

To support the foundations of the XSD language there is a common infrastructure
in every fluent interface generated by this project. This infrastructure is composed
by a set of classes, which is divided into three different groups:

Element classes:

• Element - An interface that every class generated based on a XSD
xsd:element implements.

• AbstractElement - An abstract class that implements most of meth-
ods of the Element interface. All classes generated based on a XSD
xsd:element extend this class.

Attribute classes:

• Attribute - An interface that every class generated based on a XSD
xsd:attribute implements.

• BaseAttribute - A class that implements the Attribute interface. All
classes generated based on a XSD xsd:attribute extend this class.

Visitor class:

• ElementVisitor - An abstract class that defines visit methods for all
the generated element and attribute classes, which can be visited with the
Visitor pattern. All the implemented methods point to a single method, e.g.
every visitmethod related with element classes invoke a visitElement
method. This behaviour aims to reduce the amount of code needed to create
concrete implementations of this class.

44

4. SOLUTION 4.2. XsdAsm

Taking in consideration those classes, a very simplistic fluent interface could be
represented with the class diagram shown in Figure 4.1. In this example we have
two generated classes, the Html class, which extends AbstractElement and
the AttrManifest class, which extends BaseAttribute. The classes above
the line represent all the classes shared by all xmlet fluent interfaces. The classes
below the line represent the classes generated based on the XSD file contents.

Figure 4.1: Fluent Interfaces - The Supporting Infrastructure

4.2.2 Code Generation Strategy

As we already presented before in the Section 2.2, this solution focus on how the
code is organized instead of making complex code. All the methods present in
the generated classes have very low complexity, mainly adding information to
the element children or to the attribute list. To reduce repeated code many inter-
faces with default methods are created so different classes can implement them
and reuse the code. The complexity of the generated code is mostly present in
the AbstractElement class, which implements most of the Element interface
methods. Another very important aspect of the generated classes is the extensive
use of type arguments, also known as generics, which allows the navigation in the
element tree while maintaining type information, which is essential to guarantee
the specific language restrictions.

4.2.3 Type Parameters

As this solution was designed an objective became clear, the generated fluent in-
terface should be easily navigable. This is crucial to provide a good user experi-
ence while creating templates through the xmlet fluent interfaces. There are two

45

4. SOLUTION 4.2. XsdAsm

main aspects, the fluent interface should be easily navigable and always imple-
ment the concrete language restrictions. We tackle this issue through the use of
type parameters, which allow us to keep track of the tree structure of the elements
that are being created and keep adding elements, or moving up in the tree struc-
ture without loosing the type information of the parent. In Listing 4.12 we can
observe how the type arguments work.

1 Html<Element> html = new Html<>();

2 Body<Html<Element>> body = html.body();

3

4 P<Header<Body<Html<Element>>>> p1 = body.header().p();

5 P<Div<Body<Html<Element>>>> p2 = body.div().p();

6

7 Header<Body<Html<Element>>> header = p1.__();

8 Div<Body<Html<Element>>> div = p2.__();

Listing 4.12: Example of the Explicit Use of Type Arguments

When we create the Html element we should indicate that he has a parent, for
consistency. Then, as we add elements such as Body we automatically return the
recently created Body element, but with parent information that indicates that
this Body instance is descendant of an Html element. After that, we create two
distinct P elements, p1, which has an Header parent, and p2, which has a Div
parent. This information is reflected in the type of both variables, in line 4 and 5
of Listing 4.12 respectively. Lastly, we can invoke the __ method, line 7 and 8 of
Listing 4.12, which returns the current element parent, and observe that each P

instance returns its respective parent object, with the correct type.

In the example presented in Listing 4.12 the usage of the fluent interface might
seem to be excessive verbose to define a simple HTML document. For specific
purposes it might be needed to extract variables, but in the most common usage
of the fluent interface the code should be similar to Listing 4.13.

1 new Html<>()

2 .body()

3 .header()

4 .p().__()

5 .__()

6 .div()

7 .p().__();

Listing 4.13: Example of the Implicit Use of Type Arguments

46

4. SOLUTION 4.2. XsdAsm

To provide a better understanding on how this works we need to showcase three
distinct classes. First we have the AbstractElement class, Listing 4.15, which is
the class from where all classes generated based on a XSD xsd:element derive.
This class receives two type parameters:

• T - Represents the type of the concrete element;

• Z - Represents the type of the parent of the concrete element.

In the __ method, shown in line 8 of Listing 4.15, the parent of any deriving class
is returned. The type information is kept since the method returns Z, the type
parameter that is the type of the parent of the deriving class, as shown in lines 7
and 8 of Listing 4.12.

1 class AbstractElement<T extends Element, Z extends Element>

2 protected Z parent;

3

4 protected AbstractElement(Z parent) {

5 this.parent = parent;

6 }

7

8 public Z __() {

9 return this.parent;

10 }

11

12 // (...)

13 }

Listing 4.14: AbstractElement Class Type Arguments

The second class is the Table class, which represents the table XSD el-
ement present on the HTML fluent interface generated by xmlet. It has a
single type parameter, Z, which represents the type of its parent. It extends
AbstractElement and therefore indicates that his type is Table<Z> and its
parent type is Z. Any interface implemented by a class generated from a XSD
xsd:element, such as the Table class, should receive the same type informa-
tion as the AbstractElement class, as shown with TableChoice0. Regarding
the attrBorder method, it indicates that it returns the exact same type, since it
returns the this object, i.e. Table<Z>.

47

4. SOLUTION 4.2. XsdAsm

1 class Table<Z extends Element> extends AbstractElement<Html<Z>, Z>

2 implements TableChoice0<Html<Z>, Z>

3 // (...)

4

5 public Table<Z> attrBorder(EnumBorderType attrBorder) {

6 // ...

7 }

8 }

Listing 4.15: Html Class Type Arguments

As the third class we have the TableChoice0 interface, which has methods for
each kind of element that is allowed as children in table elements. It should
receive the same type parameters as AbstractElement. In the current case, if
an instance of Table<Element> invokes the tbody method, line 2 of Listing
4.16, the type returned would be Tbody<Table<Element>> since the T type of
TableChoice0 is Table<Z> when the type Table implements it.

1 interface TableChoice0<T extends Element<T, Z>, Z extends Element>

extends Element<T, Z> {

2 default Tbody<T> tbody() {

3 // ...

4 }

5 }

Listing 4.16: TableChoice0 Interface Type Arguments

4.2.4 Restriction Validation

In the description of any given XSD file there are many restrictions in the way the
elements are contained within each other and which attributes are allowed. To
reflect those restrictions to Java language there are two alternatives, validation in
runtime or in compile time. This library tries to validate most of the restrictions
in compile time, as shown above by the way classes are created. But some re-
strictions cannot be validated in compile time, an example of this is the following
attribute with a restriction shown in Listing 4.17.

48

4. SOLUTION 4.2. XsdAsm

1 <xs:schema>

2 <xs:element name="testElement">

3 <xs:complexType>

4 <xs:attribute name="intList" type="valuelist"/>

5 </xs:complexType>

6 </xs:element>

7

8 <xs:simpleType name="valuelist">

9 <xs:restriction>

10 <xs:maxLength value="5"/>

11 <xs:minLength value="1"/>

12 </xs:restriction>

13 <xs:list itemType="xsd:int"/>

14 </xs:simpleType>

15 </xs:schema>

Listing 4.17: Restrictions Example XSD

In this example, Listing 4.17, we have an element, i.e. testElement on line
2, which has an attribute called intList, on line 4. This attribute has some
restrictions, it is represented by a xs:list, the list elements have the xsd:int
type and its element count should be between 1 and 5, restriction element on line
9 of Listing 4.17. Transporting this example to the Java language will result in the
following class shown on Listing 4.18.

1 public class AttrIntList extends BaseAttribute<List<Integer>> {

2 public AttrIntList(List<Integer> list) {

3 super(list);

4 }

5 }

Listing 4.18: Attribute Class Receiving a List

But with this solution the xs:maxLength and xs:minLength values are
ignored. To solve this problem the existing restrictions in any given at-
tribute are hardcoded in the class constructor, which invokes methods present
in the RestrictionValidator class that validate each type of restriction, e.g.
xs:maxLength and xs:minLength. The values present in the restrictions on
the XSD document are hardcoded in the bytecodes and help validate each attribute
object that is created. This results in the generation of a constructor as shown in
Listing 4.19.

49

4. SOLUTION 4.2. XsdAsm

1 public class AttrIntList extends BaseAttribute<List<Integer>> {

2 public AttrIntList(List<Integer> attrValue) {

3 super(attrValue, "intlist");

4 RestrictionValidator.validateMaxLength(5, attrValue);

5 RestrictionValidator.validateMinLength(1, attrValue);

6 }

7 }

Listing 4.19: Attribute Constructor Enforcing Restrictions

There are a total of thirteen different restrictions on the XSD language. The
RestrictionValidator class is a class with static methods that allow to val-
idate most of those restrictions, the only restrictions that are not validated by
this class are xsd:enumeration restrictions, which are already validated by
the usage of Enum classes and xsd:whitespace since it represents an indi-
cation instead of an actual restriction on the language. In Listing 4.20 we can
observe how simple is to validate the xs:maxLength and xs:minLength re-
strictions that were used in the previous example. All the methods work in the
exact same way, a condition is verified and if the verification fails it will throw a
RestrictionViolationException with a message describing the nature of
the violated restriction.

1 public class RestrictionValidator {

2 public static void validateMaxLength(int maxLength, List list){

3 if (list.size() > maxLength){

4 throw new RestrictionViolationException("Violation of

maxLength restriction");

5 }

6 }

7

8 public static void validateMinLength(int minLength, List list){

9 if (list.size() < minLength){

10 throw new RestrictionViolationException("Violation of

minLength restriction");

11 }

12 }

13 }

Listing 4.20: RestrictionValidator Class - The Validation Methods

50

4. SOLUTION 4.2. XsdAsm

4.2.4.1 Enumerations

Regarding restrictions there is one that can be enforced at compile time, the
xs:enumeration. To obtain that validation at compile time the XsdAsm
library generates Enum classes that contain all the values indicated in the
xs:enumeration elements. In the following example, Listing 4.21, we have
an attribute with three possible values: command, checkbox and radio.

1 <xs:attribute name="type">

2 <xs:simpleType>

3 <xs:restriction base="xsd:string">

4 <xs:enumeration value="command" />

5 <xs:enumeration value="checkbox" />

6 <xs:enumeration value="radio" />

7 </xs:restriction>

8 </xs:simpleType>

9 </xs:attribute>

Listing 4.21: Example of an Enumeration in XSD Definition

This results in the creation of an Enum class, EnumTypeCommand, pre-
sented in Listing 4.22. The attribute class will then receive an instance of
EnumTypeCommand, ensuring that only allowed values are used (Listing 4.23).

1 public enum EnumTypeCommand {

2 COMMAND(String.valueOf("command")),

3 CHECKBOX(String.valueOf("checkbox")),

4 RADIO(String.valueOf("radio"))

5 }

Listing 4.22: Example of a Generated Enumeration Class

1 public class AttrTypeEnumTypeCommand extends BaseAttribute<String> {

2 public AttrTypeEnumTypeCommand(EnumTypeCommand attrValue) {

3 super(attrValue.getValue());

4 }

5 }

Listing 4.23: Attribute Receiving An Enumeration Instance

51

4. SOLUTION 4.2. XsdAsm

4.2.5 Element Binding

To support the definition of reusable templates the Element and
AbstractElement classes were modified to support binders. This allows
programmers to postpone the addition of information to the defined element
tree. An example is presented in Listing 4.24 using the HTML5 fluent interface.

1 public class BinderExample{

2 public void bindExample(){

3 Html<Element> root = new Html<>()

4 .body()

5 .table()

6 .tr()

7 .th()

8 .text("Title")

9 .__()

10 .__()

11 .<List<String>>binder((elem, list) ->

12 list.forEach(tdValue ->

13 elem.tr().td().text(tdValue)

14)

15)

16 .__()

17 .__()

18 .__();

19 }

20 }

Listing 4.24: Binder Usage Example

In this example we use the HTML language to create a document that contains
a table with a title in the first row as a title header , i.e. th(). Regarding the
values presented in the table, instead of having them inserted right away, it is
possible to delay that insertion by postponing a function, as shown on line 11 of
Listing 4.24, to be executed when the information is received, i.e. the list on
line 11 of Listing 4.24. This is achieved by implementing an ElementVisitor

that supports binding.

In Listing 4.25 we can observe how an ElementVisitor implementation that
supports binders would work, while maintaining the default behaviour for the
elements that are not bound, i.e. else clause in line 16 of Listing 4.25. If the el-
ement is bound to a function this implementation will clone the element, i.e. the
cloneElem function in line 12 of Listing 4.25, and apply a model to the cloned

52

4. SOLUTION 4.2. XsdAsm

object, i.e. the model being a List<String> object following the example of
shown Listing 4.24, effectively executing the function supplied in the previously
shown binder method, i.e. line 11 of Listing 4.24. This function call will gen-
erate new children on the cloned table instance that will be iterated as if they
belonged to the original element tree. This behaviour ensures that the original
element tree is not affected since all these changes are performed in a clone of the
bound element, meaning that the template can be reused.

1 public class CustomVisitor<R> implements ElementVisitor<R> {

2

3 private R model;

4

5 public CustomVisitor(R model){

6 this.model = model;

7 }

8

9 public <T extends Element> void sharedVisit(Element<T,?> element) {

10 // ...

11 if(element.isBound()) {

12 List<Element> children = element.cloneElem()

13 .bindTo(model)

14 .getChildren();

15 children.forEach(child -> child.accept(this));

16 } else {

17 element.getChildren().forEach(item -> item.accept(this));

18 }

19 // ...

20 }

21 }

Listing 4.25: Visitor with Binding Support

4.2.6 Using the Visitor Pattern

In the previous sections we presented how the fluent interface is generated and
how it implements the language restrictions, but what can the fluent interface ac-
tually be used for? That is strictly up to the user of the generated fluent inter-
face. To achieve this we use the Visitor pattern[8]. There are multiple visit
methods that are invoked by the generated classes and the user can define the
behaviour for each one of them by creating a concrete implementation of the

53

4. SOLUTION 4.2. XsdAsm

ElementVisitor class. This way the generated code delegates the responsi-
bility of defining the output of the fluent interface usage. The generated
ElementVisitor class defines four main visit methods, Listing 4.26:

• sharedVisit(Element<T, ?> element) - This method is called
whenever a class generated based on a XSD <xsd:element> has its
accept method called. By receiving the Element we have access to the
element children and attributes.

• visit(Text text) - This method is called when the accept method of
the special Text element is invoked.

• visit(Comment comment) - This method is called when the accept

method of the special Comment element is invoked.

• visit(TextFuction<R, U, ?> textFunction) - This method is
called when the accept method of the special TextFunction element is
invoked.

1 public abstract class ElementVisitor<R> {

2 <T extends Element> void sharedVisit(Element<T, ?> element);

3

4 void visit(Text text);

5

6 void visit(Comment comment);

7

8 <U> void visit(TextFunction<R, U, ?> textFunction);

9 }

Listing 4.26: ElementVisitor Generated by XsdAsm - The Core Methods

Apart from these four main method we also create specific methods, as shown
in Listing 4.27. These methods default behaviour is to invoke the main
sharedVisit(Element<T, ?> element) method, but they can be redefined
to perform a different action, providing the option of having a very simple imple-
mentation of only four methods or redefine all the methods for a concrete purpose
for the respective DSL.

54

4. SOLUTION 4.2. XsdAsm

1 public abstract class ElementVisitor {

2 // (...)

3

4 default void visit(Html html) {

5 this.sharedVisit(html);

6 }

7 }

Listing 4.27: ElementVisitor Generated by XsdAsm - The Specific Methods

4.2.7 Performance - XsdAsmFaster

The xmlet developed two alternative solutions to generate fluent interfaces. The
first solution that was implemented was XsdAsm, which generated a fluent in-
terface that defined element and attribute classes. When interacting with those
elements it was possible to add children or attributes that were stored in a data
structure as seen by the implementation of AbstractElement and the snippet
of the Html code present in Listing 4.28 and Listing 4.29, respectively.

1 abstract class AbstractElement<T extends Element, Z extends Element>

implements Element<T, Z> {

2 protected List<Element> children = new ArrayList();

3 protected List<Attribute> attrs = new ArrayList();

4 // (...)

5

6 public <R extends Element> R addChild(R child) {

7 this.children.add(child);

8 return child;

9 }

10 public T addAttr(Attribute attribute) {

11 this.attrs.add(attribute);

12 return this.self();

13 }

14 }

Listing 4.28: AbstractElement Class Generated by XsdAsm

55

4. SOLUTION 4.2. XsdAsm

1 class Html<Z extends Element> extends AbstractElement<Html<Z>, Z> {

2 public void accept(ElementVisitor visitor) { visitor.visit(this); }

3

4 public Html<Z> attrManifest(String attrManifest) {

5 return (Html)this.addAttr(new AttrManifestString(attrManifest));

6 }

7

8 public Body<T> body() { return this.addChild(new Body(this)); }

9

10 public Head<T> head() { return this.addChild(new Head(this)); }

11 }

Listing 4.29: Html Class Generated by XsdAsm

By using the solution generated by XsdAsm we ended up with a fluent interface
that works in a two steps basis:

• Creating the Element tree - We need to create the element tree by adding
all elements and attributes, as shown in Listing 4.30;

• Visiting the Element tree - We need to invoke the accept method of the
root of the tree in order for the whole tree to be visited, as shown in Listing
4.31.

1 Html<Html> root = new Html<>();

2

3 root.head()

4 .title()

5 .text("Title")

6 .__()

7 .__()

8 .body().attrClass("clear")

9 .div()

10 .h1()

11 .text("H1 text")

12 .__()

13 .__()

14 .__()

15 .__();

Listing 4.30: HTML5 Tree Creation using XsdAsm

56

4. SOLUTION 4.2. XsdAsm

1 CustomVisitor customVisitor = new CustomVisitor();

2 // root variable created in the previous Listing.

3 root.accept(customVisitor);

Listing 4.31: HTML5 Tree Visit using XsdAsm

Even though that this solution worked fine it had a performance issue. Why
were we adding elements to a data structure just for it to be iterated at a later
time? From this idea a new solution was born, XsdAsmFaster. This new solution
aims to perform the same operations, faster, while providing a very similar user
experience to the fluent interface generated by XsdAsm. To achieve that instead of
storing information on a data structure we directly invoke the ElementVisitor
visit method, this removes the need of storing and iterating information while
maintaining all the expected behaviour. The two main moments that are affected
by this change are the moments when an element is added to the tree and when
an attribute is added to a previously created element. The code generated by
XsdAsmFaster to add elements is as shown in Listing 4.32.

1 public final class Html<Z extends Element> {

2 protected final Z parent;

3 protected final ElementVisitor visitor;

4

5 public Html(ElementVisitor visitor) {

6 this.visitor = visitor;

7 visitor.visitElementHtml(this);

8 }

9

10 public Html(Z parent) {

11 this.parent = parent;

12 this.visitor = parent.getVisitor();

13 this.visitor.visitElementHtml(this);

14 }

15

16 public final Html<Z> attrManifest(String attrManifest) {

17 this.visitor.visitAttributeManifest(attrManifest);

18 return this;

19 }

20

21 public Body<T> body() { return new Body(this); }

22 public Head<T> head() { return new Head(this); }

23 }

Listing 4.32: Html Class Generated by XsdAsmFaster

57

4. SOLUTION 4.2. XsdAsm

As we can see in Listing 4.32 we can invoke the visit method in the construc-
tor of the classes generated based on a XSD <xsd:element>, such as Html or
Body, since the ElementVisitor instance is accessible for all the elements on
the element tree. Since adding elements results in the creation of new objects,
such as Body and Head in lines 22 and 24 of Listing 4.32 respectively, it results
in the invocation of their respective visit method due to the visit method be-
ing called in each class constructor. The attributes have a very similar behaviour,
although they do not have instances created their restrictions are validated by in-
voking a static validate method present in each attribute class. If the attribute has
no restrictions then the behaviour is as shown in Listing 4.32, where the respec-
tive visit method is called the method ends returns the object this to continue
with the fluent tree creation.

The XsdAsmFaster solution also adds many other performance improvements.
The ElementVisitor methods were changed to receive String objects instead
of Attribute types. Changing this removes the requirement to instantiate at-
tribute classes since we can directly pass the name of the attribute and its value
as shown in attrManifest method in Listing 4.32. This change was performed
since the only contained fields in attribute classes were name and value. The
ElementVisitor class of XsdAsmFaster is as present in Listing 4.33.

1 public abstract class ElementVisitor {

2 public abstract void visitElement(Element element);

3 public abstract void visitAttribute(String attributeName,

4 String attributeValue);

5 public abstract void visitParent(Element element);

6 public abstract <R> void visitText(Text<? extends Element, R> t);

7 public abstract <R> void visitComment(Text<? extends Element, R> t);

8

9 public void visitOpenDynamic() { }

10 public void visitCloseDynamic() { }

11

12 // The methods below are generated based on the generated elements.

13 public void visitParentHtml(Html element) {

14 this.visitParent(element);

15 }

16 public void visitElementHtml(Html element) {

17 this.visitElement(element);

18 }

19 }

Listing 4.33: ElementVisitor Generated by XsdAsmFaster

58

4. SOLUTION 4.2. XsdAsm

Another feature that was introduced with XsdAsmFaster is both methods
visitOpenDynamic and visitCloseDynamic. These methods have the ob-
jective to inform the concrete implementation of the ElementVisitor type
that every visit method called in between calls of visitOpenDynamic and
visitCloseDynamic represent dynamic data. That also means that every other
visit method call outside of the dynamic spectrum is static. In Section 4.3.3 we
will show how this feature can be used to improve the performance of the result-
ing solution.

59

4. SOLUTION 4.3. Client

4.3 Client

To use and test both XsdAsm and XsdParser we needed to implement a client
for XsdAsm. Three different clients were implemented, one using the HTML5
specification, one using the specification for Android visual layouts and another
one by creating a specification for the regular expression language. In this section
we are going to explore how the HTML5 fluent interface is generated using the
XsdAsm library and how to use it. Other generated fluent interfaces, such as the
Android Layouts and Regex, follow the exact same process in their creation and
usage.

4.3.1 HtmlApi

To generate the HTML5 fluent interface we need to obtain its XSD file. After that
there are two options, the first one is to create a Java project that invokes the
XsdAsm main method directly by passing the path of the specification file and
the desired fluent interface name that will be used to create a custom package
name, shown in Listing 4.34.

1 void generateApi(String xsdFilePath, String apiName){

2 XsdAsmMain.main(new String[] {xsdFilePath, apiName});

3 }

Listing 4.34: Fluent Interface Creation

The second option is using the Maven[22] build lifecycle[16] to make that same
invocation by adding an extra execution to the Project Object Model (POM) file,
shown in Listing 4.35, to execute a batch file that invokes the XsdAsm main

method, shown in Listing 4.36. More information about Maven will be provided
in Section 5.1.

60

4. SOLUTION 4.3. Client

1 <plugin>

2 <artifactId>exec-maven-plugin</artifactId>

3 <groupId>org.codehaus.mojo</groupId>

4 <version>1.6.0</version>

5 <executions>

6 <execution>

7 <id>create_classes1</id>

8 <phase>validate</phase>

9 <goals>

10 <goal>exec</goal>

11 </goals>

12 <configuration>

13 <executable>

14 ${basedir}/create_class_binaries.bat

15 </executable>

16 </configuration>

17 </execution>

18 </executions>

19 </plugin>

Listing 4.35: Maven - Compiling Classes using a Plugin

1 if exist "./src/main/java" rmdir "./src/main/java" /s /q

2

3 if not exist "./target/classes/org/xmlet/htmlapi"

4 mkdir "./target/classes/org/xmlet/htmlapi"

5

6 call

7 mvn exec:java -D"exec.mainClass"="org.xmlet.xsdasm.main.XsdAsmMain"

8 -D"exec.args"="./src/main/resources/html_5.xsd htmlapi"

Listing 4.36: Maven - The Code that creates the Fluent Interface Classes
(create_class_binaries.bat)

This client uses the Maven lifecycle option by adding an execution at the
validate phase, shown in line 8 of Listing 4.35, which invokes XsdAsm main

method to create the fluent interface. This invocation of XsdAsm creates all the
classes in the target folder of the HtmlApi project. Following these steps would
be enough to allow any other Maven project to add a dependency to the HtmlApi
project and use its generated classes as if they were manually created. But this
way the source files and Java documentation files are not created since XsdAsm
only generates the class binaries. To tackle this issue we added another execution
to the POM. This execution uses the Fernflower[29] decompiler, the Java decom-
piler used by Intellij[10] Integrated Development Environment (IDE), to decompile

61

4. SOLUTION 4.3. Client

the classes that were automatically generated, shown in Listing 4.37 and Listing
4.38.

1 <execution>

2 <id>decompile_classes</id>

3 <phase>validate</phase>

4 <goals>

5 <goal>

6 exec

7 </goal>

8 </goals>

9 <configuration>

10 <executable>

11 ${basedir}/decompile_class_binaries.bat

12 </executable>

13 </configuration>

14 </execution>

Listing 4.37: Maven - Decompiling Classes Using the Fernflower Plugin

1 if not exist "./src/main/java/org/xmlet/htmlapi" mkdir "./src/main/java

/org/xmlet/htmlapi"

2

3 call

4 mvn exec:java

5 -D"exec.mainClass"="org.jetbrains.java.decompiler.main.decompiler.

ConsoleDecompiler"

6 -D"exec.args"="-dgs=true ./target/classes/org/xmlet/htmlapi ./src/

main/java/org/xmlet/htmlapi"

7

8 if exist "./target/classes/org" rmdir "./target/classes/org" /s /q

Listing 4.38: Maven - The Code to Decompile the Generated Classes
(decompile_class_binaries.bat)

By decompiling those classes we obtain the source code, which allows us to delete
the automatic generated classes and allow the Maven build process to perform
the normal compiling process, which generates the Java documentation files and
the class binaries, along with the source files obtained from the decompilation
process. This process, apart from generating more information to the program-
mer that will use the fluent interface in the future, also allows to find any problem
with the generated code since it forces the compilation of all the classes previ-
ously generated.

62

4. SOLUTION 4.3. Client

4.3.2 Using the HtmlApi

After the previously described compilation process of the HtmlApi project we
are ready to use the generated fluent interface. To start using it the first step is
to implement the ElementVisitor class, which defines what to do when the
created element tree is visited. A very simple example is presented in Listing
4.39, which writes the HTML tags based on the name of the element type visited,
i.e. the opening tag in line 8 and the closing tag on line 19 of Listing 4.39, and
navigates in the element tree by accessing the children of the current element
type, i.e. the getChildren() method call followed by the invocation of the
accept method call of every child present in the current element.

1 public class CustomVisitor<R> implements ElementVisitor<R> {

2

3 private PrintStream printStream = System.out;

4

5 public CustomVisitor(){ }

6

7 public <T extends Element> void sharedVisit(Element<T,?> element) {

8 printStream.printf("<%s", element.getName());

9

10 element.getAttributes()

11 .forEach(attribute ->

12 printStream.printf(" %s=\"%s\"",

13 attribute.getName(), attribute.getValue()));

14

15 printStream.print(">\n");

16

17 element.getChildren().forEach(item -> item.accept(this));

18

19 printStream.printf("</%s>\n", element.getName());

20 }

21 }

Listing 4.39: Custom Visitor Example that Implements the ElementVisitor
Generated by XsdAsm

63

4. SOLUTION 4.3. Client

After creating the CustomVisitor presented in Listing 4.39 we can start to cre-
ate the element tree of the document that we want to present. To start we should
create a Html object, since all the HTML documents have it as a base element.
Upon creating that root element we can start to add other elements or attributes
that will appear as options based on the specification rules. To help with the nav-
igation on the element tree a method was created to allow the navigation to the
parent of any given element. This method is named __, a short method name to
keep the code as clean as possible. In Listing 4.40 we can see a code example that
uses a good amount of the fluent interface features:

• Element creation - For example, the root.head() method call adds an
Head instance to the Html root element;

• Attribute assignment - For example, the body().attrClass("clear")
method call adds the attribute class with the value clear to the Body

instance created with the body() method call;

• Attributes receiving Enum classes - The
attrType(EnumTypeContentType.TEXT_CSS) call, which indi-
cates that the type value should be text/css, which is the value present
in EnumTypeContentType.TEXT_CSS;

• Parent navigation - Both (__()) method calls at the end of line 10 of Listing
4.40 will result in the current context being changed from the Link type to
the Head type by the first call, followed by another call with changes the
context from the Head type to the Html type. This allows to proceed with
the definition of the Body type, which can only be contained in the Html
type.

64

4. SOLUTION 4.3. Client

1 Html<Html> root = new Html<>();

2

3 root.head()

4 .meta().attrCharset("UTF-8").__()

5 .title()

6 .text("Title").__()

7 .link().attrType(EnumTypeContentType.TEXT_CSS)

8 .attrHref("/assets/images/favicon.png").__()

9 .link().attrType(EnumTypeContentType.TEXT_CSS)

10 .attrHref("/assets/styles/main.css").__().__()

11 .body().attrClass("clear")

12 .div()

13 .header()

14 .section()

15 .div()

16 .img().attrId("brand")

17 .attrSrc("./assets/images/logo.png").__()

18 .aside()

19 .em()

20 .text("Advertisement")

21 .span()

22 .text("HtmlApi is great!");

23

24 CustomVisitor customVisitor = new CustomVisitor();

25

26 customVisitor.visit(root);

Listing 4.40: HtmlApi - The Definition of the Element Tree

With this element tree presented in Listing 4.40 and the previously presented
CustomVisitor, shown in Listing 4.39, we obtain the following result as shown
in Listing 4.41. The indentation was added for readability purposes, since the
CustomVisitor implementation in Listing 4.39 does not indent the resulting
HTML.

65

4. SOLUTION 4.3. Client

1 <html>

2 <head>

3 <meta charset="UTF-8">

4 </meta>

5 <title>

6 Title

7 </title>

8 <link type="text/css" href="/assets/images/favicon.png">

9 </link>

10 <link type="text/css" href="/assets/styles/main.css">

11 </link>

12 </head>

13 <body class="clear">

14 <div>

15 <header>

16 <section>

17 <div>

18

19

20 <aside>

21

22 Advertisement

23

24 HtmlApi is great!

25

26

27 </aside>

28 </div>

29 </section>

30 </header>

31 </div>

32 </body>

33 </html>

Listing 4.41: HtmlApi - The Result of the Element Tree Visit

The CustomVisitor of Listing 4.41 is a very minimalist implementation since it
does not indent the resulting HTML, does not simplify elements with no children
(i.e. the link/img elements) and other aspects that are particular to HTML syn-
tax. That is where the HtmlFlow library comes in, it implements the particular
aspects of the HTML syntax in its ElementVisitor implementation that deals
with how and where the output is written.

66

4. SOLUTION 4.3. Client

4.3.3 HtmlFlow 3

The HtmlFlow 3 library suffered some significant changes from its first version.
At the moment it defines two ways of defining templates, a StaticView type,
which allows the creation of template that does not receive any input data, and a
DynamicHtml type, which receives a Java function that defines the template. We
have already presented some code examples of both types along this document,
but here we are going to analyze them. For the StaticHtml we have Listing
4.42, which is the same as Listing 1.3, duplicated here for explanation purposes.

1 private static void staticView(StaticHtml view){

2 view.html()

3 .body()

4 .h1()

5 .text("This is a static view h1 element.")

6 .__()

7 .__()

8 .__();

9 }

Listing 4.42: HtmlFlow - Static View Example

With the definition of this template, i.e. Listing 4.42, we observe that this is a
straightforward template, it has a couple of elements and does not require any
external input. This type of template can be defined with any function that re-
turns void and receives a StaticView object, i.e. a Consumer<StaticView>
object.

1 String document = DynamicHtml.view(CurrentClass::studentView)

2 .render(new Student("Luis", 39378));

3

4 static void studentView(DynamicHtml<Student> view, Student student){

5 view.html()

6 .body()

7 .ul()

8 .li().dynamic(li -> li.text(student.getName())).__()

9 .li().dynamic(li -> li.text(student.getNumber())).__()

10 .__()

11 .__()

12 .__();

13 }

Listing 4.43: HtmlFlow - Xmlet Template with Student Information

67

4. SOLUTION 4.3. Client

Regarding DynamicHtml templates, we can use and define them as shown in
Listing 4.43. Their use is very similar, but there are a few noticeable changes. The
first one is that now the function that is defining the template receives the con-
text object associated with the template, which in Listing 4.43 is a Student object.
The second change is that now the template should use a function, dynamic in
lines 8 and 9 of Listing 4.43, to input dynamic information in the defined tem-
plate while in the StaticHtml there was not such a call. This dynamic method
has a very important significance in HtmlFlow 3, it provides information that the
actions that will be performed inside the Consumer used as its parameter are
dynamic and are subject to changes depending on the input received. Through
the invocation of this method and thanks to strategy implemented by HtmlApi-
Faster the HtmlFlow 3 library has enough information to implement a caching
strategy. In Listing 4.44 we can observe how HtmlApiFaster defines its dynamic
methods, and how it notifies the ElementVisitor instance of the start, i.e. the
invocation of visitOpenDynamic() method, and the end, i.e. the invocation of
visitCloseDynamic() method, of the dynamic block.

1 public final class Li<Z extends Element> {

2

3 private ElementVisitor visitor;

4

5 public Li<Z> dynamic(Consumer<Li<Z>> consumer){

6 visitor.visitOpenDynamic();

7 consumer.accept(this);

8 visitor.visitCloseDynamic();

9 return this;

10 }

11 }

Listing 4.44: Li Class - The dynamic method

The caching strategy of HtmlFlow 3 uses a simple assumption, every action per-
formed on the template elements that is not inserted in a dynamic block, i.e. is not
performed inside of the Consumer used as a parameter to the dynamic method,
is static information. This means that HtmlFlow 3 has sufficient information to
cache different components of the template, e.g. in Listing 4.43 HtmlFlow can
store three components of the template:

• The String representing the HTML text representing every element and
attribute created before the call to the first dynamic method;

68

4. SOLUTION 4.3. Client

• The String representing the HTML text representing every element and
attribute created between the call to the first dynamic and second dynamic

methods;

• The String representing the HTML text representing every element and
attribute created after the call to the second dynamic method;

This greatly improves the performance of the solution. Without this caching strat-
egy the library would perform many more StringBuilder operations, since the
result of creating elements, adding attributes or closing elements in this particu-
lar implementation of the ElementVisitor type of the HtmlApiFaster fluent
interface is to use a StringBuilder object to append multiple Strings, added
with the execution of the visit methods. By using the caching strategy the
HtmlFlow 3 library avoids the invocation of the append method multiple times,
which is decisive when it comes to performance.

This version of the HtmlFlow library also supports another interesting fea-
ture, partial views. This feature is present in many template engines since it
allows for the same template to be used in many other templates, avoiding
repetition. In Listing 4.45 we present a simplified example that uses partial
views. We have the presented method, i.e. presentationsView, which de-
fines a template that receives multiple Presentation instances to present.
Instead of defining the whole template, it uses another template that is re-
sponsible for specifying how a single Presentation instance is presented.
In line 5 of Listing 4.45 we can see how that works, we iterate the received
Iterable<Presentation> presentations object and for each one of the
objects we invoke the addPartial method, which receives the partial view in-
stance, i.e. PresentationView.view, and the object that should be used to
create the partial view.

69

4. SOLUTION 4.3. Client

1 private static void presentationsView(DynamicHtml<Iterable<Presentation

>> view, Iterable<Presentation> presentations){

2 view.html()

3 .body()

4 .div()

5 .dynamic(div -> presentations.forEach(presentation

-> view.addPartial(PresentationView.view,

presentation)))

6 .__()

7 .__()

8 .__();

9 }

Listing 4.45: HtmlFlow Partial Views

70

5
Deployment and Validation

This project and all its components belong to a Github organization called
xmlet1. The aim of that organization is to contain all the related projects to this
dissertation. All the generated DSLs are also created within this organization.
With this approach all the existing projects and future generated DSLs can be
accessed in a single place.

5.1 Maven

In order to manage the developed projects a tool for project organization and
deployment was used, named Maven[22]. Maven has the goal of organizing a
project in many different ways, such as creating a standard of project building
and managing project dependencies. Maven was also used to generate docu-
mentation and deploying the projects to a central code repository, Maven Cen-
tral Repository2. All the releases of projects belonging to the xmlet Github
organization can be found under the same groupId, com.github.xmlet

in the following location https://search.maven.org/#search%7Cga%7C1%

7Ccom.github.xmlet.

1https://github.com/xmlet
2https://search.maven.org/

71

https://search.maven.org/#search%7Cga%7C1%7Ccom.github.xmlet
https://search.maven.org/#search%7Cga%7C1%7Ccom.github.xmlet
https://github.com/xmlet
https://search.maven.org/

5. DEPLOYMENT AND VALIDATION 5.2. Sonarcloud

5.2 Sonarcloud

Code quality and its various implications such as security, performance and bugs
should always be an important issue to a programmer. With that in mind all the
projects contained in the xmlet solution were evaluated in various metrics and
the results made public for consultation. This way, either future users of those
projects or developers trying to improve the projects can check the metrics as
another way of validating the quality of the produced code. The tool to perform
this evaluation was Sonarcloud, which provides free of charge evaluations and
stores the results that are available for everyone. The xmlet sonarcloud page is
https://sonarcloud.io/organizations/xmlet/projects. Sonarcloud
also provides an Web API to show badges that allow to inform users of different
metrics regarding a project. Those badges are presented in the xmlet modules
Github pages, as shown in Figure 5.1 for the XsdParser project.

Figure 5.1: XsdParser with the Respective Sonarcloud Badges in Github

5.3 Testing metrics

To assert the performance of the xmlet solution we used the HTML5 use case to
compare it against multiple other solutions. We used all the solutions that were
presented in Chapter 3, i.e. J2Html, Rocker and KotlinX Html. To perform an
unbiased comparison we searched on Github and used two popular benchmarks,
this section will contain the results of these benchmarks. The computer used to
perform all the tests present in this section has the following specifications:

Operative System: Windows 10 Education
Java Version: Java 8 Update 152

72

https://sonarcloud.io/organizations/xmlet/projects

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

Processor: Intel Core i3-3217U 1.80GHz
RAM: 4GB

5.3.1 Spring Benchmark

This was the first benchmark solution we found, which is called
spring-comparing-template-engines[20]. This benchmark uses the
Spring3 framework to host a web application that provides a route for each
template engine to benchmark. Each template engine uses the same template and
receives the same information to complete the template, which makes it possible
to flood all the routes with an high number of requests and assert which route
responds faster, consequently asserting which template engine is faster. This
approach of measuring the template engines performance was dismissed because
the render time of the template engines is dismissable when compared to the
overhead introduced by the Spring framework and the tool used to flood the
routes of the Web application. Even though that we did not end up using this
specific benchmark we used the template that it used for its benchmark in
another benchmark that added less overhead.

5.3.2 Template Benchmark

The second benchmark solution was template-benchmark[4]. The advantage
of this benchmark is that it focus exclusively on evaluating the render process
of each benchmark. In this case, it does not use any Web server to handle a
request, which is a more consistent approach. The general idea of this bench-
mark is the same, it includes many template engine solutions that define the same
template and use the same data to generate the complete document. But in
this case instead of launching a Spring web application and issuing requests it
uses Java Microbenchmark Harness (JMH)[18], which is a Java tool to benchmark
code. With JMH we indicate which methods to benchmark with annotations
and configure different benchmark options such as the number of warm-up it-
erations, the number of measurement iterations or the numbers of threads to
run the benchmark method. This benchmark contained eight different template
engines when we discovered it: Freemarker[2], Handlebars[12], Mustache[17],
Pebble[19], Thymeleaf[23], Trimou[24], Velocity[25] and Rocker[21]. These tem-
plates engines, with the exception of Rocker that we already presented in Chapter

3http://spring.io/

73

http://spring.io/

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

3, use the same approach, they all use a text file to define the template, using
their own syntax to introduce the dynamic information. In addiction to these we
added the solutions presented in the Chapter 3, J2Html and KotlinX Html.

The template-benchmark used only one template, which was the Stocks

template. The template is shown in Listing 5.1 using the Mustache idiom.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Stock Prices</title>

5 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

6 <meta http-equiv="Content-Style-Type" content="text/css">

7 <meta http-equiv="Content-Script-Type" content="text/javascript">

8 <link rel="shortcut icon" href="/images/favicon.ico">

9 <link rel="stylesheet" type="text/css" href="/css/style.css" media=

"all">

10 <script type="text/javascript" src="/js/util.js"></script>

11 <style type="text/css">

12 <!-- style content -->

13 </style>

14 </head>

15 <body>

16 <h1>Stock Prices</h1>

17 <table>

18 <thead>

19 <tr>

20 <th>#</th>

21 <th>symbol</th>

22 <th>name</th>

23 <th>price</th>

24 <th>change</th>

25 <th>ratio</th>

26 </tr>

27 </thead>

28 <tbody>

29 {{#stockItems}}

30 <tr class="{{rowClass}}">

31 <td>{{index}}</td>

32 <td>

33 {{value.symbol}}

34 </td>

35 <td>

36 {{value.name}}

37 </td>

74

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

38 <td>

39 {{value.price}}

40 </td>

41 <td{{negativeClass}}>{{value.change}}</td>

42 <td{{negativeClass}}>{{value.ratio}}</td>

43 </tr>

44 {{/stockItems}}

45 </tbody>

46 </table>

47 </body>

48 </html>

Listing 5.1: Stocks Template Defined in the Mustache Idiom

This template, of Listing 5.1, is pretty straightforward, it describes an HTML ta-
ble that represents information regarding Stock objects, the Stock object is pre-
sented in Listing 5.2.

1 public class Stock {

2 private int index;

3 private String name;

4 private String url;

5 private String symbol;

6 private double price;

7 private double change;

8 private double ratio;

9 }

Listing 5.2: Stocks Data Type

Apart from this template and its associated data type that were already present
in this benchmark solution we also used another template, the Presentations
template, which was featured in the spring-comparing-template-engines
benchmark. The Presentations template is as follow in Listing 5.3 and the respec-
tive Presentation object in Listing 5.4.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <meta name="viewport" content="width=device-width, initial-scale

=1.0">

6 <meta http-equiv="content-language" content="IE=Edge">

7 <title>

75

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

8 JFall 2013 Presentations - htmlApi

9 </title>

10 <link rel="Stylesheet" href="/webjars/bootstrap/3.3.7-1/css/

bootstrap.min.css" media="screen">

11 </head>

12 <body>

13 <div class="container">

14 <div class="page-header">

15 <h1>

16 JFall 2013 Presentations - htmlApi

17 </h1>

18 </div>

19 {{#presentationItems}}

20 <div class="panel panel-default">

21 <div class="panel-heading">

22 <h3 class="panel-title">

23 {{title}} - {{speakerName}}

24 </h3>

25 </div>

26 <div class="panel-body">

27 {{summary}}

28 </div>

29 </div>

30 {{/presentationItems}}

31 </div>

32 <script src="/webjars/jquery/3.1.1/jquery.min.js">

33 </script>

34 <script src="/webjars/bootstrap/3.3.7-1/js/bootstrap.min.js">

35 </script>

36 </body>

37 </html>

Listing 5.3: Presentations Template using the Mustache Idiom

1 public class Presentation {

2 private String title;

3 private String speakerName;

4 private String summary;

5 }

Listing 5.4: Presentation Data Type

By using two different templates the objective was to observe if the results were
maintained throughout the different solutions. The main difference between both

76

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

templates are that the Stocks template introduces more placeholders for two differ-
ent reasons, it has more fields that will be accessed in the template and has twenty
objects in the default data set while Presentations only has ten objects in his data
set. This means that the Stocks template will generate more String operations to
the classic template engine solutions and more Java method calls for the solutions
that have the template defined within the Java language.

Now that we have two distinct templates implemented by over ten distinct so-
lutions how will we benchmark these solutions? We have two methods in each
template engine benchmark class, one for the Stocks template and other Presenta-
tions template. Those methods will load the respective template and apply the
respective data set to it. Both these method are annotated with the @Benchmark
annotation. We generate a Java ARchive (JAR) containing all these benchmark
methods and will use the command line to perform the benchmark, removing
the IDE overhead. The generated methods will then be benchmarked in two dif-
ferent variants, one with uses a single thread to run the benchmark method and
other that uses four threads, the number of cores of the testing machine, to run
the benchmark method. The results presented in this section are a result of the
mean value of five forked iterations, each one of the forks running eight differ-
ent iterations, performed after eight warm-up iterations. This approach intends
to remove any outlier values from the benchmark. The benchmark values were
obtained with the computer without any open programs, background tasks, only
with the command line running the benchmark.

0

20,000

40,000

60,000

80,000

1 � 105

It
er

at
io

ns
pe

r
se

co
nd

HtmlFlow
Mustache
Pebble
Trimou
Rocker
Freemarker
Velocity
Handlebars
Thymeleaf
J2Html
KotlinX

Figure 5.2: Benchmark Presentation - Results Gathered using One Thread

77

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

0

5,000

10,000

15,000

20,000

25,000

It
er

at
io

ns
pe

r
se

co
nd

HtmlFlow
Rocker
Pebble
Trimou
Mustache
Velocity
Handlebars
Freemarker
KotlinX
J2Html
Thymeleaf

Figure 5.3: Benchmark Stocks - Results Gathered using One Thread

0

50,000

1 � 105

1.5 � 105

2 � 105

2.5 � 105

It
er

at
io

ns
pe

r
se

co
nd

HtmlFlow
Trimou
Mustache
Pebble
Rocker
Freemarker
Handlebars
Thymeleaf
J2Html
KotlinX

Figure 5.4: Benchmark Presentations - Results Gathered using Four Threads

78

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

0

10,000

20,000

30,000

40,000

50,000

60,000
It

er
at

io
ns

pe
r

se
co

nd
HtmlFlow
Rocker
Pebble
Mustache
Trimou
Handlebars
Freemarker
KotlinX
Thymeleaf
J2Html

Figure 5.5: Benchmark Stocks - Results Gathered using Four Threads

To analyze these results we have to approach two different instances, the classical
template engines, which use text files as their template, and the template engines that
in some way diverge from that classical template engine solutions.

Regarding the classical template engines, i.e. Mustache/Pebble/Freemarker/Tri-
mou/Velocity/Handlebars/Thymeleaf, we can observe that most of them share
the same level of performance, which should be expected since they all roughly
share the same approach in their solution. The most notable outlier is Thymeleaf,
which has a distinct difference to the other template engines.

Regarding the remaining template engines, i.e. Rocker/J2Html/KotlinX Html, the
situation is diverse. On one hand we have Rocker, which presents a great perfor-
mance when the number of placeholders increases, i.e. the Stocks benchmark, tak-
ing in consideration that it provides many compile time verifications regarding
the context objects it presents a good improvement on the classical template engine
solutions. On the other end of the spectrum we have J2Html and KotlinX Html.
Regarding J2Html we observe that the trade off of moving the template to the
language had a significant performance cost since it is consistently one of the two
worst solutions performance-wise. Regarding KotlinX Html, the solution that is
the most similar to the one that xmlet provides, the results are surprising, since
they diverge so much from the results that the HtmlFlow achieves. KotlinX Html
was definitely a step on the right direction since it validates the HTML language
rules and introduces compile time validations but either due to the Kotlin lan-
guage performance issues or poorly optimized code it did not achieve the level
of performance that it could.

79

5. DEPLOYMENT AND VALIDATION 5.3. Testing metrics

Lastly, the HtmlFlow library. The use case of the xmlet to the HTML language
proved to be the best performance wise. The solution achieved values that sur-
pass the second best solution by twice the iterations per second when using the
Presentations benchmark and still held the top place in the Stocks benchmark
even though the number of placeholders for dynamic information increased sig-
nificantly. If we compare the HtmlFlow to the most similar solution, KotlinX
Html, we observe a huge gain of performance on the HtmlFlow part. The per-
formance improvement varies between HtmlFlow being nine times faster on the
Stock benchmark with four threads, i.e. Figure 5.5, and thirty one times faster
on the Presentations benchmark with four threads, i.e. Figure 5.4. In conclusion
the xmlet solution introduces domain language rule verification, removes the
requirements of text files and additional syntaxes, adds many compile time veri-
fications and while doing all of that it still is the best solution performance wise,
according to the presented benchmarks.

80

6
Conclusion

In this dissertation we developed a structure of projects that can interpret a XSD
document and use its contents to generate a Java fluent interface that allows to
perform actions over the domain language defined in the XSD document while
enforcing most of the rules that exist in the XSD syntax. The generated fluent
interface only reflects the structure described in the XSD document, providing
tools that allow any future usage to be defined according to the needs of the
user. Upon testing the resulting solution we obtained better results than similar
solutions while providing a solution with more safety validations and defined in
a fluent language, which should be intuitive for users that have previously used
the language.

The main language definition used in order to test and develop this solution was
the HTML5 syntax, which generated the HtmlApiFaster project, containing a set
of classes reflecting all the elements and attributes present in the HTML language.
This HtmlApiFaster project was then used by the HtmlFlow 3 library in order to
provide a library that safely writes well formed HTML documents. Other XSD
files were used to test the solution, such as the Android layouts definition file,
which defines the existing XML elements used to create visual layouts for the
Android operating system and the attributes that each element contains, and a
XSD file specifying the operations of the regular expressions language.

81

6. CONCLUSION 6.1. Main Contributions

6.1 Main Contributions

Simply put, the work developed in this dissertation achieved the fastest Java tem-
plate engine known to this date – HtmlFlow 3. This library not only shows a better
performance than overall state of the art alternatives, but it also provides a full
set of safety features not met together in any other library individually, such as:

• Well-formed documents;

• Fulfillment of all HTML rules regarding elements and attributes;

• Fully support of the HTML5 specification.

Despite HtmlFlow being developed in 2012 just as an academic use case of a flu-
ent API for HTML, which was not released nor disseminated, it still attracted the
attention of some developers looking for a Java library that helps them to dynam-
ically produce papers, reports, emails and other kind of documents using HTML.
Up to that date, textual template engines were still the main solution to produce
dynamic HTML documents. Textual templates are a win-win approach for Web
development fitting most HTML views requirements based on a strict domain
model. Yet, textual templates are inadequate for more complex programming
tasks involving the dynamic build of user-interface components, which may de-
pend on run time introspection data.

The increasing attention around HtmlFlow raised the idea of developing a mech-
anism that automatically generates a fluent interface based on the HTML language
specification, specified in a XSD file. The research work around such approach
and its implementation was the main goal of this dissertation’ thesis, which was
successfully accomplished: Domain Specific Language generation based on a
XML Schema.

This fulfilled the HtmlFlow needs and turned it into a complete Java DSL for
HTML. Moreover, the usefulness of HtmlFlow was proven by more recent DSL
libraries with the same purpose, such as J2Html and KotlinX.Html, both created
in 2015, but neither provided the same safety guards nor even the performance
of HtmlFlow.

Despite my preliminary research not containing any proposal of a process to gen-
erate a DSL based on a XSD file, the solution evolved in that direction. Curiously
I later discovered the KotlinX.Html solution, which follows this same idea. This

82

6. CONCLUSION 6.1. Main Contributions

fact shows the effectiveness of the methodology proposed in this dissertation’
thesis, which is already used by other library, i.e. KotlinX.Html, with a wide
acceptance in the Kotlin community.

Performance would not be a major milestone at the beginning of this work. Yet,
the J2Html assertion that it can be about a "thousand times faster than Apache
Velocity" gave us one more purpose to this dissertation. First, we started to
look on how J2Html compares its performance with other template engines
and we found that comparison shared several flaws. Its dynamic render test
FiveHundredEmployees was not really dynamic, because the context object
is known before render time in case of the J2Html template, whereas for Velocity
it is just provided at render and thus it favors the J2Html performance. Moreover,
these tests use junit-benchmarks from http://labs.carrotsearch.com/,
which is publicly announced as being deprecated in favor of JMH.

So, after some research, we start evaluating HtmlFlow 3 in some of state of the art
benchmarks and observed its good performance, which was caused by the use of
xmlet. Here we found Rocker, which had a very curious approach, using static
fields to store the static template components, which proved to perform very well.
This, along with some other ideas created along the development of xmlet, led
to creation of HtmlApiFaster, a fluent interface generated with many optimization
techniques and support for the implementation of a caching strategy, in some
way similar to the technique use by Rocker. These optimizations would make
HtmlFlow 3 the most performant template engine in Java up to this date, according
to the benchmarks performed.

Finally, the xmlet platform is not only limited to the HTML language and we also
tested it with other XSD files. In this case we successfully used it with the Android
layouts definition file, which defines the existing XML elements in visual layouts
for the Android operating system and the attributes that each element contains.
To prove that this solution worked with a DSL not related with XML we described
the operations of the Regular Expressions language in XSD and generated a fluent
interface which supports the whole regular expressions syntax supported by Java.
Both these projects were released and are available in the xmlet Github page.

Concluding, the main contributions resulting from the research work described
in this dissertation are:

• xmlet - A Java platform for Domain Specific Language generation based
on a XML Schema.

83

http://labs.carrotsearch.com/

6. CONCLUSION 6.2. Concluding Remarks and Future Directions

• XsdParser - A library that parses a XML Definition file, i.e. a XSD file, into a
list of Java objects. This is the first Java library in this field that has already
started attracting the attention of some developers.

• HtmlApi - A Java DSL for HTML complying with all the HTML 5 rules.

• HtmlFlow 3 - The most performant Java template engine.

6.2 Concluding Remarks and Future Directions

The xmlet solution in its current state achieved all the objectives that were pro-
posed at the beginning of this dissertation as well as some other improvements
that were identified along the development process. One of objectives from
now on should be to find pertaining use cases ranging from markup languages
which were the initial objective or any other domain language that can be defined
through the XSD syntax.

Regarding the HtmlFlow, at the time of this work we are still preparing the release
3.0. A lot of effort has been made to create this release involving many aspects
such as:

• The creation of a consistent API that gives an intuitive user experience to
the end programmer;

• Ensuring code coverage tests close to 100%;

• Detecting and suppressing every bottleneck that could hurt performance;

• Many other time-consuming tasks involving the maintenance of an open-
source project.

Once version 3.0 is released we must propose a pull request to the main Github
template-benchmark repository including the comparison with HtmlFlow.
Although we already have a fork of this repository with HtmlFlow, J2Html,
Rocker and KotlinX.html integrated for performance comparison tests, now we
must create a clean integration only with HtmlFlow release 3.0 for the pull re-
quest. This is the template-benchmark policy for integration of new template
engines, i.e. one pull request per template engine.

84

6. CONCLUSION

Still related with HtmlFlow we have a paper in progress analyzing most recent
type safe template engines and comparing different features provided by these en-
gines. To the best of my knowledge all comparisons around Java template engines
not only ignore the HTML safety aspects, but are also restricted to text template
files.

Finally, to complete the HtmlFlow offer we would like to include a new tool that
is able to translate HTML documents to an HtmlFlow definition. This tool has a
similar role to the ASMFier in ASM translating Java source code to the equivalent
definition in ASM. We think that tool will help programmers to migrate existing
templates from other technologies to HtmlFlow.

To finish my dissertation, I would like to reinforce that over past 2 decades, text
templates are still the de facto standard for dynamic HTML documents. This
approach is great and fits the main web development requirements. However,
we leave here two considerations:

• They are slow;

• Most of them are not safe.

In this context, I think that we should have better tools that suppress these issues
and I believe the result of this dissertation’ thesis is a significant step towards
achieving this goal.

85

Bibliography

[1] American National Standards Institute (ANSI). Information Processing -
Text and Office Systems-Standard Generalized Markup Language (SGML). 1986.
(p. 11)

[2] Apache. Apache freemarker, February 2015. URL https://

freemarker.apache.org/. (pp. 12 and 73)

[3] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipu-
lation tool to implement adaptable systems. 2002. (p. 42)

[4] Mitchell Bösecke. Template benchmark. URL https://github.com/

mbosecke/template-benchmark. (pp. 1 and 73)

[5] Fernando Miguel Carvalho. Htmlflow. URL https://github.com/

xmlet/HtmlFlow. (pp. 1 and 24)

[6] Mark Chatham. Structured Query Language By Example - Volume I: Data Query
Language. 2012. ISBN 9781291199512. (p. 2)

[7] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st
edition, 2010. ISBN 0321712943, 9780321712943. (p. 1)

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1 edition, 1994. ISBN 0201633612. (pp. 36 and 53)

[9] J2Html. J2html. URL https://j2html.com/. (p. 25)

[10] Jetbrains. Intellij integrated development environment. URL https://

www.jetbrains.com/idea/. (p. 61)

87

https://freemarker.apache.org/
https://freemarker.apache.org/
https://github.com/mbosecke/template-benchmark
https://github.com/mbosecke/template-benchmark
https://github.com/xmlet/HtmlFlow
https://github.com/xmlet/HtmlFlow
https://j2html.com/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/

BIBLIOGRAPHY

[11] JMock. Jmock. URL http://jmock.org/. (p. 2)

[12] Yehuda Katz. Handlebars. URL http://handlebarsjs.com/. (pp. 12
and 73)

[13] Kotlin. Kotlin. URL https://kotlinlang.org/. (p. 29)

[14] Kotlin.Html. Kotlinx.html. URL https://github.com/Kotlin/

kotlinx.html. (p. 30)

[15] Feldman Bell Laboratories and S. I. Feldman. Make — a program for main-
taining computer programs. 9:255–265, 1979. (p. 2)

[16] Apache Maven. Introduction to the build lifecycle. URL http:

//maven.apache.org/guides/introduction/introduction-

to-the-lifecycle.html. (p. 60)

[17] Mustache. Mustache. URL https://mustache.github.io/. (pp. 1, 7, 12,
and 73)

[18] Oracle. Java microbenchmark harness. URL http://openjdk.java.net/

projects/code-tools/jmh/. (p. 73)

[19] Pebble. Pebble. URL https://github.com/PebbleTemplates/

pebble. (pp. 1, 12, and 73)

[20] Jeroen Reijn. spring-comparing-template-engines. URL https://

github.com/jreijn/spring-comparing-template-engines. (pp. 1
and 73)

[21] Rocker. Rocker. URL https://github.com/fizzed/rocker. (pp. 1, 12,
26, and 73)

[22] Sonatype. Maven: The definitive guide, 2009. (pp. 60 and 71)

[23] Thymeleaf. Thymeleaf. URL https://www.thymeleaf.org/. (pp. 12
and 73)

[24] Trimou. Trimou. URL http://trimou.org/. (pp. 1, 12, and 73)

[25] Velocity. Velocity. URL http://velocity.apache.org/. (pp. 12 and 73)

[26] P. Walmsley. Definitive XML Schema. Charles F. Goldfarb Definitive XML
Series. Pearson Education, 2001. ISBN 9780321629937. (p. 24)

88

http://jmock.org/
http://handlebarsjs.com/
https://kotlinlang.org/
https://github.com/Kotlin/kotlinx.html
https://github.com/Kotlin/kotlinx.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://mustache.github.io/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://github.com/PebbleTemplates/pebble
https://github.com/PebbleTemplates/pebble
https://github.com/jreijn/spring-comparing-template-engines
https://github.com/jreijn/spring-comparing-template-engines
https://github.com/fizzed/rocker
https://www.thymeleaf.org/
http://trimou.org/
http://velocity.apache.org/

BIBLIOGRAPHY

[27] Wikipedia. Comparison of web template engines. URL https://

en.wikipedia.org/wiki/Comparison_of_web_template_engines.
(p. 6)

[28] Alan Williamson, Andrew Wu, Joey Gibson, and Kirk Pepperdine. Ant De-
veloper’s Handbook. 1 edition, 2002. ISBN 0672324261. (p. 2)

[29] Windup. Fernflower decompiler github. URL https://github.com/

windup/windup/tree/master/decompiler/impl-fernflower.
(p. 61)

89

https://en.wikipedia.org/wiki/Comparison_of_web_template_engines
https://en.wikipedia.org/wiki/Comparison_of_web_template_engines
https://github.com/windup/windup/tree/master/decompiler/impl-fernflower
https://github.com/windup/windup/tree/master/decompiler/impl-fernflower

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Introduction to Domain Specific Languages
	Template Engines
	Dynamic Views
	Handicaps

	Thesis Statement
	Document Organization

	Problem Statement
	Motivation
	Problem Statement
	Approach

	State of Art
	XSD Language
	The Evolution of Template Engines
	HtmlFlow 1
	J2html
	Rocker
	KotlinX Html
	HtmlFlow 3
	Feature Comparison

	Solution
	XsdParser
	Parsing Strategy
	Reference solving
	Validations

	XsdAsm
	Supporting Infrastructure
	Code Generation Strategy
	Type Parameters
	Restriction Validation
	Enumerations

	Element Binding
	Using the Visitor Pattern
	Performance - XsdAsmFaster

	Client
	HtmlApi
	Using the HtmlApi
	HtmlFlow 3

	Deployment and Validation
	Maven
	Sonarcloud
	Testing metrics
	Spring Benchmark
	Template Benchmark

	Conclusion
	Main Contributions
	Concluding Remarks and Future Directions

	Bibliography

