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a b s t r a c t

Forecasting the residential natural gas demand for large groups of buildings is extremely important for
efficient logistics in the energy sector. In this paper different forecast models for residential natural gas
demand of an urban area were implemented and compared. The models forecast gas demand with
hourly resolution up to 60 h into the future. The model forecasts are based on past temperatures, fore-
casted temperatures and time variables, which include markers for holidays and other occasional events.
The models were trained and tested on gas-consumption data gathered in the city of Ljubljana, Slovenia.
Machine-learning models were considered, such as linear regression, kernel machine and artificial neural
network. Additionally, empirical models were developed based on data analysis. Two most accurate
models were found to be recurrent neural network and linear regression model. In realistic setting such
trained models can be used in conjunction with a weather-forecasting service to generate forecasts for
future gas demand.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Forecasting the residential natural gas demand of a large group
of buildings is vital for efficient logistics in the energy sector. Nat-
ural gas is the main energy resource in the residential sector of EU,
accounting for 37% of total energy consumed [1]. Forecasting its
consumption is therefore an essential part of energy management
and transportation. An important example where such forecasting
is required is the problem of transporting natural gas via pipelines.
Such transport has to be orchestrated according to the forecasted
demand that will occur a couple of days into the future. While
forecasts of industrial gas demand can be obtained from each client
individually, this is not the case for residential sector. This part of
gas demand needs to be forecasted using models.

Gas demand forecasting is strongly connected to heating load
forecasting problem. This is supported by the fact that 76% of res-
idential natural gas in EU is consumed for space heating purposes,
while 19% and 5% is consumed for water heating and cooking,
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respectively [1]. Therefore, an accurate gas consumptionmodel also
includes an accurate heating load model for residential buildings.
This in turn widens the usability of gas demand forecast models. If
total energy consumption in buildings is considered, space heating
is still the most energy intense end-use in EU homes and accounts
for around 70% of total energy consumption [2]. Knowing the future
consumption of heat in buildings is therefore essential for the
efficient transportation of all energy resources used for space
heating. In addition, an accurate forecast model for the heat con-
sumption in buildings can substantially improve district heating
and combined heat and power workflows. In both cases a suc-
cessful operation requires the optimal scheduling of heating re-
sources in order to satisfy the heating demand. The scheduling
operation requires accurate, short-term, intraday forecasts of the
future heat consumption in order to optimally assign the heating
resources.

Modeling all factors that contribute to residential gas demand is
an extremely difficult task. Since heating is the primary end-use of
residential gas, an accurate forecast model need to take into ac-
count the physics of heat transfer and the accumulation of heat
within buildings. This part of the model is primarily weather
dependent, where the most important variable is the outdoor
temperature and its past dynamics [3]. However, the model must

mailto:rok.hribar@ijs.si
mailto:primoz.potocnik@fs.uni-lj.si
mailto:jurij.silc@ijs.si
mailto:gregor.papa@ijs.si
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2018.10.175&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2018.10.175
https://doi.org/10.1016/j.energy.2018.10.175
https://doi.org/10.1016/j.energy.2018.10.175


R. Hribar et al. / Energy 167 (2019) 511e522512
also account for socio-economic factors. These are, for example, the
dynamics of the indoor temperature preferences of the population,
the heating needs of commercial buildings, the daily migrations of
the population, the growth of the heating space area, the change of
buildings' efficiency and others. Additionally, gas consumption
model must also model dynamics of water heating and cooking.

Because there is no widely accepted model that would include
socio-economic factors, the gas demand forecast model needs to be
general enough to capture the theoretically unknown behavior of
the system. Therefore, sophisticated computer models are used for
this problem, which are otherwise found in machine learning,
statistics and artificial intelligence.

The goal of this paper is to find easily trainable and accurate
models for forecasting residential gas demand of an urban area
with an hourly resolution for up to 60 h into the future. In this paper
different forecast models are compared in order to find the most
appropriate one. Three machine-learning models were applied to
this problem. Those are linear regression (LR), the kernel machine
(KM) and the recurrent neural network (RNN). LR and RNN model
was implemented using advanced techniques that are new to the
energy-modeling sector. Additionally, three empirical models were
developed. Their structure is based on historical data analysis and
theoretical considerations.

The layout of the paper is as follows. In Section 2 a literature
review of the topic is presented. In Section 3 the mathematical
formalization of the problem is outlined and methods common to
all models are presented. In Section 4 three machine-learning
methods are applied to the problem and presented in detail. In
Section 5 simple empirical models are constructed based on an
analysis of the historical data. In Section 6 the implementation of
the models is described. In Section 7 the results and model com-
parison are presented. The implications of this comparison are
discussed in Section 8. Concluding remarks are given in Section 9.
2. Related work

There are several good reviews on forecasting energy demand.
Soldo [3] reviewed published research in the area of gas demand
forecasting. Influence of covered area and forecasting horizon on
the methods is examined. Several forecasting methods are dis-
cussed and include curve extrapolation, time series regression,
artificial neural networks (ANNs), genetic algorithms and models
based on fuzzy logic. Zhao and Magoul�es [4] reviewed research
concerning forecasting energy consumption of buildings (heating,
cooling and electricity). Their review is centered around methods
used in this domain. Engineering models, time series regression,
ANN, KM and Graymodels are mentioned. Hong and Fan [5] made a
comprehensive survey of electricity demand forecasting. They re-
view a great number of modeling techniques and weigh several
side considerations regarding e.g. variable selection, error metrics,
practical measures for forecasting accuracy and reliability criteria.

Based on the before mentioned reviews, forecasting horizon, the
area covered and the methods used are the most important criteria
for categorization of approaches for demand forecasting of build-
ings. The forecasting horizon can span anywhere from few hours to
days, weeks, months or even years. Based on the area covered the
forecasts can cover a single building, a group of buildings, a whole
town or even a whole country or continent. The categorization of
papers shown in Table 1 indicates that the forecasting of the energy
consumption in buildings was studied for various combinations of
the forecasting horizon and the area covered.

The forecasting horizon and the area covered should influence
the choice of features on which the forecasts are based. When the
area covered is small, then building indicators and socio-economic
characteristics of occupants become important variables for fore-
casting. Kalogirou and Bojic [6] investigated the influence of wall
thickness and insulation on the heating load of a building. Based on
the data generated using simulations of heat transfer dynamics
they trained a forecasting model for heating load that accounts for
specific characteristic of the building. Tso and Yau [7] studied the
influence of socio-economic indicators on the electricity demand of
a household. They built several models that depend on indicators
such as income, type of ownership, age, etc. To forecast for large
covered area and large forecasting horizon Adom and Bekoe [8]
used macro-socio-economic indicators, such as population count,
gross national product, degree of urbanization, etc. Otherwise, the
weather and time indicators are the most important features.

Methods for buildings' energy consumption forecasting include
approaches from time-series modeling, machine learning, use of
hybrid models and ensembles of models. Probably, the simplest
method from time-series modeling is LR, where the appropriate
variables are linearly mapped to produce a consumption forecast.
LR models become competitive when appropriate features are
found. Vondr�a�cek et al. [9] used specially engineered nonlinear
mappings of observables to features, i.e., new predictors. Using
those features as input to a LR model they were able to train an
accurate prediction model for gas demand of a single building.
Another beneficial nonlinear feature mapping is redundant Haar
wavelet transform. Nguyen and Nabney [10] used such transform
for generation of beneficial features which were used for several
models including LR to forecast electricity demand of UK. By
applying nonlinearity in this manner, models can capture nonlinear
dependencies, even though the model is trained using linear
regression.

Using an additional autoregressive term in the LR model can
further improve the accuracy of the forecasts. Unfortunately, this
makes the model nonlinear with respect to the parameters of the
model, which makes the training more difficult. Tratar and
Strm�cnik [11] compared several autoregressive models for fore-
casting heating load on daily, weekly and monthly timescale. They
found that there is no best model for all timescales and that the
choice of the model strongly depends on forecasting horizon.
Vaghefi et al. [12] developed an adaptive model that is a combi-
nation of a LR model and a seasonal autoregressive moving average
model and applied it to cooling and heating load forecasting
problem.

Another group of models used in buildings' energy consumption
forecasting and which come from machine learning are kernel
machines. Such models are nonlinear and work by nonlinearly
mapping the feature space to a high-dimensional space fromwhich
the forecasted quantities are calculated linearly. O�gcu et al. [13]
used support vector regression (SVR) with radial basis kernel
function to forecast electricity demand of Turkey and showed that
it outperforms ANN. To search for the optimal parameters of the
kernel grid search or quadratic programming algorithm is usually
used. Al-Shammari et al. [14] used firefly algorithm to find kernel
parameters and showed that this results to more accurate forecasts
of heating load compared to grid search algorithm. Proti�c et al. [15]
showed on the case of heating load forecasting that the power of
SVR can be increased by using features obtained by discretewavelet
transform. Zhu et al. [16] further upgraded SVRmethod to filter out
data points that are close to the state at prediction time but have a
different time dynamics. By this method SVR is more suitable for
time series prediction. The proposed model was shown to outper-
form classical SVR, ANN and autoregressive integrated moving
average (ARIMA) in the case of forecasting daily gas demand of UK.

Artificial neural networks (ANNs) are also a widely used model
for buildings' energy consumption forecasting. Such models are



Table 1
Papers that deal with heating load, natural gas or electricity consumption fore-
casting, categorized with respect to the forecasting horizon and the area covered.
The shaded area shows the two categories to which this paper belongs to.

Table 2
Spearman's rank correlation coefficient r of gas demand and
a given weather variable.

weather variable r

outdoor temperature �0.89
solar irradiance 0.06
air humidity �0.02
wind speed 0.01
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nonlinear and harder to train, but they have proven to be successful
for such forecasts. Poto�cnik et al. [17] made a comparison of a feed-
forward ANN with a single hidden layer with several other models
for forecasting heating load and found that autoregressive models
outperform ANN. Izadyar et al. [18] used ANNwith three layers and
compared it with other models and reached an analog conclusion.
The reason why feed-forward ANN architectures are less competi-
tive is that they can not model long-range correlations which is
why they are not the most appropriate for such problems. ANN
architecture that can model long-range dependencies is RNN
(which includes feed-back loops). Kato et al. [19] used RNN for
heating load forecasting and showed that it outperforms a three
layered feed-forward ANN. Song et al. [20] used a muchmore easily
trainable variant of ANN called extreme learning machine to fore-
cast electricity demand of college campus. Shamshirband et al. [21]
forecasted heating load by using a ANN variant called adaptive
neuro-fuzzy inference system (ANFIS), which is a kind of ANN
based on the TakagieSugeno fuzzy inference system.

In cases where only a rough estimate of the buildings' energy
consumption is needed, clustering can be used. El-Baz and
Tzscheutschler [22] used k-nearest neighbors clustering on histor-
ical data of electricity demand of a single building. Using this
method they were able to forecast the probability of demand being
in some consumption range. A different clustering method was
used by Valgaev and Kupzog [23] who performed clustering in the
space of different realizations of consumption dynamics, i.e., in the
function space. In this way a continuation of the current con-
sumption dynamics can be generated by taking dynamics from the
same cluster that the current dynamics belongs to.

In case of a small covered area, it is possible to develop more
theoretically founded models. De Rosa et al. [24] derived differen-
tial equations for heating and cooling demand of a building and
built a computational model of the demand. For a single building
the physics of the consumption is manageable, however, for larger
groups of building such approach is not practical. A more general
approach was used by Karabulut et al. [25] by using genetic pro-
gramming to forecast electricity demand of a large covered area.
This is a procedure that uses evolutionary algorithms to search for a
formula for the calculation of energy consumption. The benefit of
this approach is that the resulting model is highly interpretable
because the model is a human readable formula.

Hybrid models are also widely used to forecast the energy
consumption of buildings. This usually means that the output of
one model is fed as an input to a different model. One option for a
hybrid model follows the attempt to join the strength of the auto-
regressive-type model that is able to model long-range correlations
well, and amodel that canmodel nonlinear behavior well. De Nadai
and van Someren [26] combined ARIMA and ANN for anomaly
detection in gas consumption. In this model features are fed to
ARIMA and the output of ARIMA together with starting input fea-
tures are then fed to ANN. Barak and Sadegh [27] fed ARIMA output
to ANFIS to forecast electricity demand. Amara et al. [28] used the
output of nonparametric kernel density estimation as an additional
feature to a trainable autoregressive model to forecast electricity
demand. Hsu [29] combined linear prediction and the k-means
clustering in a single hybrid model known as cluster-wise regres-
sion, which has been used to forecast buildings' electricity
consumption.

Another way of joining the strengths of different models is to
use an ensemble of different models. This means that different
models vote about the value of the forecast. Jovanovi�c et al. [30]
used an ensemble of ANNs to forecast heating load. Ensemble was
clustered so that the ANNs used for voting were guaranteed to be
diverse. But the models inside the ensemble can also be of a
different type. Fan et al. [31] constructed an ensemble to forecast
electricity demand that consisted of LR, ARIMA, ANN, SVR, random
forest, boosting tree,multivariate adaptive regression splines and k-
nearest neighbors. They showed that the ensemble outperformed
all included models.

3. Methods

In this section the methods that are common to all the models
used in this paper are described.

3.1. Data

The models considered in this paper were trained on residential
gas demand data that was gathered in the city of Ljubljana,
Slovenia. The data excludes industrial gas demand, however some
unregistered small-scale industrial users might still be included.
The gas demand data includes the total gas demand in Ljubljana for
every hour over the past 8 winter seasons (36;106 hours of data).
Time range of the available data during a winter season varies
among different seasons. The beginning of the winter season
ranges from September to November and the ending ranges from
April to May. Because the actual values of the gas demand are
confidential, all values in this paper are in units of maximum daily
demand (MDD). The weather data used was gathered by the
Slovenian Environment Agency. The weather forecast data used in
this paperwas generated using the ALADIN/SI model, as used by the
Slovenian Environment Agency. The weather forecasts have a
forecasting horizon up to 60 h. Both the gas demand data and the
weather forecasts have an hourly resolution.

3.2. Feature selection

A comprehensive analysis of the gas demand data and the
weather data was made. This data analysis consisted of Spearman's
rank correlation among different observables. It was found that
temperature is by far the most important observable. Table 2 lists
the correlations between the gas demand and the weather vari-
ables. The correlation was calculated using the entire data set
without applying any time shift to the variables. Given the corre-
lations our models will use temperature as the only weather
observable. This is also convenient with respect to data acquisition.
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Using this method the wind speed, air humidity and solar irradi-
ance were found to be much less correlated with the gas demand
and therefore irrelevant for a gas demand forecasting.

Gas demand is also strongly time dependent, whichmight relate
to different social factors. Weekly and daily seasonality is clearly
observable, which can be seen in Fig. 1. Additionally, there is a
discrepancy on public and school holidays and also on the working
days that are between a public holiday and the weekend. Table 3
lists all the variables used by the models in this paper.

Heating degree days (HDD) were not considered as a feature
because all models in this paper incorporate a temperature bias
term. Therefore, HDD is implicitly included in all models which
makes explicit usage of HDD as a feature unnecessary.
Fig. 2. The problem of forecasting future gas demand. The shaded area is a 24-h time
range for the forecast and the cross-shaped ticks are the desired output of the forecast
model for each hour in that range.
3.3. Forecast model framework

The framework of the forecast models is intended to be as
realistic as possible. Under realistic circumstances the forecast
model can only use measured weather variables from the past and
forecasted ones for the future. This is also the framework of the
models used in this paper. This is important because forecasted
weather variables are less accurate and result in less accurate gas
demand forecasts. Using this method the error in the models is not
underestimated.

The model's input is a certain subset of the available time data,
past temperatures, forecasted temperatures and past gas demand.
The output of all the forecast models is the gas demand inside a 24-
h window with an hourly resolution. The forecasting horizon
specifies the position of this window. A depiction of this framework
is shown in Fig. 2.

It must be noted that all forecast models in this paper are short-
term, with 60 h being the maximum forecasting horizon. In this
regard, they are not designed to account for long-term gas
Fig. 1. Density of data points for different values of gas demand and hour of the day.
The median curve is represented as a weighted sum of triangular basis functions jd .

Table 3
Variables used by the models in this paper. Variables ph, sh and hw are boolean
whereas the others are real.

symbol variable

P gas demand
T outdoor temperature
td time of the day, i.e., time (mod) 1 day
tw time of the week, i.e., time (mod) 1 week
ph presence of public holiday
sh presence of school holiday
hw day between public holiday and weekend
consumption trends which are guided by gas availability, price,
population size, etc. To account for such long-term trends special-
ized forecast models need to be constructed [5]. Therefore, to
ensure the accuracy of the short-term model for a long period of
time, the model should be periodically adapted to reflect the cur-
rent state of long-term gas demand. This can be achieved by using
adaptive models [17] or by simply retraining the model from time
to time using the newly gathered data.
3.4. Model comparison and training

Cross-validation was used in order to obtain a reliable estimate
of the model's accuracy. This was implemented by setting one
season as a test set and the other seasons as a training set. For each
run a different season was excluded to be a validation set. There-
fore, 8 independent runs were made for each model and the mean
was used for the model's error estimation. This estimation should
be very close to the error of the model if it were used in real life.

When training the models there is no need to use the less-
accurate forecasted temperatures because the measured ones are
available for all times. The benefit of using measured variables is
that the models are able to train on more accurate data. However,
when using less-accurate forecasted weather data for training, a
model might learn some useful features that are typical for fore-
casted data. In the extreme case, the model might learn to correct
some errors made by weather forecasting. For example, it might
learn to transform the forecasted temperature dynamics that are
not observed in practice to amore likely version. On the other hand,
training on less-accurate data should intuitively produce a less
accurate model.

To test whether training on forecasted weather data is benefi-
cial, each model was trained on measured data and also on fore-
casted data, with the forecasting horizon being up to 60 h. This can
be easily implemented if the first training is conducted on
measured data and the resulting model is then used as the initial
point for the training on forecasted data. The forecasting horizon
can be incrementally increased using the previous result as the
initial point of the training. With this procedure, initial points for
the training that are close to the optimal one can be found. This
substantially decreases the training time.
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3.5. Error metric

The chosen error metric should reflect the cost that results from
a bad gas demand forecast. For example, this can be a financial loss
or the quantity of CO2 emissions that is a direct consequence of a
bad gas demand forecast. These costs are usually linear with
respect to the absolute error, i.e., it costs as much as the model
misses the correct value [32]. It is less likely that the cost is pro-
portional to the square of the error, even though this is the prev-
alent error metric found in the literature [5].

Themetric used in this work, both for testing the accuracy of the
models and for training them, is the mean absolute error (MAE)

MAE ¼ 1
n

Xn

i¼1

���Pforecasti � Pi
���; (1)

where i is for all n hours of forecasted gas demand. Pforecast is the gas
demand forecasted by the model and P is the measured gas de-
mand. This means that the error for each hour of the forecast is
added to the MAE separately.

The choice of error metric, however, did not influence the
implementation of the models and their training methods. For any
other cost metric, one can easily adjust the implementation so that
the optimal model for that specific metric is searched for.

For the purpose of the analysis the mean absolute percentage
error (MAPE) is also used, which is defined as

MAPE ¼ 100%
n

Xn

i¼1

�����
Pforecasti � Pi

Pi

�����: (2)

4. Machine-learning models

In this section three machine-learning methods are presented
and applied to the problem of the gas demand forecasting.

4.1. Linear regression

LR is a standard and straightforward approach to the prediction
of time series. Its use is also common for the heating load fore-
casting [33]. In LR the forecast is calculated linearly from hand-
chosen regressors. Because the model is linear with respect to the
model parameters, the training can be easily accomplished. To
choose the best subset of regressors, stepwise regression can be
used, where the regressors are iteratively added and removed
based on their statistical significance [34]. This makes the model
more robust and without any unnecessary regressors.

The first important group of regressors for this problem are the
current and past temperatures which are essential for the part of
gas demand used for space heating. The temperature before the
forecast is important because of the heat accumulation. The ratio-
nale for this assumption is the example of a period of warm
weather, followed by colder weather. In this case it is reasonable to
expect that because of the accumulated heat, the heating load will
not rise instantly when the temperature drops. Therefore, the
heating load should increase with some delay. The regressors for
the temperature T can be written as

pðDÞTi ¼
Xr

j¼0

ajTi�j; (3)

where pðDÞ is an order r polynomial of the shift operator D and aj
are the model parameters.
Besides the temperature, the time of the day td and the time of
the week tw are important for the gas demand forecast. It was
observed in the data that the dependency of the gas demand with
respect to td and tw is nonlinear. The nonlinearity with respect to td
is shown in Fig. 1. But those dependencies can be represented as a
linear combination of some basis functions. In this way linearity
with respect to the parameters is still retained. In this paper this
basis consists of differently translated periodic triangular functions
j. The shape of basis functions j is shown in Fig. 1. The median
curve in Fig.1 is aweighted sum of basis functions j and shows how
arbitrary continuous function can be decomposed using basis j.

The regressors used to capture the time dependencies can be
written as

ndðtdÞ ¼
Xk

j¼1

bjj
d
j ðtdÞ

nwðtwÞ ¼
Xl

j¼1

cjj
w
j ðtwÞ;

(4)

where k and l are the numbers of basis functions j and bi and ci are
model parameters. The width of triangular functions was chosen to

be 2 h for jd and 2 days for jw. In this way, the contribution of day
of the week to gas demand changes continuously through time
without step like discontinuities that would appear when going
from one day of the week to the next. The information about
whether a day is special (ph, sh and hw) was also added into the nw
function basis. In this way the presence of special days is also
additively included in the model. The use of triangular basis func-
tions allows a continuous dependency of gas demand with respect
to both td and tw, even in the presence of special days.

The last group of regressors are the values of the measured gas
demand P before the forecast.

qðDÞPi ¼
Xm

j¼h

djPi�j; (5)

where qðDÞ is the orderm polynomial of the shift operator D and dj
are the model parameters. The minimal lag h ensures that the
model knows only about the gas demand values before the forecast.
Without this, the model would be nonlinear with respect to the
parameters.

Using all the regressors described above the LR model is

Pforecasti ¼ pðDÞTi þ ndðtdÞ þ nwðtwÞ þ qðDÞPi: (6)

4.2. Kernel machine

Because a large set of historical data is available, it is possible to
construct a density distribution of the points. This, in turn, allows
one to forecast the gas demand based on that distribution. This is
what the KM allows the user to do generically. The state of the
system for the KM model is defined as:

y ¼ ðx; PÞ ¼ ðtd; tw; T; PÞ: (7)

This system state does not know anything about the past tem-
peratures, which should make the model less accurate. This will be
corrected with a variation of the KMmodel that is described below.
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From the known points yi in the historical data a probability
distribution wðyÞ can be constructed. Knowing w, a forecast for the
gas demand Pnew can be calculated for some new state xnew using a
conditional expectation1

Pnew ¼ E½wðyÞjx ¼ xnew� ¼ E½wðxnew; PÞ�: (8)

Knowing the distribution of P, given a state xnew, also allows the
user to calculate the error of the forecast. More precisely, for an
arbitrary xnew the conditional distribution wðxnew; PÞ can be
calculated. The center of this conditional distribution is the fore-
casted gas demand Pnew and the width of this distribution is the
error of this forecast.

A drawback of this model is that past temperatures do not have
any role in the forecast. For this purpose new features were con-
structed that also hold information about past temperatures. The
new variables Ti are short-term, medium-term and long-term
temperature averages. They are defined using a convolution
(marked with �) with an exponential function in the following way

TshortðtÞ ¼ TðtÞ*expð�t=tshortÞ=tshort: (9)

By using Ti, a new feature space can be defined as

~y ¼ ð~x; PÞ ¼
�
td; tw; T

short; Tmedium; T long; P
�
: (10)

KM with feature space ~y will be referred to as a kernel machine
with memory (KMM). This form was inspired by LR where past
temperatures also contribute to the gas demand forecast in a linear
way. The exponential was chosen because it has a clear time scale ti
and because a convolution with an exponential can be calculated
with O ðnÞ time complexity.

In this paper ti ¼ f0;24 h; 48 hg. Roughly speaking, Tj corre-
sponds to the current temperature, the 24-h average and the 48-h
average. It is important to note that the points ~yi are less densely
packed than the points yi because the dimensionality of space
displayed in Eq. (10) is higher than in Eq. (7).

The problem of a low density of points can be a major one. A
reliable forecast of Pnew requires an abundance of known points
near xnew. It is unlikely that the data includes all the common
temperature dynamics for all the days of the week and every hour
of the day. Because of that, the kernels have to be wide enough to
compensate for the lack of points, which causes wider distributions
and therefore larger errors. The only remedy for such lack of points
is gathering more data instances. In order to avoid this problem,
variables like public holidays and school holidays had to be omitted
from x, even though they affect P substantially [17]. Those events
are simply too rare and those regions do not have a sufficient
number of points for kernel methods. This is why it is expected that
the KM would have the largest errors during those occasional
events.
4.3. Recurrent neural network model

An ANN is a common and successful model for gas demand
forecasting. Various architectures are used in the literature and
include feed-forward [18], recurrent [19] and ensemble [30] ar-
chitectures. It is also known that an ANN can approximate an
arbitrary function to an arbitrary precision [35]. This means that an
ANN can capture any function if it is large enough. If there is an
accurate gas demand prediction function based on time and
1 In the case that the metric is the absolute error and not the square error, the
expectation is replaced with the median.
temperature, a large enough ANN can approximate this function. It
is only a question of the user's ability to find those ANNs using
optimization techniques.

An ANN is a model that consists of the composition of param-
eterized linear maps and fixed element-wise nonlinear maps
interchangeably. ANNs that consists of several applications of linear
and nonlinear maps are called deep ANNs. The depth of an ANN
significantly improves the capacity of the model, which means that
deeper ANNs are able to capture a wider range of functions [36].

It is desirable that an ANN model also takes past temperatures
into account. Therefore, a wide enough ANN is needed, one that can
take several days of data as a single input. Since the number of
parameters of an ANN grows quadratically with the width, an
increasing width can quickly lead to over-fitting. Another way for
the ANN to know of past temperatures is the use of feedback loops,
which allow the ANN to keep a memory of previous inputs. An ANN
that includes feedback loops is called a RNN, an example of which is
shown in Fig. 3. A RNN can be fed one temperature at a time, which
means that the network can have a small width (and therefore a
manageable number of model parameters) and also takes past
temperatures into account. Therefore, the RNN will be used in this
paper.

In the past RNNs were not widely used because they were
difficult to train due to the problem of vanishing and exploding
gradients [37]. These problems were overcome by introducing
gated units such as a long short-term memory (LSTM) and gated
recurrent unit (GRU) [38]. Accuracy wise, GRUs are comparable to
LSTMs [39]. In this paper GRUs are used because they have a
smaller number of parameters per neuron. The definition of one
GRU layer is

zt ¼ sgðWzxt þ Uzyt�1 þ bzÞ
st ¼ sgðWsxt þ Usyt�1 þ bsÞ
yt ¼ ð1� ztÞ+sh

�
Wyxt þ Uyðst+yt�1Þ þ by

�þ zt+yt�1;
(11)

where x and y are the input and output columns. Wi, Ui and bi are
the parameters of the layer. z and s are the update and reset gate
columns. The proposed [39] nonlinear maps sg and sh are hard
Fig. 3. RNN model architecture where all the layers and units are explicitly shown. The
connections between the layers are shown with arrows. Hidden layers consist of GRU
units, which need values from the previous time step. For this purpose a one-step
delay is represented by a black square.



Fig. 4. Density of the data points for different values of the gas demand and tem-
perature. Two branches are clearly seen, from which the lower one happens mostly
during the nighttime and the other one mostly during the daytime. The branches are
not only scaled differently but actually have different shapes.
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sigmoid and tanh functions, respectively.
A three-layered GRU with a width of 16 was used in this paper

with a total of 4337 parameters. The model is shown in Fig. 3. The
size and architecture of the RNN was chosen with respect to the
number of data points available (36;106) in order to prevent over-
fitting and to have enough width for the data to pass through the
RNN. The input of the model is the vector

ðT; td; tw; ph; sh; hwÞ: (12)

For energy related forecasting, one-layered RNN is also widely
used [5], however thismight be due to historical reasons. Before the
development of deep learning, one-layered neural networks were
the only trainable neural network models, while deeper architec-
tures suffered problems due to exploding or vanishing gradients
[37]. The three-layered architecture (Fig. 3) was chosen after
experimentation with different number of layers. These experi-
ments showed that the error of one- and two-layered models are
7.9 and 4.3 times higher compared to the three-layered one.
5. Empirical models

In this section simple and easily trainable models for gas de-
mand forecasting are constructed. Unlike LR, KM and RNN models,
the design of these models is based on the characteristics of his-
torical gas demand data compared to weather and time data.
5.1. Two-reservoir model

By analyzing the historical data an empirical model was
constructed

P ¼ nwðtwÞndðtdÞf ðTÞ þ gðTÞ þ uwðtwÞudðtdÞ; (13)

where ni, f, g and ui are unknown functions. The interpretation of
the unknown functions is outlined below. The form of this model
stems from the following observations based on the historical gas
demand data.

� the influence of T on P is different in the nighttime compared to
the daytime, hence the two temperature-dependent functions
f ðTÞ and gðTÞ (see Fig. 4),

� with the proper scaling the influence of the hour of the day on P
is similar for all the days of the week, and hence the product
form nðtÞ ¼ nwðtwÞndðtdÞ,

� gas demand is non-zero even at high temperatures, hence the
temperature-independent term uðtÞ ¼ uwðtwÞudðtdÞ.

This model will be referred to as the two-reservoir model (TRM).
The name stems from the interpretation of first two summands of
Eq. (13) which represent space heating contribution to gas demand.
The two summands represent the total heat consumption of two
different reservoirs: one that consists of buildings that are always
heated and the other that consists of buildings where only a frac-
tion nðtÞ of them are heated. The two reservoirs are allowed to have
different heat-transfer characteristics, hence the two temperature
dependencies f and g. The remaining summand uðtÞ from Eq. (13)
represents the gas demand that is independent of the outdoor
temperature and can also account for other end uses of gas con-
sumption. Within this framework unknown functions from Eq. (13)
have a clear interpretation.

The unknown functions ni and ui are parameterized as in Eq. (4).
Therefore, TRMmodel is able to continuously shift from daytime to
nighttime regime and also continuously adjust gas demand for
different days of theweek. For the functions f, g a basis of differently
translated hard sigmoid functions and two ramp functions for high
and low temperatures was used.

The calculation of the model forecasts for a large set of data
consists of matrix multiplications with the column of model pa-
rameters p to obtain columns with different function values. These
columns are then element-wise multiplied (marked with +) and
added in accordance with the model design:

P ¼ Mnwp+Mndp+MfpþMgpþMuwp+Mudp: (14)

Eq. (14) is equivalent to Eq. (13) and shows how the calculation
of the column of gas demand P is carried out for this parameteri-
zation of functions. The parameters of these functions are in col-
umn p. The matrices Mi are constructed based on basis functions
and time and temperature data. This calculation is fast, but it is
nonlinear with respect to the parameters. This means that
searching for the optimal values of the model parameters requires
the use of nonlinear optimization techniques. It is, however,
possible to analytically calculate the derivative of the forecasted
values with respect to the model parameters. Therefore, the
gradient optimization method can be used.

An extremely important property of this model is that it is easy
to construct an initial point for the optimization process that
searches for the optimal parameters of the model given the data.
Having an initial point that is close to the global minimum is very
beneficial, especially for nonlinear optimization. Such an initial
point can be easily constructed here by fixing some parameters of
the model and using linear optimization to find the non-fixed pa-
rameters. For example, one can fix the parameters that define
functions nw, nd and ud, which results to a linear model and the
parameters of the other functions can be fitted to the data. This
process can be iteratively repeated by fixing different parameters to
find an estimation for all the parameters of the model. By this
procedure an initial point is constructed that is close to the optimal
one. This is the case because this model can be linearized with
respect to the group of parameters by simply fixing the parameters
of the model that are not in that group. Since linear optimization is
easy to perform, such an initial point is easy to construct.

5.2. Two-reservoir model with linear memory

The fact that past temperatures are important guides us to up-
grade the TRM to take past temperatures into account. But it is
extremely difficult to include both the nonlinearity and the tem-
perature dependency seen in Fig. 4 and the dependency based on
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past temperatures. The number of parameters for the parameteri-
zation of a nonlinear function grows exponentially with the num-
ber of arguments. Having a multitude of past temperatures as
arguments simply means that the number of parameters soon be-
comes too large.

It is desirable to keep the simple form of TRM (Eq. (14)) that is
easy to calculate, analytically differentiable and with an easily
constructed initial point. In the TRM case the calculation of f ðTÞ and
gðTÞ is a multiplication of the model parameters by a matrix. In the
upgraded model this property needs to be retained.

One option is inspired by linear prediction. In this case the
temperatures are transformed via convolution (marked with �)
with some unknown response function r. Let us take

f ðTÞ ¼ rf �T and gðTÞ ¼ rg�T; (15)

where rj holds the parameters of the model. The maps in Eq. (15)
are linear with respect to the parameters. Therefore, the calcula-
tions of f ðTÞ and gðTÞ are just multiplications with matrices. This is
in accordance with the calculation scheme of the TRM. This model
will be referred to as the two-reservoir model with linear memory
(TLM). It is worth noting that this model cannot capture the
nonlinear dependency seen in Fig. 4 because it is linear with respect
to the temperature.
Fig. 5. Mean training and test error of the RNN model during training. The x-axis
shows the number of times algorithmwent through the entire data set during training
(epoch).
5.3. Two-reservoir model with nonlinear memory

The nonlinearity in the temperature dependency can be
enforced if the response functions rj are fixed (independent of the
model parameters). With fixed temperature transformations the
transformed temperatures can be nonlinearly mapped in the
following way

f ðTÞ ¼
X
j

fj
�
rj�T

�
; (16)

where the functions fj are parameterized (hold the parameters of
the model), while rj are fixed response functions that are chosen
beforehand.

This model will be referred to as the two-reservoir model with
nonlinear memory (TNM). If the rj functions are monotonically
decreasing, the rj � T can be interpreted as the temperature average
on some time scale. Therefore, the temperature dependency in Eq.
(16) can be interpreted as the sum of the nonlinear functions of the
temperature averages on different time scales.

The parameterization of the functions fj and gj is the same as for
the f and g used in the TRM (Section 5.1). A good choice for the fixed
response functions rj are exponentially decreasing functions

rjðtÞ ¼ exp
��t

�
tj
��

tj (17)

that have a clear time scale tj and the convolution with such rj can
be computed with O ðnÞ time complexity.

The TLM and TNM models are only upgraded versions of the
TRM that include past temperatures without increasing themodel's
computational complexity. The upgraded models can be imple-
mented with the same ease as the TRM and are analytically
differentiable with respect to the model parameters, so gradient-
optimization techniques can be used to search for the optimal
model parameters. Also, the initial point for optimization can be
constructed in the same way as explained in Section 5.1, which is
extremely important for nonlinear optimization in a large dimen-
sional space. To retain all these TRM properties, either the nonlin-
earity of the temperature dependency was sacrificed as in TLM or
the temperature transformations were fixed as in TNM.

6. Implementation

The LR model was constructed using stepwise regression with
the function stepwise fit from the octave environment [40]. The
chosen p-values of the F-statistics to enter and remove the new
regressors were set to 0.05 and 0.10, respectively.

For the KM and KMM models, the distribution density of the
data points was constructed using a Gaussian kernel with a diag-
onal bandwidth. The optimal bandwidths were searched for using
the plug-in selection method [41]. This means that the kernel
bandwidths were not selected by the user, but constructed in an
optimal way based on the data. The library ks [42] available in the
programming language R [43] was used in the implementation of
the algorithm. The constructed density estimationwas employed to
forecast future gas demand using Eq. (8).

The RNN model was trained using the root-mean-square prop-
agation (RMSProp) algorithm and Keras [44] and Theano [45] li-
brary. The training for each forecasting horizon was conducted for
104 epochs. Without regularization neural networks tend to overfit
which is indicated by the increase of test error during training. This
effect was not observed in this case, presumably due to large
training dataset. The progress of training and test error during RNN
training is shown in Fig. 5. Gradient decent, however, was partially
unstable because of the very long sequences (approx. 5000 points).
The problem of instability was solved by restarting the optimiza-
tion from already visited, stable regions. This means that when the
gradient was calculated, which included special values (nan, inf),
the gradient decent was restarted from a valid point that was
visited recently by the same algorithm.

To search for optimal parameters of the empirical models the
gradient-decent and Nelder-Mead methods were used. The func-
tions fminunc and fminsearch from the octave environment [40]
were used to implement them. Auxiliary methods for the gradient
calculation and the initial point generation were written from
scratch in an octave environment.

All the models were trained on a computer with an Intel i7-
4500U processor and with 8 GB of RAM.

7. Results

The error of all the models increases with the forecasting hori-
zon. This is because weather forecasts are less accurate for larger
forecasting horizons. The comparison of errors for the different
models is shown in Fig. 6. The models can be clearly ranked, with
the RNN and LR models being the most accurate ones. Models of



Fig. 6. Mean test error with respect to the forecasting horizon for different models.

Fig. 7. Ratio of errors when the model is trained on forecasted weather data and when
it is trained on measured weather data. The KM and KMM models are not included
because they were not trained on forecasted data due to the very long forecasting time.

Fig. 8. Mean error on public holiday divided by the mean error on an ordinary day for
different models. Public holidays are the most significant outliers.
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medium accuracy are the KM and empirical models (TRM, TLM and
TNM). The least accurate model is the KMM, which has much larger
errors than the rest.

The KMmodel is approx. 2.2 times more accurate than the KMM
model. This is despite the fact that the KMM model has access to
past temperatures. This means that including more dimensions in
the KM spreads the data points to such a degree that the larger
models perform poorly. This is the result of the low density of
points discussed in Section 4.2.

In the case that only daily gas demand forecasts are required, the
errors of the models are smaller. This is because the errors for an
hourly resolution balance each other out, so that the total error
inside the 24-hwindow is smaller in proportion to themean hourly
error. Table 4 shows the errors of both versions of the forecasts for
one day ahead, i.e., for a 24-h forecasting horizon. It must be noted
that Fig. 6 shows the errors for all the forecasting horizons
considered in this paper, while Table 4 shows the errors for one
specific forecasting horizon. It also must be stressed that MAE re-
flects the cost of operation, while MAPE does not. Furthermore
MAPE is a biased estimator that will overestimate the error when
gas demand is low and put a heavier penalty on negative errors,
than on positive errors.

The results show that the models trained on forecasted weather
data can outperform the models trained on measured weather
data. This was the case for the TRM, TNM and RNN models, while
other models are more accurate if trained on measured weather
Table 4
Errors of the models when hourly resolution is required (hour) and when daily
resolution is required (day). Forecasting horizon is 24 h.

model MAE [10�3 MDD] MAPE [%]

hour day hour day
LR 1.10 20.1 8.1 6.1
KM 1.62 27.5 14.0 9.7
KMM 3.87 89.3 42.4 38.5
RNN 1.06 18.3 9.3 6.8
TRM 2.17 32.9 19.8 11.2
TLM 1.84 32.5 15.4 10.5
TNM 1.66 25.2 15.8 8.6
data. Fig. 7 shows the ratio of both errors for the different models.
This is not anticipated because training on data with more noise
should bring less, and notmore, accuracy. The threemodels that are
more accurate when trained on forecasted data are nonlinear with
respect to temperature, while the LR and TLM models are not. This
might indicate that nonlinear models are able to represent useful
characteristics of forecasting noise to a greater degree than the
other models.

The most untypical gas demand dynamics happens on public
holidays. Fig. 8 shows the relative increase in the error during
public holidays, compared to ordinary days. As expected, the KM
model has the largest error increase on public holidays because the
model does not include them. LR and TNM have the lowest increase
in error, while others have a medium increase.
Table 5
Training time for different models. Empirical models (TRM,
TLM and TNM) were trained using Nelder-Mead (NM) or
gradient decent (GD) optimization algorithm.

model mean training time

LR 11.3 s
KM 2.4 h
KMM 9.1 h
RNN 5.6 h
TRM (NM) 33.8 s
TLM (NM) 7.1min
TNM (NM) 8.8min
TRM (GD) 1.1 s
TLM (GD) 1.6 s
TNM (GD) 3.6 s
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The training times for each model are presented in Table 5. For
empirical models it is easy to construct an initial point for opti-
mization close to optimal one, which is why the training time is
substantially shorter for those models. Training times for KM, KMM
and RNN are, however, orders of magnitude larger compared to
other models. But since training is only performed once, neither of
those training times are problematic. A much greater problem ap-
pears when forecasting is very resource intensive, which is the case
for the KMmodels. This is problematic because forecasting needs to
be performed over and over again, e.g. on an hourly basis. The time
needed to test the KM models was several orders of magnitude
larger compared to the time needed to train them. For this reason
training on forecasted data was not conducted for those models.

To search for the optimal parameters of the empirical models
the gradient-decent and Nelder-Mead methods were used. It was
found that the two optimization algorithms produce models of the
same quality. For empirical models the values of the optimal pa-
rameters can actually help us understand the characteristics of the
system (see Figs. 9 and 10). From this, one can deduce the laws for
how this system behaves from the physical and social points of
view. This cannot be done with black-box models from machine
learning.

The most accurate forecast model in this paper is the RNN
model. When hourly resolution is needed its error is, on average,
6:4% of the average gas demand in 1 h. If only daily gas demand
forecast is required, the errors in the hourly resolution balance each
Fig. 9. How variable td influence the gas demand forecast of TNM. The graph shows
normalized gas demand forecast (function P from Eq. (13) with fixed tw and T) with
respect to td for two temperature extremes.

Fig. 10. How variables tw , ph, sh and hw influence the gas demand forecast of TNM. The
graph shows normalized gas demand forecast (function P from Eq. (13) with fixed td
and T) with respect to tw for two temperature extremes. The deviation due to the
presence of occasional events (ph, sh and hw) is shown in gray.
other out and the average error drops to 5:4% of average gas de-
mand in a day.

8. Discussion

Comparing the accuracies of very different models used in this
paper can guide us to deduce the properties that an accurate gas
demand forecast model should have. It is evident that a model is
more accurate if it includes the influence of past temperatures. This
claim is supported by the fact that the TLM is more accurate than
the TRM and the LR model is more accurate than the KM.
Furthermore, the model is more accurate if it is nonlinear with
respect to temperature. Arguments for this claim are both the su-
periority of the TNM over the TLM and the RNN over the LR model.
Also, it appears that past temperatures aremore important than the
temperature nonlinearity without the inclusion of past tempera-
tures, which is indicated by the fact that LR is more accurate than
the KM model.

This means that an accurate model should include past tem-
peratures and, on top of that, it should be nonlinear with respect to
temperatures. In Fig. 6, one can see clear exceptions to that claim.
However, those exceptions can be explained by other properties of
the models. One such exception is the superiority of the KM model
over the KMM model, even though the KMM model includes past
temperatures and the KM model does not. One way to explain this
behavior is that the KMM state-space dimensionality might be too
large for the number of data points available. This in turn causes a
wider kernel and consequentially larger errors.

Another question is why LR is more accurate than the TNM
model, even though the TNM model includes temperature
nonlinearity and the LR does not. One explanation for this behavior
is that the LR model is much easier to train compared to the TNM. It
is known that LR training has a unique error minimum that is easy
to find. On the other hand, TNM training might have a multitude of
local error minima and there is no guarantee that the trainedmodel
is the optimal one.

Another explanation for the superiority of LR over the TNM
model might be the TNM model structure which was hand-crafted
based on historical data and theoretical considerations. Given the
accuracies of empirical models it seems that it is very hard to
predetermine overall model structure and the form of the nonlin-
earity in the model that would result to high accuracy. Hand-
crafted models do not pay off in this case. This claim is further
supported by the fact that even the KM model, which does not
include past temperatures, is more accurate than the TNM model.

Empirical models are, however, useful because they give an
insight into the characteristics of the system, as shown in Figs. 9
and 10. Unlike black-box models from machine learning, empir-
ical models are crafted for this specific problem and the values of
their parameters have a clear interpretation. If one is interested in
discovering the qualitative laws of how the gas demand is gov-
erned, such empirical models can be of great help. For example,
Fig. 10 shows that the presence of school holidays has an effect on
gas demand only when temperatures are low. On the other hand,
the impact of public holidays is independent of the temperature.
Such knowledge is very hard to acquire using statistics because of
the high dimensionality of the state space.

Models that are nonlinear with respect to temperature (TRM,
TNM and RNN) become more accurate if the training is performed
on forecasted temperatures. While others are more accurate when
trained on measured temperatures. It seems that nonlinearity al-
lows a model to find useful features in forecasted data that are not
present in measured data. These features are useful because fore-
casts are based on both measured and forecasted temperatures.
This also affects the error increases when the forecasting horizon
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increases (see Fig. 6). In the case of the RNN model the error is
practically constant, i.e., independent of the forecasting horizon,
while the LR model has a notable increase in the error when the
forecasting horizon is increased (approx. 32% increase).

The most accurate model in this paper is our implementation of
the RNN model. This is in contrast to the findings of [17], where
both the ANN and RNN models were less accurate than LR. The
superiority of our RNN model can be attributed to advanced tech-
niques used to implement it, such as the use of gated recurrent
units and the use of a more suitable optimization algorithm for
training the model. It should be noted that RNN has the disad-
vantage that the training is very resource intensive. Its imple-
mentation is also time consuming because of the recurrent loops
and an instability that is a result of very long sequences.

The second most accurate model is LR, which is, unlike RNN,
very easy to train and also easy to implement. Given that its ac-
curacy is close to the RNN's, it is a sound choice. Therefore, the LR
model should be tried first and if the accuracy of the model is
satisfactory, there is no need for the resource-intensive imple-
mentation and training of the RNN model.

The third most accurate model is the KM, whose both training
and forecasting are very resource intensive. In the case that
extensive testing is required, the KM model is not the best choice
because forecast generation is extremely time consuming.

Empirical models (TNM, TLM and TRM) are less accurate;
however, their training time is very short. This can be attributed to
the generation of initial points and the use of gradient-based
optimization. However, the implementation of empirical models
is time consuming because themethods for initial-point generation
and gradient calculation need to be implemented from scratch.

The models in this paper have the largest error on occasional
events like holidays. The LR model has the smallest error increase.
For some forecasting horizons the LR error is even smaller than the
RNN's on occasional events. This is unexpected, given that RNN has
a larger capacity compared to LR. The superiority of LR for those
events might be a consequence of the sub-optimal RNN training,
given imbalanced data. In this respect it is a good idea to supple-
ment the RNN model with the LR model on such occasional events,
which results in an RNN-LR ensemble.

9. Conclusion

Given the high accuracy of somemodels presented in this paper,
forecast models should be used more widely. Their use can reduce
costs and improve the efficiency of the energy sector by improving
the transportation of energy. The use of forecast models can also
reduce overall energy consumption and CO2 emissions. This is
possible in the case of district heating and combined-heat-and-
power plants where more optimal scheduling can bring substan-
tial savings. An accurate forecast model can even eliminate the
need for costly energy reserves altogether. Considering the wide
variety of savings that are the result of the use of gas demand
forecast models, they have the potential to reduce the cost of en-
ergy and its consumption and so reduce CO2 emissions.

A less obvious trait of the models trained in this paper is their
ability to model socially driven gas and in turn heat consumption
within buildings. Therefore, such models can be used for the better
optimized design of buildings and their heating systems. For
example, it is possible to model both sources of natural heat (like
the sun) and heat consumption with respect to a building's pa-
rameters. This allows us to find building parameters that minimize
the heating costs using a computer simulation. Similarly, heat-
consumption modeling allows us to optimize the control of heat-
ing systems more realistically because human behavior is also
included in the models.
Gas demand models can also be used to recognize bad heating
strategies practiced by humans. By analyzing the gas demand
models one can find instances when humans consume unusually
large amounts of heat. Knowing the circumstances under which
this happens can help in advising about which heating practices are
the most wasteful and costly.

The results of this paper show that the gas demand can be
accurately modeled and forecasted. An accurate gas demand model
should use past weather data and, on top of that, be nonlinear. The
most accurate model found in this paper is the recurrent neural
network and its accuracy is much higher if its training is conducted
on forecasted weather data. In the case that implementation and
computational resources are limited, a linear regression model is
the best alternative. When following the guidelines stated in this
paper one can train an accurate model that can be used to solve a
variety of important problems found in the energy sector.
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