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Abstract— This paper describes the development of a real-
time multiple object detection and tracking system for a small
scale UAV. The YOLO deep learning visual object detection
algorithm and JPDA multiple target detection algorithm, were
selected and implemented. The theory and implementation
details of these algorithms are presented. The performance
analysis of the system is done on both public dataset and aerial
videos taken by UAV.

I. INTRODUCTION

The need for aerial visual surveillance has been grow-
ing over the past few years along with the development
of Unmanned Aerial Vehicle (UAV) related technologies.
There already exists a few mature applications in UAV
visual surveillance, for example, power line inspection [1],
shark early warning in surfing coasts[2], poachers detection
in national nature reserves[3], search and rescue[4], etc.
However, most of these applications are designed with the
consideration that a human operator would be processing the
video data, which is inefficient since humans are economi-
cally costly and limited in working time. Fully automatic
aerial surveillance will be the trending in the related fields
of application. The automatic visual surveillance mission
are consist of object detection, object tracking, behavior
monitoring, unusual objects identification, etc.

Multiple object detection and tracking is a critical sub-
system for fully automated aerial surveillance since it pro-
vides the location, ID, class, track of the observed objects to
the surveillance system. These information can be applied to
higher level systems such as behavior monitoring, unusual
objects identification. In the recent year of computer vision
research, there are many object detection and target tracking
algorithms with high accuracy. The latest object detection
algorithm possesses the mean average precision (mAP) of
88.6% on PASCAL VOC dataset [5]. State of the art mul-
tiple object tracking algorithms can get an up to 51.8%
tracking accuracies (MOTA) on MOT Benchmark dataset
[6]. However, due to the fact that small scale UAVs have
limited payload, the computational capacity of UAV onboard
processing is limited. The main limitation of the implemen-
tation of multiple object detection and tracking algorithms on
UAVs are the real-time processing speed while maintaining
a rather accurate detection and tracking performance since
the advanced algorithms are too computationally expensive
for UAV onboard computers. The aim of this project is to
develop a real-time object detection and multiple objects
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tracking system with real-time processing speed, which can
be implemented on an onboard computer of small scale
UAVs.

There are a few categories of visual object detection
approaches, among them the only kind which can get to
higher than 81% mAP are deep learning based algorithms,
only these methods were considered in this project. The
appropriate object detection approach for this project is
selected based on the PASCAL VOC benchmark in Fig. 1.
PASCAL VOC is a widely used dataset for object detection,
most deep learning algorithms have been tested on this
dataset, which its benchmark can evaluate and rank the
performance of each algorithm. The algorithm for this project
is selected from those who have higher than 80% mAP from
VOC benchmark. Among them, only Single Shot MultiBox
Detector (SSD) [7] and You Only Look Once (YOLO) [8]
based algorithms can perform real-time object detection. The
processing speed of SSD based methods can get to maximum
46 FPS with an accuracy of 84.2%. On the same GPU,
YOLOv2 can achieve 67FPS with an accuracy of 81.5%.
Due to their similar detection mAP (only 2.7% difference),
the faster algorithm YOLOv2 [9] is selected for this project.
These FPS values are tested on a powerful GPU NVIDIA
Titan X, which means they are still very computational heavy
for a UAV onboard computer.

Fig. 1. VOC benchmark [5]
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As for multiple objects tracking algorithms, the top pri-
ority is not to add the computational burden to the UAV
onboard computer since the selected object detection algo-
rithms are consuming most of the available processing power.
Therefore, to save the computational load, the Detection Free
Trackers (DFT) and image information implemented trackers
are excluded. Moreover, considering the real-time demand
of this project, offline trackers cannot be applied. Among all
the online trackers that do not use image information, Joint
Probabilistic Data Association (JPDA) were applied due to
their light computation need. With an appropriate parameter
tuning, the MOTA can get to a close level to those state of
art algorithms[10].

In this paper, the fundamental of YOLO is introduced first.
Then JPDA related theory and mathematics are presented.
Thirdly, the hardware configuration and implementation de-
tails of YOLO and JPDA algorithms are shown. Finally,
the testing result of the implemented algorithms based on
both public dataset and aerial video taken by UAV flight are
presented and analyzed.

II. YOU ONLY LOOK ONCE

You Only Look Once (YOLO) is a convolutional neural
network configuration for object detection. Different from
previous deep learning object detection approaches, YOLO
treats the detection task as a one-step regression problem
instead of a classification then localization problem. The
name YOLO comes from which the algorithm can localize
the object and extract the object class within one scan. This
mechanism makes the YOLO faster than most of the deep
learning based object detection algorithms.

As for the logic flow of YOLO, it first divides the image
into small grids, then performs five bounding boxes and
class probability prediction based on each grid. Then, it
analyses distributions of all box and object class based on
probabilities. Finally, according to a set threshold value,
detection results fulfill the threshold value are considered
as the output value. The loss function is designed with the
combination of bounding box position, non-object bounding
box confidence, with-object bounding box confidence, and
object class.

As for the network structure of YOLO, it has a fixed image
input resolution (in this project 416×416), followed with 29
convolutional layers. Then the 13×13×1024 convolutional
layers output are connected with 1 fully connected layer.
This output is directly fed to the loss function for training
and interpreter for testing.

III. JOINT PROBABILISTIC DATA ASSOCIATION

Multi-object tracking uses similar ideas as single object
tracking, which can be seen as a two-step approach. Step 1 is
called prediction, which propagates state probability density
function to the current time. Step 2 is called update, which
uses current observation to correct prediction. As for multi-
object tracking, two extra steps, gating and data association
are added to the prediction and update step. Gating is used

to exclude the unlikely observation results. Data association
are to assign the best detection to the targets.

JPDA uses probabilistic data association method to cal-
culate the likelihood of measurement and target matching.
JPDA is a modified solution of probabilistic data association
(PDA) which in the case of multiple tracks, it constructs all
the possible assignment cases and excludes the overlapping
assignments.

JPDA is a multi-target tracker based on classic Kalman
Filter and probabilistic data association algorithm. In this
case, since the motions of the targets are projected into the
2D image frame, it can be assumed that all targets are moving
with nearly constant velocity in the image frame.

The prediction of jth target can be modeled as (1),

x j
k = Fx j

k−1 +w (1)

where x j
k is the target state vector at time k, which contain its

position and velocity x j
k = (x j

p,x
j
v,y

j
p,y

j
v), F is the transition

matrix, where T = 1s is the sampling time. w is the process
noise with a zero mean Gaussian distribution, its covariance
is Q, the parameters in Q is set as in (2)

F =

[
1 T
0 1

]
;Q = qe


T 4/4 T 3/2 0 0
T 3/2 T 2 0 0

0 0 T 4/4 T 3/2
0 0 T 3/2 T 2

 (2)

Where qe = 0.1 is the standard deviation of the process noise,
T = 1 is the temporal sampling rate.

The measurement of jth target is given bellow

z j
k = Hx j

k +v (3)

where z j
k = (z j

x,z
j
y) is the measurement at time k, which

contains position measurement since the detector in this case
can only provide position information. H is the observation
model, v is the measurement noise with a zero mean Gaus-
sian distribution, its covariance is R, the parameters in H and
R is set

H =

[
1 0 0 0
0 0 1 0

]
;R = qm

[
1 0
0 1

]
(4)

Where qm = 7 is the standard deviation of the measurement
noise.

From the estimation and measurement model of the sys-
tem, a Kalman filter tracking system can be formulated. First,
the prediction of each target state at time k is calculated
by (5), where ˆ stands for prediction, k−1|k−1 stands for
measurement updated prediction from time k− 1, and k|k−1
is the prior estimation without the measurement. The initial
state is calculated from the first two frames where targets are
captured by the detector.

x̂ j
k|k−1 = Fx̂ j

k−1|k−1 (5)

The prior covariance of estimation is given in (6), the initial
covariance is given in (7), where qm = 7 is the standard
deviation of the measurement noise.

P j
k|k−1 = FP j

k−1|k−1FT +Q (6)



P0 =


qm 0 0 0
0 1 0 0
0 0 qm 0
0 0 0 1

 (7)

As for the update of the target state, basic Kalman filter can-
not handle the problem since one target may have more than
1 measurement due to the multi-measurement assignment
and detector inaccuracy. Joint probabilistic data association
(JPDA) is introduced to handle this problem.

In JPDA, first of all, a fixed size Gating is drawn with the
prediction state in (4) as the center. All measurements fell
within the gating are considered as the usable measurements.
In this case, the distance between the measurement and
prediction are calculated using Mahalanobis distance (8). The
gate size is set to be dG =

√
30 based on the resolution of

the image and estimation of the object moving speed.

Dj
M =

√
(y j

k)
T Sk

−1y j
k (8)

Where, y j
k is the innovation which is calculated as shown in

(9), and is defined as the difference between the measurement
and prior estimation. S j

k is the innovation covariance (10)

y j
k = z j

k−Hx̂ j
k|k−1 (9)

S j
k = R+HP j

k|k−1HT (10)

When DM < dG, the measurements are considered to be
useful for the current target. These measurements, weighted
by their likelihood are summed up to update the target state.
The likelihood of measurements assigning to current target
can be calculated as (11):

pi j =

{
(1− pD)β , if no measurement

pD ·gi j, otherwise (11)

Where gi j is the Gaussian likelihood function of the as-
signment of measurement i to target j, i stands for ith
measurement, j stands for jth target. M is the dimension
of measurement data, in this case M = 2.

gi j =
e−DM/2

(2π)M/2
√
| S j

k |
(12)

Since there exists multiple target in this tracking mission,
JPDA are introduced to prevent measurement repetitive as-
signment. JPDA calculate the likelihood function on a global
scale. The probability of each non-repeat assignment of all
in Gating measurement to all targets pa are calculated first.

pa = ∏
i to j

gi j pD ∏
null to j

(1− pD) ∏
i to null

β (13)

Where each global assignment probability is the multipli-
cation of individual assignment probability (i to j), no
assignment target (null to j), and assignment to none target
measurements (i to null). After all the assignment probability
is calculated, the likelihood of measurements assigning to

current target can be calculated by summing up all the
assignment probability that contains the current assignment

pi j =
A

∑
a=1
{pa | i f pa contains i to j} (14)

The weighted innovation yj
k of target j at time k can be

calculated as (15):

yj
k =

I

∑
i=1

pi jyij (15)

After likelihood calculated, the update of measurement is
similar to PDA combined Kalman filter, Kalman gain for
jth target is calculated

K j
k = P j

k|k−1HT(S j
k)
−1 (16)

The update of jth target state is given in (16), where x̂ j
k|k is

the measurement updated estimation of the jth target state.

x̂ j
k|k = x̂ j

k|k−1 +K j
ky j

k (17)

As for the update of estimation covariance

P j
k|k = P j

k|k−1− (1− p0 j)K j
kHP j

k|k−1 +P j
k (18)

Where p0 j stands for no measurement is available for jth
target. Therefore the second term stands for only assigned
measurement can cause the covariance to be updated. The
third term P j

k is a correction term which is used to model
the assignment uncertainties.

P j
k = K j

k

[
J

∑
j=1

pi jyijyij
−1− y j

k(y
j
k)
−1

]
(K j

k)
−1 (19)

IV. IMPLEMENTATION

A. Hardware Details

The YOLO detection and JPDA tracking algorithm are
implemented on an NVIDIA jetson TX2 microcomputer due
to its light weight and good GPU based computational capa-
bility. Gopro hero 5 is selected as the image streaming sensor.
As for the UAV, considering the platform payload capacity
and implementation simplicity, a DJI F550 hexacopter frame
with a Pixhawk autopilot is selected. The camera is mounted
to the UAV directly. The system configuration is presented
in as Fig. 2.

When performing the detection and tracking mission, the
UAV is set to position-hold flight mode, where it uses the
onboard GPS, barometer, and IMU to maintain its position
and altitude at a set of given value. In this project, the altitude
of the UAV is set to be 5m; this value is set based on the
image resolution and camera field of view (FOV).

B. YOLO Implementation

The Implementation of YOLO is done via Tensorflow +
Python. YOLO real-time object detection algorithms have
three different scaled models available for Tensorflow imple-
mentation, Tiny YOLO, YOLOv2, and YOLOv2 608×608,
which is a compromise between processing speed and de-
tection accuracy. The overall performance of each model is



Fig. 2. Hardware Configuration

given in TABLE I, which shows the mean average precision
(mAP), the frames per second (FPS) processing speed on a
NVIDIA Titan X GPU and Nvidia Jetson TX2.

TABLE I
PERFORMANCE OF DIFFERENT YOLO MODELS

Model name mAP FPS (Titan X) FPS (TX2)
Tiny YOLO 57.1 200 5

YOLOv2 76.8 67 3
YOLOv2 608×608 81.5 40 2

From the performance above, it can be concluded that Tiny
YOLO has the best processing speed but worst accuracy,
YOLOv2 is the most accurate but is the slowest in terms
of processing time. From real image testing, Tiny YOLO is
not accurate enough for this project. The YOLOv2 model
is selected in the end since the detection mAP is close to
YOLOv2 544×544 but have a faster processing speed.

C. JPDA Implementation

As for the implementation of JPDA, the original JPDA
algorithms doesn’t have the functionalities of processing
new targets initiation, nor undetected target termination. Two
functionalities are added to solve this problem.

The termination performs when the targets are no longer
in view. In this case, it is possible that detection can have
temporal fails even when the target is still within the camera
FOV, since the detector can only perform 76.8% mAP, and
can not deal with partially occlusion objects. Therefore,
target termination should not be performed immediately once
the detection is lost. The threshold value for termination is
set to NT = 8. The detection lose condition of a target j can
be described as

max{pi j}= (1− pD)β (20)

That means the maximum assignment likelihood within the
jth target Gating is when no measurement is assigned to the
target.

The initiation of the target starts when a new target appears
within the FOV. Measurement assignment is needed to be
performed before target initiation since the algorithm needs
to know which measurement is a new target. However,
as described in (14), JPDA uses the weighted sum of all
measurements within the Gating to update the state estima-
tion, this assignment strategy cannot be applied directly to

target initiation. A nearest neighbor assignment strategy is
introduced for target initiation (19)

z j
k = {zi j | Di j

M = min
(√

(y j
k)

T S−1
k y j

k

)
} (21)

After Mahalanobis distance is calculated as (8), the single
measurement with the smallest Mahalanobis distance to jth
prior estimation is assigned to the jth target. After this
assignment, unassigned measurements are considered as new
targets and initiated.

Algorithm 1 Joint Probabilistic Data Association Tracker
Input: zk, H, R, F, Q, P0, X0, pD, β , NT
Output: x̂k|k, P j

k
1: for j in J do
2: x̂ j

k|k−1 = Fx̂ j
k−1|k−1

3: P j
k|k−1 = FP j

k−1|k−1FT +Q
4: S j

k = R+HP j
k|k−1HT

5: S j
k = R+HP j

k|k−1HT

6: K j
k = P j

k|k−1HT(S j
k)
−1

7: Dj
M =

√
(y j

k)
T Sk

−1y j
k

8: y j
k = z j

k−Hx̂ j
k|k−1

9: if if pa contains i to j then
10: pi j = ∑

A
a=1 pa

11: end if
12: yj

k = ∑
I
i=1 pi jyij

13: x̂ j
k|k = x̂ j

k|k−1 +K j
ky j

k

14: P j
k|k = P j

k|k−1− (1− p0 j)K j
kHP j

k|k−1 +P j
k

15: if if max{pi j}== (1− pD)β then
16: Terminate jth target
17: end if
18: end for
19: for i in I do
20: z j

k = {zi j | Di j
M = min

(√
(y j

k)
T S−1

k y j
k

)
}

21: if if zi
k ! ∈ z j

k then
22: Initiate zi

k as a new target
23: end if
24: end for
25: return x̂k|k, P j

k

The complete JPDA algorithm can be formulated as Algo-
rithm 1, where JPDA first takes the previous targets states
and covariance and current measurement. Then use Kalman
filter to calculate the prior prediction of these targets states.
Thirdly, based on the joint probabilistic data association
likelihood, states predictions and their covariance are updated
by the weighted sum of in Gating measurements. After all
targets from the previous frame are processed, the Termina-
tion of non-observable targets and initiation of new observed
targets are performed. Finally, the updated states predictions
and covariances are returned as the previous targets states
and covariance for the next frame.



V. RESULTS

This algorithm is tested using both public dataset and UAV
aerial videos.

A. Testing on 2D MOT 2015

Since the detection algorithm and the model applied in this
project is identical to the one evaluated in VOC benchmark,
only the performance of JPDA is evaluated using the public
dataset. The performance evaluation of the JPDA tracking
algorithm is done on the popular PETS09 and TUDS video
sequences of the MOT15 dataset[11].

The performance evaluation of JPDA can be seen as
TABLE II. Where MOTA stands for the Multiple Object
Tracking Accuracy, which combines three error sources:
false positives, missed targets and identity switches. The
performance of JPDA is also compared with the some
state-of-art algorithms KCF[11], Appearance Model with
R-CNN[12], SiameseCNN[13] based tracker, and Dynamic
Programming[14] tracker on this dataset. These algorithms
are called as KCF, APRCNN, SiameseCNN, DP NMS for
simplification.

TABLE II
PERFORMANCE COMPARISON OF JPDA AND OTHER METHODS

Dataset Algorithm MOTA FPS Hardware Spec
JPDA 56.3% 30 TX2, 2GHz

TUD KCF[11] 76.0% 0.3 i7 3.6GHz, 4 Core
APRCNN[12] 61.3% 6.7 GTX1080, 2.3GHz

SiameseCNN[13] 73.7% 52.8 3Ghz 24 Cores
DP NMS[14] 48.6% 448 2.6GHz, 16 Cores

JPDA 32.7% 60 TX2, 2GHz
KCF[11] 51.8% 0.3 i7 3.6GHz, 4 Core

PETS APRCNN[12] 38.9% 6.7 GTX1080, 2.3GHz
SiameseCNN[13] 34.5% 52.8 3Ghz 24 Cores

DP NMS[14] 33.8% 448 2.6GHz, 16 Cores

From TABLE II, it can be seen that the performance of
JPDA is approximately 20% worse than the most accurate
algorithm on this dataset, KCF. However, the processing
speed of KCF is only 0.3 FPS on an i7 3.6GHz, 4 Core
CPU. As for JPDA, the processing speed is highly dependent
on the number of targets in the FOV. For PETS and TUDS,
the processing speed of JPDA can get to 30 FPS and 60
FPS on NVIDIA Jetson TX2, which is much faster than
KCF. As for the DP, one of the fastest algorithm on this
dataset, JPDA has an approximately 8 accuracy advantage.
From the comparison to other popular algorithms, it can
be seen that JPDA is a good compromise between tracking
accuracy and processing speed. Moreover, the 2D MOT 2015
dataset uses a publicly available detection algorithm for the
tracking algorithm evaluation. It can be seen from the VOC
benchmark, YOLO has much better performance than the
discriminatively trained part-based model [11]. The detection
mAP of YOLOv2 exceeds 80% on all object classed whereas
discriminatively trained part-based model can only achieve
less than 60% mAP on all object classes. Therefore, it can

be predicted that the change of detector to YOLOv2 can
improve the performance of JPDA on this dataset.

Moreover, the YOLO+JPDA detection and tracking algo-
rithm is also tested on a traffic surveillance video [15]. In
order to test the feasibility of this approach in real UAV
missions, the JPDA tracker is not only tested on the original
video, but also tested on 5 FPS video with the consideration
of the slow processing speed of YOLO. Results are shown
in Fig. 3. Since the original resolution is not compatible with
the YOLO detection algorithm, quantitative analysis is not
done on this dataset. However, from the testing video, it can
be seen that the pedestrian and road vehicles can be detected
and tracked both with original and lower FPS videos. It can
also be seen from the detection and tracking result that, JPDA
not only gives the ID of each target but also captured the
location of temporary undetected objects. Since there are less
than 10 targets in the FOV of the video, JPDA can maintain
a very high processing speed from 100 FPS to 200 FPS on
NVIDIA Jetson TX2.

Fig. 3. Detection and tracking in a traffic surveillance video



B. Testing on UAV aerial videos

The YOLO+JPDA algorithm is also tested on UAV aerial
videos [16] (also with original and 5 FPS video) to assess
its robustness for possible disturbances during UAV flight
like vibration, image blurry, FOV temporary lose, too small
target due to high altitude, etc. The video is obtained from
UCF-Lockheed-Martin UAV Dataset. From the result in Fig.

Fig. 4. Detection and tracking in an aerial video

4, it can be seen that during UAV flight disturbances, the
detection and tracking algorithm is capable of capturing the
objects. The JPDA can compensate for the detection lose for
a short periods. However, because of the unmodeled motion
of the UAV, the constant-velocity dynamic model in JPDA
can cause miss tracks.

VI. CONCLUSIONS

This paper presented the development and implementa-
tion of a computer vision based multiple object detection
and tracking algorithm. The YOLOv2 deep learning object

detection and JPDA multiple object tracking algorithm are
developed and implemented. The performance is evaluated
quantitatively and qualitatively on both public dataset of a
traffic surveillance video and UAV flight video.

The performance evaluation of JPDA on public dataset
had an approximately 20% performance downgrade when
comparing to a state-of-art multiple object tracking algo-
rithm. However, the processing speed was significantly faster,
improving from 6.7 FPS to 38 FPS respectively. The aerial
video test shows the pedestrian and road vehicles can be
detected and tracked, tracking algorithm can compensate
the detection lose for a short period. The limitation of this
algorithm in the application of UAV visual object detection
and tracking is that the unmodeled motion of the UAV could
lead to object false tracking. Future work will be dedicated
to solving this problem by applying more complex dynamic
models in JPDA.
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