
A generalised and low-dissipative multi-directional

characteristics-based scheme with inclusion of the local

Riemann problem investigating incompressible flows

without free-surfaces
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Abstract

In the present study, we develop a generalised Godunov-type multi-directional
characteristics-based (MCB) scheme which is applicable to any hyperbolic
system for modelling incompressible flows. We further extend the MCB
scheme to include the solution of the local Riemann problem which leads
to a hybrid mathematical treatment of the system of equations. We em-
ploy the proposed scheme to hyperbolic-type incompressible flow solvers and
apply it to the Artificial Compressibility (AC) and Fractional-Step, Artifi-
cial Compressibility with Pressure Projection (FSAC-PP) method. In this
work, we show that the MCB scheme may improve the accuracy and con-
vergence properties over the classical single-directional characteristics-based
(SCB) and non-characteristic treatments. The inclusion of a Riemann solver
in conjunction with the MCB scheme is capable of reducing the number of
iterations up to a factor of 4.7 times compared to a solution when a Riemann
solver is not included. Furthermore, we found that both the AC and FSAC-
PP method showed similar levels of accuracy while the FSAC-PP method
converges up to 5.8 times faster than the AC method for steady state flows.
Independent of the characteristics- and Riemann solver-based treatment of all
primitive variables, we found that the FSAC-PP method is 7–200 times faster
than the AC method per pseudo-time step for unsteady flows. We investi-
gate low- and high-Reynolds number problems for well-established validation
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benchmark test cases focusing on a flow inside of a lid driven cavity, evolution
of the Taylor–Green vortex and forced separated flow over a backward-facing
step. In addition to this, comparisons between a central difference scheme
with artificial dissipation and a low-dissipative interpolation scheme have
been performed. The results show that the latter approach may not provide
enough numerical dissipation to develop the flow at high-Reynolds numbers.
We found that the inclusion of a Riemann solver is able to overcome this
shortcoming. Overall, the proposed generalised Godunov-type MCB scheme
provides an accurate numerical treatment with improved convergence prop-
erties for hyperbolic-type incompressible flow solvers.

Keywords: multi-directional characteristics-based scheme; Riemann solver;
Godunov-type methods; incompressible flows, steady- and unsteady flows;
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Program Title: unified2D-C
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Nature of problem(approx. 50-250 words): Incompressible flow solver have
generally a non-hyperbolic type and thus method the method of characteristics and
Riemann solvers cannot be used without modifications for low speed flows. In
the framework of compressible flows, the Riemann problem — and the method of
characteristics which is closely related to it — is an essential part of the solu-
tion procedure. The Riemann solver is able to preserve the conservativeness and,
through the evaluation of the eigenstructure of the system, introduces transportive-
ness into the spatial reconstruction schemes. The characteristics-based scheme
allows to couple the pressure and velocity in a physical manner which, together
with the Riemann solver, presents a new multi-directional Godunov framework for
incompressible flows.
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multi-directional characteristics-based schemes which may be used with any incom-
pressible and hyperbolic system of equations. The Finite Volume approach is used
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mial interpolation scheme which only adds numerical dissipation proportional to
its Taylor-series truncation error. We use the Rusanov Riemann solver which pro-
vides the needed conservativeness and transportiveness. It also adds just enough
numerical dissipation for cases where the dissipation of the numerical scheme is
not sufficient while retaining a high level of accuracy.

Additional comments including Restrictions and Unusual features (approx. 50-
250 words):

* Items marked with an asterisk are only required for new versions of programs
previously published in the CPC Program Library.

1. Introduction

The solution for simple partial or ordinary differential equations may be
straightforward but an increasing complexity of the equations has resulted in
creative solution procedures introduced by mathematicians in the past cen-
turies. The method of characteristics is just one such example which simpli-
fies the underlying equations so that an analytic solution can be obtained. It
is often attributed to the French mathematician Joseph-Louis Lagrange, how-
ever, some historical evidence suggest that it was Paul Charpit, a less well-
known French mathematician, who introduced this method to the Académie
in 1784, nine years before Laplace (who was present during Charpit’s presen-
tation) passed the information on to Lagrange [1]. Ever since it has found
widespread use and played a dominate role in the development of compu-
tational fluid mechanics during the second half of the 20th century. Due to
the hyperbolic nature of the Euler equations, the application of the method
of characteristics remained exclusive to supersonic flows. Hoffman [2] inves-
tigated the thrust misalignment in thrust vector controlled nozzles using a
three-dimensional characteristic approach. Later, Marcum and Hoffman [3]
investigated a simple flow through a nozzle where the transient behaviour
was resolved. Cline and Hoffman [4] included chemical reactions and showed
that cross flow behaviour was better resolved with their three-dimensional
characteristic approach compared to other quasi three-dimensional meth-
ods. Ferrari [5] investigated the interference of a wing-body configuration
while Delaney and Kavanagh [6] focused on a turbine cascade. Chushkin
and Katskova [7], as well as Rakich and Cleary [8] investigated the flow
around generic bodies of revolution with blunt noses at different angles of
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attack. Sauerwein [9] further investigated the three-dimensional method of
characteristics in conjunction with magnetic fields, chemical reactions, non-
equilibrium and multi-component flows for transient regimes.
Initially the computational resources were scarce and hand calculations the
only option to obtain results. The unit process, as it is referred to in the
literature [10], describes how characteristics fan out from an initial set of
conditions and intersect, at which point the primitive variables are updated
using a compatibility equation. With an increase in computational resources,
however, the process was adopted for computational purposes and sparked
the development of several new ways in which characteristics could intersect
which has become known under the framework of characteristic networks. An
excellent review of various characteristic network can be found in the work of
Zucrow and Hoffman [11] and Delaney [12]. Cline and Hoffman [13] investi-
gated several different networks and highlighted their respective advantages
while Ransom et al. [14] investigated a second-order characteristic network
for a source- and Prandtl-Meyer expansion flow. A comparison of different
characteristics-based (CB) approaches has been presented by Roe [15] for the
Euler equations. More information on the method of characteristics for com-
pressible flows can be found in Zucrow and Hoffman [16, 11], Delaney [12],
Sauerwein [17] and Rusanov [18].

Rusanov [18] showed a generalised form of the method of characteristics
for the Euler equations and showed the need to track several characteristic
surfaces simultaneously to overcome rank deficient coefficient matrices of the
corresponding compatibility equations. This is due to the absence of an inde-
pendent equation for the pressure which, in the case of the Euler equations,
is obtained through the equation of state. This picture is fundamentally dif-
ferent for hyperbolic, incompressible flows where a pseudo pressure equation
is constructed, for which then sufficient information are available across at
least one characteristic surface.

With the introduction of the Artificial Compressibility method by Chorin [19],
the hyperbolic feature was reintroduced into the incompressible flow regime
through a pseudo transient time derivative of the pressure. It allowed the
usage of the method of characteristics for low-speed flows and was first car-
ried out by Drikakis et al. [20], based on Eberle’s CB scheme [21]. Subse-
quent revision by Neofytou [22] provided a firm theoretical background while
Su et al. [23] showed that both schemes produce similar numerical results,

4



albeit Neofytou’s scheme being mathematical more rigorous. Shapiro and
Drikakis [24, 25] provided a comprehensive overview of three different meth-
ods to derive the SCB scheme while further extending it to capture variable
density flows.
During the same time, Zienkiewicz and Codina [26] and Zienkiewicz et al. [27]
introduced the characteristics-based split (CBS) algorithm in the finite-element
framework which can be used for both incompressible and compressible flows
by either adopting a pressure- or density-based approach. In a three-step pro-
cedure, the velocity is first guessed from which either the pressure or density
is recovered. In the final step, the velocity is updated based on the new
density or pressure field. It resembles the Fractional-Step (FS) or splitting
procedure encountered in incompressible flows from which its name is derived.
Nithiarasu [28] used the CBS scheme and applied it to steady and unsteady
turbulent flows using different RANS models, showing how the scheme can
be extended to capture turbulent flows.
In recent years, Razavi et al. [29] and Zamzamian and Razavi [30] intro-
duced a multi-directional characteristics-based (MCB) scheme for the Artifi-
cial Compressibility method. It is multi-directional in the sense that charac-
teristic surfaces are considered and multiplied into the governing equations
through the chain rule. This approach is consistent with the CB scheme
discussed above for compressible flows. However, its multi-directional nature
also helps to distinguish itself from the version of Drikakis which is sub-
sequently referred to as the single-directional characteristics-based (SCB)
scheme. The single-directional nature is due to the simplification that only
characteristic lines are used in the version of Drikakis et al. which can be
introduced through a Taylor series in space and time. To treat two- and
three-dimensional flows, the procedure is simply applied in each direction
which does not take directional information into account and so resorts to
an isotropic treatment. Razavi et al. [29] and Zamzamian and Razavi [30]
showed favourable convergence and accuracy properties compared to the
single-directional version. This has led to further development of the scheme.
Fathollahi and Zamzamian [31] increased the number of discrete wave direc-
tions — necessary to discretise the compatibility equations — showing an in-
crease in the convergence rate while the accuracy was not affected. Hashemi
and Zamzamian [32] and Zamzamian and Hashemi [33] introduced modified
far-field and solid boundary conditions in conjunction with the CB scheme
treatment while in a further modification, Hashemi and Zamzamian [34] ex-
tended the multi-directional approach to unstructured domains. Further ap-
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plications of the MCB applied to heat-transfer and turbulent flows can be
found in Razavi and Adibi [35] and Razavi and Hanifi [36].

In the current form, the multi-directional scheme has been derived solely for
the Artificial Compressibility method. However, with the recent introduction
of the unified Fractional-Step, Artificial Compressibility and Pressure projec-
tion (FSAC-PP) method of Könözsy [37], later introduced in [38], a renewed
interest in hyperbolic, incompressible methods has surged. The FSAC-PP
method unifies Chorin’s [19] Artificial Compressibility (AC) method with
Chorin’s [39] and Témam’s [40] Fractional-Step Pressure Projection (FS-PP)
method and has shown advantageous accuracy and convergence properties
over its baseline methods [37, 38]. It was originally introduced using the SCB
scheme which makes it a Godunov method. It has been further investigated
for variable density flows in a Y-junction channel [41], trapping and posi-
tioning of cryogenic liquids through acoustic liquid manipulation [42], the
vortex pairing problems with comparison to low-Mach corrected compress-
ible solvers [43], forced separation over a backward facing step geometry [44]
and different approximate Riemann solvers [45].

The structure of the current work is the following, in Section 2, we review
the governing equations of the AC and the FSAC-PP method and give de-
tails of the discretisation procedure. In Section 3, we develop a generalised
method of characteristics, applicable to any hyperbolic system of equation
for incompressible flows, which we apply to the AC and FSAC-PP method.
In Section 4, we introduce the Riemann problem and an approximate Rie-
mann solver and show the relation between Riemann solvers and the method
of characteristics. We further demonstrate how to couple both approaches
together and discuss results for the lid driven cavity, Taylor–Green vortex
and backward facing step problem in Section 5 for various CB scheme and
Riemann solver combinations.

2. Governing Equations

In this Section, we review the governing equations of the AC and FSAC-
PP method and show the necessary steps which are required to discretise the
equations.
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2.1. Artificial Compressibility Method (1967)

The Artificial Compressibility (AC) method of Chorin [19] was the first
to introduce the hyperbolic nature into the incompressible flow framework.
We use it as a baseline method against which we compare our results. The
governing equations are

1

β

∂p

∂τ
+∇ ·U = 0, (1)

∂U

∂τ
+
∂U

∂t
+ (U · ∇)U = −1

ρ
∇p+ ν∇2U, (2)

where the continuity equation is perturbed by a pseudo time derivative of
the pressure. Here, β accounts for the relation between the pressure and
density. Since we cannot determine this relationship through thermodynamic
reasoning, the time derivative is non-physical and thus time marching is done
in pseudo time where β becomes a convergence parameter. Therefore, the
time derivative in the momentum equation is transformed into pseudo time
as well. The continuity equation only regains a physical meaning once the
pseudo time derivative vanishes. In that case, the steady state solution is
obtained. If an unsteady solution is sought, the momentum equation has
to be augmented by an additional real-time derivative, where the solution is
obtained through a dual-time stepping procedure [46]. Otherwise this term
is set to zero.

2.2. Fractional-Step, Artificial Compressibility and Pressure Projection Method
(2012)

Könözsy [37] provided a new framework in which Chorin’s AC method was
unified with Chorin’s [39] and Témam’s [40] Fractional-Step, Pressure projec-
tion (FS-PP) method. It is consequently named the FSAC-PP method which
incorporates the hyperbolic and elliptic features within the same method.
This allows for CB schemes to be applied in the first hyperbolic Fraction-Step,
while the elliptic feature can be regarded as a physical smoothing procedure
of the pressure which provides extra stability in the second Fractional-Step.
In the first Fractional-Step, the perturbed continuity equation of the AC
method is solved alongside the momentum equations of the FS-PP method, in
which the pressure gradient term is dropped, which reads in semi-discretised
form
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1

β

∂p

∂τ
+∇ ·U = 0, (3)

Û−U

∆τ
+
∂U

∂t
+ (U · ∇)U = ν∇2U. (4)

This provides an intermediate velocity field Û which does not satisfy
the divergence free constrain. In the second Fractional-Step, the pressure
gradient is recovered from

Un+1 − Û

∆τ
= −1

ρ
∇pn+1. (5)

Taking the divergence of Eq.(5) and constraining the velocity field at time
level n + 1 to be divergence free, i.e. ∇ ·Un+1 = 0, we obtain the following
Poisson equation for the pressure

∇2pn+1 =
ρ

∆τ
∇ · Û. (6)

Numerically speaking, we will not satisfy ∇ · Un+1 = 0 in each pseudo
time step but as the solution converges, ∇ ·Un+1 → 0. With the pressure
field at n+ 1 available, we obtain the final velocity field from Eq.(5) as

Un+1 = Û− ∆τ

ρ
∇pn+1. (7)

Eqs.(3)–(4) form the first Fractional-Step which is hyperbolic and so a CB
scheme can be applied. The second Fractional-Step, Eqs.(5)–(7), is elliptic,
which stabilises the pressure field and through Eq.(7) the velocity as well. It
is important to highlight here that since an initial pressure field is provided
through Eq.(3), it is not necessary to solve Eq.(6) fully and it has been found
that ten iterations in the Poisson solver are usually sufficient to accelerate
convergence while stabilising the pressure.

2.3. Numerical implementation details

The equations are discretised using the finite volume method on a dual
control volume, or cell-vertex scheme, as shown in Figure 1. The primitive
variables are stored on the vertices while the finite volumes are constructed
around the vertices. This ensures that Dirichlet boundary conditions can be
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imposed directly on the boundaries.

Gradients are approximated using Gauss’ Theorem as

∂φ

∂x
=

∫
V

∂

∂x
φdV =

∫
A

~n · φdA ≈
∑
faces

~n · φA =

(φi+1/2 − φi−1/2)A
V

V
=
φi+1/2 − φi−1/2

∆x
V.

(8)

Here we made use of the fact that in two dimensions and on a Cartesian
grid, ~n · A = nx · dy + ny · dx = 1 · dy + 0 · dx = dy in the x−direction and
similarly, ~n ·A = dx in the y−direction. The volume per unit length is given
by V = dx · dy.
To obtain the second order gradients, we set φ = ∂φ/∂x and insert it into
Eq.(8). We obtain

∂2φ

∂x2
=

1

∆x

∂φ
∂x

∣∣∣∣∣
i+1/2

− ∂φ

∂x

∣∣∣∣∣
i−1/2

V =
1

∆x

(
φi+1 − φi

∆x
− φi − φi−1

∆x

)
V =

φi+1 − 2φi + φi−1
(∆x)2

V,

(9)

which reverts to a finite difference approximation. We make use of a
third-order polynomial to approximate the variables at the inter-cell face,
which is given as [47]

φLi+1/2 =
5

6
φi −

1

6
φi−1 +

1

3
φi+1,

φRi+1/2 =
5

6
φi+1 −

1

6
φi+2 +

1

3
φi. (10)

Razavi et al. [29] and Zamzamian and Razavi [30] used a central scheme
with artificial dissipation [48] in their MCB scheme which we use here as a
reference scheme. It is defined as

F I
i+1/2 = F I(φi+1/2)−Di+1/2, (11)
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Figure 1: The dual control volume arrangement used in the present work. The solid
lines correspond to the mesh while the dashed lines are the constructed finite volumes
surrounding each cell vertex.

where F I
i+1/2 denotes the inviscid fluxes, Di+1/2 is the influence of the artificial

dissipation and φi+1/2 is obtained through the central difference (CD) scheme
as

φi+1/2 =
1

2
(φi + φi+1) . (12)

The artificial dissipation term itself is obtained as

Di+1/2 =
1

2

(
ΛL + ΛR

)
[k2 (φi+1 − φi)− k4 (φi+2 − 3φi+1 + 3φi − φi−1)] .

(13)
Here, we set k2 = 1/2 and k4 = 1/128 and define Λ as

ΛL =
(
|U⊥i |+ β

)
A,

ΛR =
(
|U⊥i+1|+ β

)
A, (14)

where U⊥i is the velocity component normal to the ith-cell face area. For
compressible flows, the constants k2 and k4 may further be a function of a
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pressure sensor to reduce oscillations near discontinuities [48, 49], however,
in the context of incompressible flows it has been found that the pressure
sensor term introduces oscillations and thus prohibits the solution to con-
verge fully. For the FSAC-PP method, we follow the approach of Pentaris
et al. [50] — who used the FS-PP method in conjunction with the central
scheme and artificial dissipation — where we only add artificial dissipation
in the first Fractional-Step.

The time stepping in pseudo time is achieved by a third-order Runge–Kutta
scheme with TVD properties [51], given by

U∗ = Un + ∆τRHS(Un),

U∗∗ =
3

4
Un +

1

4
U∗ +

1

4
∆τRHS(U∗),

Un+1 =
1

3
Un +

2

3
U∗∗ +

2

3
∆τRHS(U∗∗). (15)

In the dual-time stepping procedure, the real-time derivative is approxi-
mated by a second-order backward scheme as

∂U

∂t
=

3Um+1,n
i − 4Um

i + Um−1
i

2∆t
. (16)

Here, Um+1,n
i is updated in pseudo time along with the pseudo time

derivative while Um
i and Um−1

i are updated after each pseudo time step
has converged. The time step itself is defined analogous to [37, 38] for both
pseudo and real-time component

∆(τ, t) = min (∆(τ, t)inv,∆(τ, t)vis) , (17)

where

∆(τ, t)inv =
min(dx, dy) · CFLinv√
u2 + v2 +

√
u2 + v2 + β

∆(τ, t)vis =
CFLvis

4ν ·min((dx)2, (dy)2)
(18)

are the time steps due to the inviscid and viscous part of the Navier–Stokes
equations, respectively.
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3. The multi-directional characteristics-based scheme for incom-
pressible flows

In this Section, we generalise the MCB scheme introduced by Razavi et
al. [29] for incompressible flows by following the approach of Rusanov [18],
who presented a generalised framework for compressible flows. We will first
show that there is a fundamental difference when deriving the MCB scheme
for incompressible and compressible flows and then apply the method to both
the AC and FSAC-PP method.

3.1. The generalised characteristics-based scheme

We consider a hyperbolic, incompressible system of equations that is writ-
ten in the form of

Bj
∂Uj

∂t
+

n∑
i=1

∂Fij

∂xi
= 0. (19)

Here, Bj is a preconditioning vector, Uj is a vector containing the prim-
itive variables while Fij contains the inviscid fluxes. The system in Eq.(19)
is augmented by a characteristic surface of the shape f = f(t,xi) = 0 which
is introduced through the chain rule. It follows that

Bj
dUj

df

∂f

∂t
+

n∑
i=1

dFij

df

∂f

∂xi
= 0. (20)

We can simplify Eq.(20) by multiplying it with df and B−1j . Furthermore,
we translate the convective flux treatment from a conservative into a non-
conservative form (dFij = aijdUj) so that we have

dUjft +
n∑
i=1

B−1j aijdUjfxi = 0, (21)

where ∂f/∂τ = fτ and ∂f/∂xi = fxi . It is perhaps here that we need to
mention a difference in notation to the one used by Rusanov [18]. Zucrow
and Hoffman [16] presented four different approaches to describe the method
of characteristics, which can be derived from a physical, a purely heuristic,
a mathematical and a most rigorous mathematical point of view. While
Rusanov’s approaches is situated under the most rigorous mathematical ap-
proach, using an interior operator in the form of dUf = U · ∇f of which
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then m1 linear combinations are used to derive the compatibility equations,
we use elements from both the mathematical and physical approach for our
derivation. Returning to Eq.(21), we isolate the primitive variables as(

ft +
n∑
i=1

B−1j aijfxi

)
dUj = 0 (22)

and we define

T = ft +
n∑
i=1

B−1j aijfxi (23)

as our coefficient matrix corresponding to our primitive variables in difference
form dUj. Since we have assumed Eq.(19) to be hyperbolic, we ensure that
the eigenvalues of T are all real and distinct for which we can then find real
and distinct characteristics. Thus, for a non-trivial solution of Eq.(22), we
require that det(T ) 6= 0. This leads to

det

(
ft +

n∑
i=1

B−1j aijfxi

)
= Ψk, (24)

where the solution Ψk, k = 1, ..., l corresponds to l characteristic surfaces if
their corresponding normal vectors satisfy n ·u = 0, where u is the primitive
variable vector containing only the velocity components. Thus, Eq.(24) re-
quires the normal vector in space to be perpendicular to the velocity vector
which, by definition, lies inside the characteristic surface. If such a condi-
tion can be satisfied, then for each characteristic surface Ψk, the rank of the
coefficient matrix is computed from

rank(T ) = rank

(
ft +

n∑
i=1

B−1j aijfxi

)
= pk(Ψk), (25)

where T in Eq.(25) has to be reformulated in terms of Ψk. It will be shown
in Section 3.2 how to accomplish this step for the AC and FSAC-PP method,
respectively. At this stage, we do not have any information on the normal
vector but can relate it to the surface derivatives ft and fxi . Considering a
general surface in space, taking its derivative with respect to time yields

1m = number of dimensions, including time
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∂f(xi)

∂t
=

∂f

∂xi

dxi
dt

= fxi · ui = ∇f · u = n · u = 0. (26)

Even if the assumed characteristic surface is inhomogeneous, i.e. f(t,xi) =
D, where D is an arbitrary constant, the time derivative of a constant will
always be zero and thus we can equate ∇f · u = n · u = 0 for which we have
shown that ∇f = n.

For each characteristic surface k = 1, .., l, we evaluate

sk = m− pk. (27)

A rank-deficient system results in sk > 0 while a system of m linear inde-
pendent equations results in sk = 0. Rusanov [18] stated that a system of gov-
erning equations for compressible flows necessarily results in a rank-deficient
system for all characteristic surfaces considered. Hence, a combination of at
least two independent characteristic surfaces is required to sufficiently con-
strain the compatibility equations and Rusanov showed which combinations
of primitive variables on different surfaces are valid combinations. For in-
compressible flows, however, it turns out that at least once sk = 0 holds so
that only one characteristic surface needs to be considered as a consequence.
We can summarise this as

sk =

{
∀k : sk > 0, compressible

∃k : sk = 0, incompressible
(28)

This can be understood by the different solution procedure employed
by compressible and incompressible flows, respectively. In the case of com-
pressible flows, we have m+ 3 primitive variables but only m+ 2 governing
equations. The equation of state is taken to close the system, however, it
is not a transport equation and so not considered in Eq.(19). For incom-
pressible flows, however, the equation of state approach does not work and
a pseudo pressure equation has to be constructed to close the system. This
equation, in turn, is considered in Eq.(19) so that we have the same number
of primitive variables and equations to solve for them. Thus, when con-
structing the compatibility equations, we end up with the constraints given
by Eq.(28). This demonstrates the main difference between the compress-
ible and incompressible flow case and shows the simplifications involved when
dealing with the method of characteristics for incompressible flows. The final
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compatibility equations are then found from Eq.(22) for each element of the
primitive variable vector Uj for the characteristic surface Ψk for which sk = 0.

Zucrow and Hoffman [16, 11] showed a basic derivation of the character-
istic surfaces. The full derivation, however, is a lengthy process and requires
elements of differential geometry. It was omitted in their discussion but a de-
tailed and in-depth derivation was given by Delaney [12]. A similar derivation
can be done for the case of incompressible flows, however, Razavi et al. [29]
provided a more elegant and shorter derivation which we adopt here. Our
starting point is the derivative of the characteristic surface which we can
write as, using the chain rule

∂f

∂t
+

n∑
i=1

dxi
dt

∂f

∂xi
= 0. (29)

We have also found previously that

u · n = Ψk. (30)

Since dxi/dt = u and ∂f/∂xi = ∇f = n, we can subtract Eq.(29) from
Eq.(30) so that

n∑
i=1

(
ui −

dxi
dt

)
· n = Ψk, (31)

which is the equation of the characteristic surface k. At this point, we split
Eq.(31) into each direction so that(

ui −
dxi
dt

)
· n = Ψk (32)

corresponds to the component of the characteristic surface in the xi direction.
Although we have given the full derivation of the characteristic surface, it
is usually dropped in the literature where only the compatibility equation
is considered. In-fact, Rusanov [18] did not give any consideration to the
characteristic equation itself and neither did Drikakis et al. [20] for their SCB
scheme (although Eq.(32) could be used since it is split into each respective
direction). In the literature on the MCB scheme [29, 30, 31, 32, 33, 34, 35, 36],
a first- and second-order version has been proposed. In the first-order scheme,
the characteristic equation, i.e. Eq.(32) is dropped and values on the pseudo
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Mach cone that are required for the compatibility equations, which can be
derived from Eq.(22), are taken from the interpolated values on the cell
interfaces. These, in turn, are obtained in the current work through either
Eq.(10) or Eq.(11). If the characteristic equation is used, then values need to
be interpolated to the intersection of the characteristic surface with the time
level n at which either an initial guess or a previous computed solution is
available. The accuracy of the interpolation scheme thus determines the order
of the overall scheme, although, strictly speaking, this classification only
applies to the underlying interpolation scheme and not to the characteristics-
based scheme itself. In the literature on the MCB scheme, a mix of first-
and second-order results are presented while we only employ the first-order
version in the current work. This has been done to make a fair comparison
between the MCB and SCB scheme which, by default, is first-order accurate.
It is possible, however, to use a higher-order interpolation scheme to increase
the order of the MCB scheme itself, using the definition from the literature.

3.2. The multi-directional characteristics-based scheme for the AC and FSAC-
PP method

In this Section, we will derive the method of characteristics for the in-
compressible AC and FSAC-PP method and show how to construct the com-
patibility equations. It is convenient to do the derivation for the AC method
first. The derivation for the FSAC-PP method is closely related to that of the
AC method for which we will give considerations at the end of this Section.

Corresponding to Eq.(19), our hyperbolic system of equations of the AC
method in two space dimensions can be written as

B∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0. (33)

Here, we have split Fij into its components in the x- and y-direction
which are denoted by F and G, respectively. The components of the vectors
are given by

B =

 1
β

1
1

 , U =

pu
v

 , F =

 u
u2 + p
vu

 , G =

 v
uv

v2 + p

 . (34)
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We multiply a surface into Eq.(33) by using the chain rule which becomes
our characteristic surface if n·u = 0 is satisfied. This is also shown in Eq.(20)
for which our system of equations, now in scalar form, reads

1

β

dp

df

∂f

∂τ
+

du

df

∂f

∂x
+

dv

df

∂f

∂y
= 0, (35)

du

df

∂f

∂τ
+ u

du

df

∂f

∂x
+ v

du

df

∂f

∂y
+

1

ρ

dp

df

∂f

∂x
= 0, (36)

dv

df

∂f

∂τ
+ u

dv

df

∂f

∂x
+ v

dv

df

∂f

∂y
+

1

ρ

dp

df

∂f

∂y
= 0. (37)

We have dropped here the viscous term as there is no generalised theory
on how to include the viscous term in the method of characteristic. This
is consistent with the literature in which the SCB and MCB has been used
and developed. In turn, we can only apply the characteristic variables to the
inviscid fluxes. Hoffmann [52] showed how second-order derivatives may be
included in the classification of partial differential equations and a similar
approach may be taken when deriving the compatibility equations. There
are, however, other problems associated to this approach which is outside
the scope of the current work.

We multiply Eqs.(35)–(37) by df , express surface derivatives as ∂f/∂τ = fτ ,
∂f/∂x = fx and ∂f/∂y = fy and rewrite the system of equations in non-
conservative form so that we obtain

fτ
β

dp+ fxdu+ fydv = 0, (38)

fτdu+ ufxdu+ vfydu+
fx
ρ

dp = 0, (39)

fτdv + ufxdv + vfydv +
fy
ρ

dp = 0. (40)

We can express the above system in matrix form, corresponding to the
matrix T in Eq.(23) asfτ/β fx fy

fx/ρ Ψ 0
fy/ρ 0 Ψ

dp
du
dv

 =

0
0
0

 , (41)
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where we have introduced the short-hand notation Ψ = fτ+ufx+vfy. We re-
turn to Eq.(24) where we required the determinant of T to become zero. This
can be also understood from a more physical point of view. Characteristic
lines are in general defined as those lines along which derivatives may become
discontinuous. If we attempt to obtain an expression for the characteristic
path (dx/dt in time or dy/dx in space for steady flows), the solution for the
derivatives is most conveniently obtain through Cramer’s rule where the co-
efficient matrix would appear in the denominator of the solution. Thus, for
the solution to become discontinuous, the determinant has to become zero.
The determinant of T in Eq.(41) is computed from

det

fτ/β fx fy
fx/ρ Ψ 0
fy/ρ 0 Ψ

 = 0, (42)

for which the following solutions are obtained as

Ψ1 = 0, Ψ2 =
β

ρfτ

(
f 2
x + f 2

y

)
=

β

ρfτ
. (43)

For Ψ2 we have used the fact that ∇f = n, where we have rescaled n
so that n2

x + n2
y = 1. If Ψ1 and Ψ2 do comply with n · u = 0, then we

have found two characteristic surfaces and can insert Ψk into Eq.(41) to
obtain the compatibility equations for dp, du and dv on the characteristic
surface k. Unfortunately, we only have n · u = Ψk and n · n = 1 available
as two constrains for our three primitive variables u, v and p. Thus, the
system is under constrained and to prove that Ψk is indeed a solution to
the characteristic surface, we have to consider geometrical constraints as
well. We do so by intersecting n · n = 1 and n · u = Ψk with each other.
Since both equations are valid along the characteristic surface, its intersection
will be valid as well. This is shown in Figure 2. The equation n · n = 1
simply forms a cylinder of unit radius which is then projected along the τ
axis. The plane Ψ1 = 0 intersects the origin of the coordinate system and
its intersection with the unit cylinder forms a cylindrical shape. Since this
shape is due to the cylinder constructed by the normal vector n, the surface
Ψ1 = 0 is also termed the plane of normals. On each projected normal, within
Ψ1 = 0, we can construct a new plane to which the projected normal will
be perpendicular. Doing this for an infinite number of normals will create
infinite so called stream surfaces, which all intersect in one line. This line
corresponds to the pathline of the fluid parcel at that point. The pathline
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Figure 2: Intersection of n · n = 1 and n · u = Ψk and their resulting Stream and Wave
surfaces.

satisfies our criterion of n ·u = 0 and thus, although reducing to a line, is our
first characteristic surface. We can do the same for Ψ2 = β/(ρfτ ), however,
the picture becomes slightly more complicated. The plane of normals, again
found through the intersections of Ψ2 with n · n = 1, does not pass through
the origin due to the inhomogeneous term on the right-hand side of Ψ2. This
is also illustrated in Figure 3, where the unit cylinder spanned by n ·n = 1 is
shown along with the projected normal vectors n̂ onto the plane of normals.
The projected unit vectors n̂ are normal to the velocity vector u at their point
of intersection. The characteristics emanating from the plane of normals are
denoted by dashed lines. Since we have two characteristics emanating from
the same point in different directions, we call these lines the bi-characteristics.
We construct surfaces from the projected normals inside the plane of normals
and call them wave surfaces. Repeating this process for an infinite number
of wave surfaces will produce a Mach conoid to which each wave surface
will be tangent. It is also sometimes called the pseudo Mach conoid since
the Mach conoid analogy is taken from the compressible literature but is
absent for incompressible flows. Similarly, we have also adopted the notion
of stream and wave surfaces which appear in the literature on compressible
CB schemes. Since Ψ2 = β/(ρfτ ) also satisfies n ·u = 0, we can use Ψ2 as our
second characteristic surface. At this point, we need to insert both Ψ1 and
Ψ2 into Eq.(41) and investigate the rank of the coefficient matrix T arising
from the characteristic surfaces. For Ψ1 = 0, we obtain
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fτ/β fx fy
fx/ρ 0 0
fy/ρ 0 0

dp
du
dv

 =

0
0
0

 . (44)

To check the rank of the matrix, it is most convenient to express T in
row-echelon form and to count the non-zero rows. We have

T =


fτ
β

fx fy

0 −f2xβ
ρfτ

−fxfyβ
ρfτ

0 0 0

 (45)

and so rank(T ) = 2, which results in s1 = 1, see Eq.(27). Therefore, our co-
efficient matrix is rank deficient for Ψ1 and we cannot obtain a sufficient
amount of information along the pathline to construct our compatibility
equations. Repeating the process for Ψ2 = β/(ρfτ ), we obtain from Eq.(41)fτ/β fx fy

fx/ρ
β
ρfτ

0

fy/ρ 0 β
ρfτ

dp
du
dv

 =

0
0
0

 . (46)

The corresponding row-echelon form for T can be found as
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A =

fτ fx fy
0 −β(f2x−1)

ρfτ

−βfxfy
ρfτ

0 0
β(f2x+f

2
y−1)

ρfτ (f2x−1)

 (47)

and so rank(T ) = 3 and therefore s2 = 0. Thus, along our wave surfaces,
we have sufficient information available to construct three linear indepen-
dent compatibility equations and do not need a combination of compatibility
equations along the (pseudo) Mach conoid and pathline as is the case for
the compressible CB scheme. The corresponding compatibility equations are
found as

fτ
β

dp+ fxdu+ fydv = 0, (48)

fx
ρ

dp+
β

ρfτ
du = 0, (49)

fy
ρ

dp+
β

ρfτ
dv = 0. (50)

The characteristic variables are obtained from dφ = φ∗ − φn, where the
asterisk denotes a characteristic variable. We use the normal vector given by
Razavi et al. [29] n = cosφ · i + sinφ · j in space. The normal direction in
time can be obtain from equation Eq.(43) as

Ψ2 = nτ + unx + vny =
β

ρnτ
. (51)

Eq.(51) results in a quadratic equation for which nτ can be found as

nτ,1,2 =
−u · cosφ− v · sinφ±

√
(u · cosφ+ v · sinφ)2 + 4β

ρ

2
. (52)

We obtain two solutions for nτ because we are searching for it on the wave
surface which is spanned by the bi-characteristics, i.e. by two independent
characteristic paths. We simply choose the positive square root in accordance
with the compressible CB scheme literature. Inserting the normal vector into
Eqs.(48)–(50) for the surface derivatives, we obtain
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Figure 4: The time discretisation procedure for the multi-directional approach. The pseudo
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and 4). Characteristic line 1 and 2 lie on the intersection of the control volume centroid
at i, j and i + 1, j while the characteristic lines 3 and 4 emanate from the interfaces at
i+ 1/2.

nτ
β

(p∗i − pnj ) + (u∗i − unj ) cosφ+ (v∗i − vnj ) sinφ = 0, (53)

cosφ

ρ
(p∗i − pnj ) +

β

ρnτ
(u∗i − unj ) = 0, (54)

sinφ

ρ
(p∗i − pnj ) +

β

ρnτ
(v∗i − vnj ) = 0. (55)

We have to choose how many wave directions j we want to use along
which we update our primitive variables using the compatibility equations.
It is customary to choose four independent directions as shown in Figure 4
for a structured hexahedra mesh. Then, for each cell interface, the values
at time level n are found at locations j = 1, 2, 3, 4 which are then used for
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the compatibility equations. If we define φ in Eqs.(53)–(55) to be measured
in anti-clockwise direction with respect to the x−axis, then we can find the
following compatibility equations at the east inter-cell face (i+ 1/2):

For φ = 0◦:

nτ
β

(p∗i+1/2 − pn1 ) + (u∗i+1/2 − un1 ) = 0, (56)

(p∗i+1/2 − pn1 ) +
β

nτ
(u∗i+1/2 − un1 ) = 0. (57)

For φ = 90◦:

nτ
β

(p∗i+1/2 − pn3 ) + (v∗i+1/2 − vn3 ) = 0, (58)

(p∗i+1/2 − pn3 ) +
β

nτ
(v∗i+1/2 − vn3 ) = 0. (59)

For φ = 180◦:

nτ
β

(p∗i+1/2 − pn2 )− (u∗i+1/2 − un2 ) = 0, (60)

−(p∗i+1/2 − pn2 ) +
β

nτ
(u∗i+1/2 − un2 ) = 0. (61)

For φ = 270◦:

nτ
β

(p∗i+1/2 − pn4 )− (v∗i+1/2 − vn4 ) = 0, (62)

−(p∗i+1/2 − pn4 ) +
β

nτ
(v∗i+1/2 − vn4 ) = 0. (63)

We use Eq.(57) and Eq.(61) to find u∗i and Eq.(59) and Eq.(63) to find v∗i
by eliminating p∗i from the equations. We thus obtain for the characteristic
velocity components
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u∗i+1/2 =
1

β(nτ,1 + nτ,2)
[(p1 − p2)nτ,1nτ,2 + (u1nτ,2 + u2nτ,1)β] , (64)

v∗i+1/2 =
1

β(nτ,3 + nτ,4)
[(p3 − p4)nτ,3nτ,4 + (v3nτ,4 + v4nτ,3)β] , (65)

where in Eq.(52), the variables u and v need to be replaced by uj and vj
according to nτ,j. The characteristic pressure can be determined from the
Eq.(53) for which have

p∗i+1/2 = p1 −
β

nτ,1
(u∗i+1/2 − u1), (66)

p∗i+1/2 = −p2 +
β

nτ,2
(u∗i+1/2 − u2), (67)

p∗i+1/2 = p3 −
β

nτ,3
(v∗i+1/2 − v3), (68)

p∗i+1/2 = −p4 +
β

nτ,4
(v∗i+1/2 − v4). (69)

An average of Eqs.(66)–(69) results in the final characteristic pressure.
The above procedure is repeated for each cell interface, in this case for the
west (i− 1/2), north (j + 1/2) and south (j− 1/2) cell interface. The values
of Uj, j = 1, 2, 3, 4 are set to the reconstructed inter-cell values, e.g. Ui+1/2

at the east face.

Eqs.(64)–(69) have been derived for the AC method and a similar proce-
dure can be repeated for the FSAC-PP method. In this work, however,
we leave Eqs.(64)–(65) unchanged but set p∗i+1/2 = 0. Since the underlying
equations are based on the full momentum Equations, including the pres-
sure derivative, it may be argued that this is inconsistent with the modified
momentum equation of the FSAC-PP method, where the pressure derivative
has been removed. It is important to remember, however, that the devel-
oped characteristics-based scheme provides only improved inter-cell values
which are then used for the flux differentiation of the correct set of governing
equations, i.e. the respective momentum equations of the AC and FSAC-PP
method. This provides the advantage that the inter-cell values contain a
physical mechanism by which the pressure and velocity are coupled through
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the scheme. This approach is not unique to the current work and has already
been proposed, tested and validated in [37, 38, 44] using the SCB scheme.
The close coupling may assist to delay the onset of the pressure-velocity
decoupling which is inherent to some numerical interpolation schemes.

3.3. The single-directional characteristics-based scheme for the AC and FSAC-
PP method

For reference, we state here the equations used in the SCB scheme in-
troduced by Drikakis et al. [20]. Its derivation may be found in the original
reference and further considerations given to the derivation for the FSAC-PP
method can be found in [37].

The characteristic velocities and pressure are given as

u∗i+1/2 = x̃R + ỹ(u0ỹ − v0x̃), (70)

v∗i+1/2 = ỹR + x̃(u0ỹ − v0x̃), (71)

p∗i+1/2 =
1

2
√
λ20 + β

(λ1k2 − λ2k1), (72)

where

R =
1

2
√
λ20 + β

[(p1 − p2) + x̃(λ1u1 − λ2u2) + ỹ(λ1v1 − λ2v2)], (73)

k1 = p1 + λ1(u1x̃+ v1ỹ), (74)

k2 = p2 + λ2(u2x̃+ v2ỹ), (75)

with the eigenvalues of the system given as

λ0 = ux̃+ vỹ, (76)

λ1 = λ0 +
√
λ20 + β, (77)

λ2 = λ0 −
√
λ20 + β. (78)

The values of x̃ and ỹ are set according to the direction in which the
scheme is evaluated, i.e. x̃ = 1 and ỹ = 0 in the x-direction and x̃ = 0
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and ỹ = 1 in the y-direction. In Eqs.(70)–(75), the values of the primitive
variables Uj, j = 0, 1, 2, are obtained through Godunov’s Riemann solver as

Uj =
1

2

[
(1 + signλj)U

L
i+1/2 + (1− signλj)U

R
i+1/2

]
. (79)

Here, the values of UL,R
i+1/2 can be obtained through any appropriate recon-

struction scheme, for example using Eq.(10). Just as in the MCB scheme, we
set p∗i+1/2 = 0 for the FSAC-PP method. Eq.(79) provides the necessary up-
winding and thus stabilises the scheme. This treatment is absent in the MCB
scheme and we will show in the next Section how to introduce approximate
Riemann solvers into the MCB scheme.

4. The Riemann problem in the context of characteristics-based
schemes

In this Section, we will briefly show the relation between the Riemann
problem and the method of characteristics as they are closely coupled. Char-
acteristics are defined as those lines in the flow along which derivatives may
become discontinuous. This is not a requirement but simply a definition.
Characteristics can then be placed through space and the primitive variables
are updated along them using the compatibility relations. The Riemann
problem, on the other hand, is an initial value problem and defined as

q(x, 0) =

{
qL, for x ≤ x0

qR, for x ≥ x0
(80)

for some location x0. The Riemann problem requires a discontinuous jump
in the data which is tracked through time. The primitive variables are then
updated based on which side of the discontinuity they are found at. This is
also shown in Figure 5. Here, the method of characteristics is shown on the
left and the Riemann problem on the right, where a discontinuous signal is
advected through time. Two snapshots of the signal are presented at t1 and t2
in the (x, q(x)) space. Those snapshots are transferred to a (x, t) space where
different characteristics are shown on the left and the evolution of the initial
discontinuity on the right. While in the CB scheme the primitive variables
are updated along the characteristics through compatibility equations which
are only valid along their respective characteristics, the Riemann problem
distinguishes different states into which the solution can fall. A Riemann
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Figure 5: Comaprison of the method of characteristic (left) and the Riemann problem
(right) applied to a discontinuous signal tracked in time.

solver would take the information on the discontinuity and make a decision
which solution to choose, similar to Eq.(79).
If we define now that the values of the primitive variables prevail over each
computational volume, as is the case in a classical finite volume discretisation,
then it can be seen from Eq.(10) that at intersecting volumes, discontinuous
jumps can occur. Thus, we cannot only use a CB scheme at intersecting
volumes but also a Riemann solver or use a combination of both. Note here
that using a Riemann solver at each intersecting volume corresponds to the
Godunov method [53]. This allows us to make use of the pressure-velocity
coupling of the CB scheme while we make use of the decision-making proce-
dure (upwinding) of the Riemann solver.

We use the Riemann solver of Rusanov [54] which is given as

F(U)Rus
i+1/2 =

1

2
[F(U)R + F(U)L]− S+

2
(UR −UL) . (81)

Here, F(U) is the inviscid flux and S+ a signal-velocity which is given by
Davis [55] as
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S+ = max
{
|A−L |, |A

−
R|, |A

+
L |, |A

+
R|
}
, (82)

where

A−L = UL −
√

U2
L + β,

A−R = UR −
√

U2
R + β,

A+
L = UL +

√
U2
L + β,

A+
R = UR +

√
U2
R + β. (83)

We can replace the left and right velocity vector in Eq.(83) with UL,R =
uL,R cosφ + vL,R sinφ so as to make it compatible with the MCB scheme.
Eq.(81) can then also be used on irregular meshes. In order to couple the
MCB scheme with the Riemann solver, we apply it twice at the cell interface,
once using UL and a second time using UR. This creates two characteristic
inviscid flux vectors U∗L and U∗R which are then used in Eq.(81). The SCB
scheme has been found to be sensitive to its input parameters and both UL

and UR are required to obtain U∗. Note that we do not obtain two individual
states for the primitive variables and thus F(U)Rus

i+1/2 = F(U)i+1/2. This is
likely due to the Riemann solver inherent to the scheme itself, which requires
information from both the left and right state. An alternative approach
would be use characteristic fluxes in the first term of Eq.(81) and the non-
characteristic primitive variables in the second term. However, the focus
here is on the MCB scheme and how to extend it with a Riemann solver. For
consistency, we keep the treatment the same for the SCB scheme.

5. Results and Discussion

In the following Section, we present results for the lid driven cavity,
Taylor–Green vortex and backward-facing step problem to elucidate the ad-
vantages and disadvantages of the MCB scheme in comparison to its single-
directional counterpart. We further show results obtained without a charac-
teristic treatment and compare the aforementioned approaches against our
proposed hybrid scheme consisting of the MCB scheme and Rusanov’s Rie-
mann solver. We use the central scheme with artificial dissipation which
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we abbreviate with AD. The polynomial reconstruction scheme without any
characteristic treatment is denoted by no CB. The single- and multi-directional
characteristic-based scheme which are respectively called the SCB and MCB
scheme. Finally, the Rusanov Riemann solver with and without the MCB
scheme which are referred on the Figures and Tables as Rus and Rus, MCB,
respectively.

5.1. Flow inside a lid-driven cavity at sub-critical Reynolds numbers

The lid driven cavity flow is a classical problem to benchmark incompress-
ible flow solvers and methods. Razavi et al. [29] used it to validate their MCB
scheme in conjunction with the AC method and compared results against ref-
erence data provided by Ghia et al. [56]. There are some issues we need to
address first before presenting the results. First of all, the simulations done
in Razavi et al. [29] were carried out at different CFL numbers, thus making
any direct comparison of the convergence rate troublesome. It was argued
that both schemes had different maximum allowable CFL numbers and thus
each scheme was simulated with its highest possible CFL number. Numer-
ical experiments showed, however, that the differences are minute for our
cases. It should be noted, though, that we use a three stage Runge–Kutta
method with TVD properties while a four stage Runge–Kutta method was
used in [29]. Furthermore, our definition of the time step is slightly different,
taking the effects of diffusion into account.
Another issue was highlighted by Erturk [57]. The lid driven cavity problem
by itself is inherently three-dimensional, even at moderate Reynolds numbers,
featuring three-dimensional flow features such as the Taylor–Görtler vortices.
Thus, a two-dimensional simulation is a purely constructed or artificial so-
lution. However, it has been generally accepted as a standard test case for
validation purposes. Care needs to be taken at higher Reynolds numbers;
as Erturk pointed out, even a two-dimensional flow will bifurcate at a criti-
cal Reynolds number and become unsteady. Erturk presented the literature
concerned with obtaining the critical Reynolds number for a two-dimensional
flow through direct numerical simulations on a fine grid which suggested it
to be around 7000 < Recrit < 8000. In-fact, we found the flow to be periodic
and unsteady in this regime and only show results up to Re = 5000. Razavi
et al. [29] showed converged results up to Re = 10000, which is consistent
with the reference data provided by Ghia et al. [56]. It can be argued here
that the central scheme with artificial dissipation, which was used in their
work, might be used to control the amount of numerical dissipation needed
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in order to achieve a steady state solution. This, however, has to be re-
garded as a numerical approach to force a steady state solution which might
not exist. On the other hand, Erturk showed that by using an increasingly
fine mesh, much finer than the reference data considered, that converged re-
sults to a steady state are possible even at high Reynolds numbers. Results
at Re = 10000 with a 10242 mesh were presented and a steady state solu-
tion obtained. The steady state was achieved by decreasing the mesh size,
which was adding physical dissipation into the solution. Furthermore, the
two-dimensional nature of the problem prohibited the stretching of vortices
into the third coordinate direction while inherently three-dimensional flow
structures were not able to develop, thus delaying the onset of an unsteady
flow. Thus, it may be argued that the steady state achieved in [29] is sim-
ply due to the central scheme with artificial dissipation which is adding the
dissipation from a numerical point of view which allowed the usage of much
coarser meshes. The problem now becomes to determine the right amount
of numerical dissipation which matches the physical dissipation without con-
taminating the overall solution.
Another point of view can be derived by looking at the Taylor series. Con-
sider the truncation of the central differencing scheme with artificial dissipa-
tion, Eq.(12), and the third-order polynomial, Eq.(10). In terms of numerical
dissipation, we can say that

νnumerical ∝

{
O(∆x2) + f(k2, k4), Eq.(12)

O(∆x3), Eq.(10)
(84)

where f(k2, k4) is the influence of the second and forth order derivatives
scaled by k2 and k4. Thus, the amount of dissipation can be controlled,
which is not the case for the polynomial interpolation, Eq.(10).
The last issue we need to address is the central scheme itself in conjunction
with the Riemann problem. From Eq.(12), we see that it is not possible to
construct two individual left- and right-sided interpolated values at the cell
interface as for example with Eq.(10). The Riemann problem, however, is
defined as an initial value problem with a discontinuity present. We can see
from Rusanov’s Riemann solver, Eq.(81), that if the left- and right-sided in-
terpolated values at the cell interfaces are equal, the inviscid flux treatment
would be independent of the Riemann solver, i.e. in case of the Rusanov
Riemann solver we have F(U)Rus

i+1/2 = F(U)i+1/2.
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We present results here for Re = 100, 400, 1000, 3200 using both the SCB
and MCB scheme along with Rusanov’s Riemann solver where applicable
and compare the results against a non-characteristic treatment. For all sim-
ulations, we use Eq.(10) to interpolate values to the cell interfaces but also
give results obtained with central differencing scheme with artificial dissipa-
tion (AD), Eq.(12), as a reference. The residuals were calculated based on
the divergence of the velocity field and it has been found that a convergence
parameter of ε = 10−8 has been sufficient to judge convergence. The residuals
were normalised after the first iteration to ensure that the solution dropped
eight orders of magnitude.

Figure 6 and 7 show the contour plots of the normalised pressure at
Re=1000 for the AC and FSAC-PP method, respectively. Looking at the AC
method, it can be seen that the pressure exhibits an oscillatory behaviour
for the central scheme, non-CB and MCB scheme. What all these schemes
have in common is their lack of transportiveness. The central scheme by de-
fault cannot distinguish between different flow directions and thus oscillations
start to appear at high Reynolds numbers. This problem is well documented
in the literature and resulted in the Peclet number restriction when using
the central scheme. In the current form, we apply the central scheme with
artificial dissipation which aims to compensate for the neglected physical dis-
sipation. This may have a positive impact on developing the velocity field;
the pressure field, however, may still show oscillatory behaviour as the lack
of transportiveness is not addressed by the artificial dissipation itself. The
non-CB and MCB scheme, on the other hand, experience their oscillations in
pressure due to the lack of decision-making. The polynomial reconstruction
scheme by itself does not provide inbuilt transportiveness, however, it pro-
vides left- and right-sided interpolated values. These are the required ingre-
dients to construct transportiveness through some form of decision-making.
The simplest form of decision-making is achieved by using an upwind scheme.
This scheme simply considers the direction of the flow and sets the left- and
right-sided interpolated values according to the flow direction. A more so-
phisticated approach is presented by employing a Riemann solver which is
the approach adopted in the current work. The Riemann solver makes deci-
sion about the flow and its direction just as the upwind scheme. It extracts,
however, information about the flow through the local eigenstructure of the
system. These provide the required transportiveness and it can be seen that
the SCB scheme (which features a Riemann solver by default), the Rusanov
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(a) central scheme (b) no CB (c) SCB scheme

(d) MCB scheme (e) Rusanov RS (f) Rusanov RS + MCB

Figure 6: Contour plots of the normalised pressure for the lid driven cavity problem at
Re=1000. The result were obtained using the AC method.

Riemann solver, as well as its hybridisation with the MCB scheme all pro-
vide smooth pressure contours in Figure 6. Thus, the Riemann solver by
itself provides the required transportiveness which is a feature commonly as-
sociated to the numerical reconstruction scheme. By using a relative simple
Riemann solver, however, we can use a cheap but higher-order interpolation
scheme. This scheme may not need to account for any numerical dissipa-
tion, as it is the case with the central scheme. On the contrary, the order
of the scheme can be increased which decreases the inherent numerical dis-
sipation, based on considerations derived from the Taylor series. Thus, a
low-dissipative scheme, such as the third-order polynomial scheme, may be
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(a) central scheme (b) no CB (c) SCB scheme

(d) MCB scheme (e) Rusanov RS (f) Rusanov RS + MCB

Figure 7: Contour plots of the normalised pressure for the lid driven cavity problem at
Re=1000. The result were obtained using the FSAC-PP method.

selected and used in conjunction with the MCB and Rusanov Riemann solver.
In this arrangement, the polynomial scheme provides the order of interpo-
lation, the MCB scheme a multi-directional treatment of the flow and the
Rusanov Riemann solver the required transportiveness and some numerical
dissipation. Overall, the combination of these three components presents
a stable and physical approach to treat the non-linear term, while also re-
moving the pressure-velocity decoupling tendencies as commonly found in
incompressible flows. Interestingly, the FSAC-PP method shown in Figure 7
does not show signs of any oscillations. This is not merely explained by the
numerical schemes employed in this study but is rooted in the philosophy
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(d) FSAC-PP, Re=3200

Figure 8: Pressure profile along the diagonal from the bottom left to top right of the lid
driven cavity for different methods at Re=1000. The reference data is taken from Leroy
et al. [58].

of the FSAC-PP method itself. It features two Fractional-Steps, of which
the first one is hyperbolic, allowing the application of the characteristics-
based schemes and Riemann solvers. The second Fractional-Step, however,
is purely elliptic which implicitly solves a Pressure Poisson equation. The
implicit and elliptic nature have stabilising and smoothing properties which
the pressure field benefits from. Any growing oscillations can be damped to
a certain degree. This shows that different incompressible methods based on
different mathematical characteristics can have a significant influence on the
results as well, not just the overall accuracy and convergence rate.

Figure 8 presents the same situation in form of pressure profiles along the
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diagonal of the cavity. In this case, Leroy et al. [58] have provided reference
data at Re=1000 using the widely validated open-source solver code saturne
which we use here to verify our results. We also show results at Re=3200
to further highlight some findings. At the reference Reynolds number of
Re=1000, we can see that both the AC and FSAC-PP method match those
of Leroy et al. [58]. Those oscillations observed in Figure 6 can also be seen
in Figure 8a. Similarly, the absence of oscillations in Figure 7 is reflected
in Figure 8b. However, it can be seen at the higher Reynolds number of
Re=3200, that the oscillations for the AC method become more severe while
some oscillations start to show for the FSAC-PP method. Thus, the lat-
ter method did not completely prevent oscillations for this particular case,
rather, these are delayed through the elliptic smoothing of the pressure field.
However, it is only the non-CB scheme which shows considerable oscillations
while all other schemes show no or only a small degree of oscillatory be-
haviour. This is to be expected, as with increasing Reynolds number, the
flow becomes more turbulent which also means that the smallest and largest
scale are further separated in wave number space. Since the mesh size has
not changed, however, this also means that even more physical dissipation is
neglected due to ever decreasing eddy sizes through vortex stretching. Thus,
it is expected that the scheme with the lowest inherent numerical dissipation
is the first to oscillate as the Reynolds number is increased. Indeed, this can
be seen by looking at Figure 8d.

Table 1 and 2 show results obtained from the AC and FSAC-PP method,
respectively. The columns are separated into three parts; the reference so-
lution using the central scheme with artificial dissipation, schemes that do
not use the Rusanov Riemann solver (RS) and those who do. Note here
that although the SCB scheme is in the column where no Rusanov Riemann
solver is used, it still contains its own Riemann solver by design, see Eq.(79).
In Table 1, we can see that the MCB scheme generally matches or improves
the accuracy over a non-characteristic treatment while the number of itera-
tions are of the same order. This effect increases with increasing Reynolds
numbers. The SCB scheme, on the other hand, may reduce the overall num-
ber of iterations required while its accuracy deteriorates at higher Reynolds
numbers. At Re=3200, for example, its L1 norm is about two times higher
than the non-CB scheme and three times higher than the MCB scheme. In-
terestingly, with increasing Reynolds number the MCB scheme is capable to
match the results of the central differencing scheme with artificial dissipation,
which means that the MCB scheme does not only improve the results com-
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Table 1: L0 and L1 error norm for the u and v velocity component along the horizontal
and vertical centreline, respectively. The results were obtained using the AC method.

AD no Riemann Solver Rusanov Riemann Solver

Re no CB no CB SCB MCB no CB MCB

100

iteration 62199 62200 62114 62174 60575 60575
L0(u) [%] 0.42 0.41 0.62 0.45 0.67 0.67
L0(v) [%] 0.85 0.84 0.33 0.84 0.41 0.41
L1(u) [%] 0.14 0.14 0.23 0.15 0.25 0.25
L1(v) [%] 0.36 0.36 0.19 0.37 0.21 0.21

400

iteration 60798 60811 58711 60053 56480 56480
L0(u) [%] 0.52 0.61 3.51 0.50 3.69 3.69
L0(v) [%] 4.45 4.34 3.41 4.38 3.62 3.62
L1(u) [%] 0.20 0.25 1.38 0.20 1.38 1.38
L1(v) [%] 0.42 0.44 1.88 0.36 1.96 1.96

1000

iteration 124467 125231 115499 123685 107382 107382
L0(u) [%] 1.45 1.84 6.53 1.55 6.49 6.49
L0(v) [%] 0.69 0.99 6.39 0.62 6.50 6.50
L1(u) [%] 0.60 0.80 3.25 0.58 2.86 2.86
L1(v) [%] 0.41 0.63 3.98 0.37 3.79 3.79

3200

iteration 226470 213636 206070 225901 195489 195489
L0(u) [%] 4.92 7.99 14.75 4.90 11.92 11.92
L0(v) [%] 5.25 10.82 14.63 7.20 13.08 13.08
L1(u) [%] 2.71 4.33 8.86 2.75 6.48 6.48
L1(v) [%] 3.15 5.26 10.66 3.37 8.34 8.34
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Table 2: L0 and L1 error norm for the u and v velocity component along the horizontal and
vertical centreline, respectively. The results were obtained using the FSAC-PP method.

AD no Riemann Solver Rusanov Riemann Solver

Re no CB no CB SCB MCB no CB MCB

100

iteration 12635 12628 12991 10683 12815 10590
L0(u) [%] 0.55 0.57 0.49 0.72 0.52 0.71
L0(v) [%] 0.27 0.29 0.27 0.44 0.23 0.44
L1(u) [%] 0.19 0.20 0.19 0.24 0.19 0.24
L1(v) [%] 0.18 0.18 0.16 0.22 0.16 0.22

400

iteration 17281 17322 16544 16593 15689 15810
L0(u) [%] 3.71 4.17 3.49 3.84 3.39 3.33
L0(v) [%] 3.89 4.36 3.52 3.88 3.32 3.28
L1(u) [%] 1.55 1.74 1.42 1.55 1.30 1.28
L1(v) [%] 2.08 2.29 1.92 2.09 1.83 1.81

1000

iteration 32567 36835 28232 33852 24747 24141
L0(u) [%] 7.81 10.98 6.33 7.75 5.23 5.20
L0(v) [%] 8.16 11.50 6.86 8.40 5.77 5.71
L1(u) [%] 4.27 5.80 3.37 4.10 2.40 2.38
L1(v) [%] 5.32 7.35 4.16 5.13 3.20 3.17

3200

iteration 134019 40826 128379 133148 63737 65701
L0(u) [%] 29.08 41.78 16.49 23.09 9.67 9.63
L0(v) [%] 33.91 54.42 17.04 25.46 11.28 11.19
L1(u) [%] 17.46 24.56 9.90 13.88 4.97 4.93
L1(v) [%] 21.79 32.85 12.08 17.15 6.65 6.60
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pared to a non-CB scheme, which uses the same, low-dissipative third-order
polynomial to interpolated inter-cell values, but also that the added dissipa-
tion in the central scheme provides the same level of accuracy as the MCB
scheme. Thus, although the underlying interpolation scheme struggles to
provide accurate results due to the neglected dissipation, the MCB scheme is
able to compensate for that fact and shows no clear differences to the central
scheme which relies on numerical dissipation. Referring back to Figure 8c,
it can be seen that the MCB scheme also suffers from the velocity decou-
pling as discussed above due to the absence of transportiveness in the overall
scheme, however, it exhibits less oscillations than the non-CB scheme. It has
also been stated that the Rusanov Riemann solver is adding more numeri-
cal dissipation along with transportiveness to the scheme, which ultimately
results in oscillation free pressure profiles. It can also be seen from Table 1
that the Rusanov Riemann solver is indeed adding numerical dissipation, in
the sense that the results become less accurate. Measuring the numerical
dissipation is inherently difficult and we restrict the discussion here on the
symptoms such as reduced accuracy and increased oscillatory behaviour. It
should be noted, however, that first promising results were published by El
Rafei et al. [59] who computed the numerical dissipation directly through
the modified equation analysis for the complete set of Navier–Stokes equa-
tions. Despite the reduced accuracy, the number of iterations were reduced
for some cases up to 14% compared to a non Rusanov Riemann solver treat-
ment. Furthermore, it was shown that the SCB scheme is less accurate than
the MCB scheme at higher Reynolds numbers. However, it was also shown
that the SCB scheme provides oscillation free pressure profiles even at higher
Reynolds numbers. The same can be achieved for the MCB scheme when it
is paired with the Rusanov Riemann solver, as can be seen from Figure 8c
and 8d. The fact that at lower Reynolds numbers little differences can be
observed is explained by the laminar nature of the flow. If the flow is lam-
inar, the scale separation of smallest and largest eddies does not exist due
to a lack of turbulence in the flow. Thus, all dissipation is captured by the
Laplacian term in the Navier–Stokes equations and therefore fully resolved.
Therefore, it is the higher Reynolds numbers which are of interest to judge
the capabilities of the proposed schemes. Interestingly, there is no difference
between using just the Rusanov Riemann solver or its combination with the
MCB scheme, which is unique to the AC method.
In Table 2, the same results are shown for the FSAC-PP method. It is ap-
parent that it converges faster than the AC method. At Re = 100, it is
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up to 5.8 times faster compared to the AC method (MCB scheme) while
at higher Reynolds numbers, here at Re = 3200, a speed-up of a factor of
1.7–3.1 can be still achieved. This is in accordance with previously published
material [37, 38, 44, 45], where the FSAC-PP method has generally been
found to perform better over the AC method in terms of convergence rate.
It could be argued that the inclusion of the Poisson solver slows the solu-
tion procedure down, however, numerical experiments have shown that the
AC method is only about 1.5 times faster than the FSAC-PP method per
iteration. Thus, the FSAC-PP method requires overall less CPU time for
all Reynolds numbers considered here. At Re=3200, it becomes clear that
results without a Riemann solver lose the accuracy which was also seen by
Figure 8d, where the non-CB scheme seemingly did not develop any pressure
field. Even the added dissipation approach starts to lose accuracy, showing
that numerical dissipation alone is not enough to provide physical results,
if it is not properly scaled with the required dissipation. Thus, the added
transportiveness of the Riemann solver makes the biggest difference which
results in more accurate results at a reduced computational cost. In con-
trast to the AC method, the SCB scheme is slightly more accurate than the
MCB scheme. This complete reversal shows the importance of the choice of
the incompressible method which is not merely responsible for the required
number of iterations. Its mathematical character plays an important role in
how the underlying numerical schemes perform.

Figure 9 shows the velocity profiles for the AC and FSAC-PP method on
the centreline at Re = 5000 using a 1282 and 2562 mesh. As was already
remarked when discussing Table 1 for the AC method, there is no differ-
ence between the Rusanov Riemann solver approach and its hybrid version
with the MCB scheme combined. The same is true at Re=5000 and the
curves for both schemes are indistinguishable. Examining Figure 9a and 9b,
it can be seen that on a 1282 mesh, the dissipation provided is not sufficient
to develop the flow using a non-CB treatment. The Riemann solver in the
SCB scheme provides enough dissipation for the flow to develop and similar
observations are made for the Rusanov Riemann solver approach. It does
indeed seem that the numerical dissipation provided by the Riemann solvers
is sufficient at higher Reynolds numbers to correctly develop the flow, de-
spite the low-dissipative polynomial reconstruction scheme. This approach
is quite similar to the philosophy of implicit large eddy simulations, where
the sub-grid scale model is replaced and modelled through numerical dissi-
pation provided through the numerical interpolation schemes. Alternatively,
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Figure 9: Velocity profiles along the centrelines of the lid driven cavity flow problem at
Re=5000 using 1282 and 2562 cells and the AC and FSAC-PP method. The reference
data is taken from Ghia et al. [56].

the mesh size can be increased which results in more physical dissipation
being recovered and resolved. This approach is similar to the one taken by
Erturk [57] in order to obtain converged, two-dimensional results using here
a low-dissipative scheme. The results are shown for the AC and FSAC-PP
method in Figure 9c and Figure 9d, respectively. Using the AC method, the
Riemann solver increases the overall accuracy again while it approaches the
solution of the SCB scheme. In the case of the FSAC-PP method, the overall
accuracy is increased and the method generally reacts more favourably to a
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Table 3: L0 and L1 norm for the lid driven cavity problem at Re=5000 on a 1282 and
2562 mesh. Results shown were obtained with the AC method.

AD no Riemann Solver Rusanov Riemann Solver

(nx × ny) no CB no CB SCB MCB no CB MCB

1282

iteration 233577 299288 257593 500000 221751 221751
L0(u) [%] 12.35 60.46 18.83 67.47 14.44 14.44
L0(v) [%] 16.87 55.57 22.55 54.63 19.52 19.52
L1(u) [%] 4.84 29.76 12.07 32.05 8.38 8.38
L1(v) [%] 5.96 35.03 14.35 36.22 10.40 10.40

2562

iteration 1306388 953483 480368 2434067 545401 545401
L0(u) [%] 2.07 3.05 9.28 2.07 8.39 8.39
L0(v) [%] 1.38 2.73 9.13 1.77 8.40 8.40
L1(u) [%] 0.46 0.90 5.72 0.39 4.82 4.82
L1(v) [%] 0.43 0.95 6.43 0.37 5.39 5.39

Riemann solver treatment.
These results are also summarised quantitatively in Table 3 and 4. For

the AC method, the MCB scheme did not converge and was stopped after 500
000 iterations on the 1282 mesh. The iterations and intermediate solution
suggest that an unsteady behaviour was found and that convergence to the
steady state was not possible. This is in contrast to the FSAC-PP method
where a steady state solution was achieved. At Re = 5000, we should still
be able to obtain a steady state solution according to Erturk [57]. While
the AC method only achieved that by increasing the mesh size, thus provid-
ing more physical dissipation, the FSAC-PP method was able to smooth the
flow field sufficiently through the elliptic Poisson solver, providing the steady
state solution. The trends observed in Table 1 and 2 are broadly the same at
Re = 5000 for both mesh sizes. For the AC method, the central scheme with
artificial dissipation and the non-CB scheme required substantially more iter-
ations going from the 1282 to the 2562 mesh while the accuracy was positively
affected, especially in the latter case. The MCB scheme was not only able
to find a steady state solution but also improve the overall accuracy, which
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Table 4: L0 and L1 norm for the lid driven cavity problem at Re=5000 on a 1282 and
2562 mesh. Results shown were obtained with the FSAC-PP method.

AD no Riemann Solver Rusanov Riemann Solver

(nx × ny) no CB no CB SCB MCB no CB MCB

1282

iteration 273280 53677 203316 200288 100291 105308
L0(u) [%] 43.49 44.22 22.04 31.54 11.92 11.90
L0(v) [%] 54.56 55.91 26.14 38.15 17.56 17.48
L1(u) [%] 24.65 26.41 13.88 19.34 6.48 6.45
L1(v) [%] 32.59 34.12 16.70 23.66 8.21 8.16

2562

iteration 124962 353119 156646 227812 135563 136772
L0(u) [%] 16.83 34.97 10.93 15.05 7.63 7.56
L0(v) [%] 16.65 40.98 10.61 14.98 7.65 7.56
L1(u) [%] 10.53 21.08 6.43 9.19 3.96 3.91
L1(v) [%] 12.33 25.82 7.34 10.61 4.47 4.42

shows the closest agreement with the reference data. The Rusanov-based
approach shows higher errors while keeping the number of iterations low on
the finer mesh. For the FSAC-PP method, however, the central scheme with
artificial dissipation and the SCB scheme both show a reduction in iterations
when going from the coarser to the finer mesh, while improving also the accu-
racy. The best results are now obtained with the Rusanov-based approaches
which show a similar level of accuracy but a reduced number of iterations
compared to the AC method. In-fact, the FSAC-PP method requires about
4.0 times less iterations than the AC method.

In summary, we showed that the overall agreement of the AC method with the
reference data can be slightly better using a non Riemann solver treatment
over the FSAC-PP method, while the latter method improved the overall
convergence rate. The MCB scheme has shown that it is able to reduce the
number of iterations and be more accurate for some cases as was reported
in [29]. We could not, however, confirm a speed-up of the MCB scheme over
the SCB scheme using the AC method at the same CFL number. Using a
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Riemann solver, both methods showed comparable accuracies. The inclusion
of the Riemann solver was found to be necessary at high Reynolds numbers to
provide enough numerical dissipation to develop the flow. Alternatively, the
central scheme with artificial dissipation can provide a user-defined amount
of dissipation that scales with the mesh size. Fine tuning of the scheme’s
parameter may be necessary which is not the case in the Riemann solver.
Furthermore, we saw that the mixed hyperbolic-elliptic behaviour of the
FSAC-PP method can produce a quite different behaviour than its purely
hyperbolic AC counterpart when comparing the accuracy and iterations re-
quired of the SCB and MCB scheme. Thus, not just the numerical scheme
but also the incompressible method that is employed to solve the incompress-
ible Navier–Stokes equations plays a crucial role in determining the correct
behaviour of the flow.

5.2. Time-dependent evolution of the Taylor–Green vortex

As highlighted in the lid driven cavity flow problem, the numerical dissi-
pation is a crucial element in determining a scheme’s success. It is especially
important for the MCB scheme as it does not provide a Riemann solver
by default, which is included in the SCB scheme. San and Kara [60] in-
vestigated several Riemann solvers and showed that the Rusanov Riemann
solver shows indeed higher or similar numerical damping compared to other
Riemann solvers. In this Section, we investigate the Taylor–Green vortex
problem, where we have an analytic solution available for the velocity and
pressure field. Thus, we can calculate the overall kinetic energy and compare
it to the simulations. An increased rate of dissipation of the kinetic energy
implies and increased amount of numerical dissipation. Since it was estab-
lished in the previous example that at high Reynolds number, i.e. within the
turbulent regime, the MCB is benefiting from the added dissipation from the
Rusanov Riemann solver, we present results in the present case for Reynolds
numbers up to Re = 1000. It has been stated by Drikakis et al. [61], that
results obtained at Re = 3000 and Re = 5000 are almost indistinguishable,
indicating a low viscosity limit. At the same time, we found that a larger
time interval needed to be considered when increasing the Reynolds num-
ber and thus decided that Re = 1000 was best suited to strike a balance
between computational time and flow physics. Although we consider a two-
dimensional flow in this work, Brachet et al. [62] performed two-dimensional
DNS studies and showed that essential turbulent-like features were captured
for this particular flow type. We also perform simulations at Re=100 and
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Re=500 to have a reference solution for a fully laminar flow and one between
the laminar and turbulent regime, to highlight any change in the behaviour
of the numerical schemes in these two states. Since the Taylor–Green vortex
is an evolution problem, we need to consider the unsteady version of the AC
and FSAC-PP method. In the previous literature on the MCB scheme, only
steady state problems were considered and so we are able to comment on
the scheme’s behaviour for unsteady flows for the first time. We reduce the
convergence parameter to ε = 10−4 within each pseudo time step and inte-
grate the solution until we have reached t = 15, t = 30 and t = 50 seconds
at Re=100, Re=500 and Re=1000, respectively, of simulated flow time.

The flow is solved on a square computational domain with periodic boundary
conditions on all sides. Due to the added computational cost of solving the
equations in time, we use a 642 mesh for all simulations. The flow field is
initialised with

u0(x, y, 0) = − cos(2mπx) sin(2mπy),

v0(x, y, 0) = sin(2mπx) cos(2mπy),

p0(x, y, 0) = −1

4
[cos(4mπx) + cos(4mπy)] , (85)

for which an analytical solution with ν 6= 0 can be found as [47]

u(x, y, t) = u0(x, y, 0) exp
[
−2/Re(2mπ)2t

]
,

v(x, y, t) = v0(x, y, 0) exp
[
−2/Re(2mπ)2t

]
,

p(x, y, t) = p0(x, y, 0) exp
[
−4/Re(2mπ)2t

]
. (86)

For Re → ∞, or ν → 0, an inviscid limit is approached as stated by
Drikakis et al. [61]. We can see from Eq.(86) that indeed the solution ap-
proaches an inviscid limit for a vanishing viscosity. Here, we set m = 2 where
higher values would result in more but smaller vortices. The initial velocity
and pressure contours are given in Figure 10 where the streamlines are given
as a reference to highlight the symmetrical initial vortex distribution.

Figure 11 shows the decay of kinetic energy for both the AC and FSAC-
PP method across different Reynolds numbers which is compared against the
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(a) u-velocity (b) pressure

Figure 10: Initial velocity and pressure field for the Taylor–Green vortex problem. The
streamlines are shown on top of the velocity field as a reference.

analytic solution for the kinetic energy that can be constructed from Eq.(86).
The curves were normalised with the theoretical kinetic energy at the begin-
ning of the simulation. It can be seen that all schemes for both methods
and the tested Reynolds numbers, with the exception of the AC method at
Re=100, dissipate the kinetic energy faster than the expected solution. This
is in line with observations made by Oger et al. [63] and Khayyer et al. [64],
who both showed the decay of kinetic energy at Re=100 and Re=1000, re-
spectively, using the Smoothed Particle Hydrodynamics (SPH) method. Oger
et al. performed a sensitivity study and showed that an increase of particles
along the x- and y-direction was sufficient to improve the kinetic energy de-
cay rate. However, they also showed that sufficiently accurate results were
still obtained using their coarsest initial particle distribution of 50 particles
in each direction. Since we are interested in the relative performance of each
scheme, the coarser mesh allows differences among schemes to be seen more
clearly while still providing physical correct results. Using similar mesh dis-
tributions as in Oger et al., these findings were also confirmed by Khayyer et
al. Since both of these aforementioned studies used the SPH method, their
computational considerations are slightly different from the Finite Volume
method employed in the current study. Referring back to the AC method at
Re=100, it can be seen that the SCB, Rusanov and Rusanov+MCB scheme
all provide the expected dissipation rates, albeit that all of them show a
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Figure 11: Decay of kinetic energy for both the AC and FSAC-PP method using different
Reynolds numbers for the Taylor–Green vortex problem.

46



higher net rate of dissipated kinetic energy. This suggests that the right
amount of dissipation is present in the simulation. This is not surprising,
as it was established that the Rusanov Riemann solver possess an inherent
amount of numerical dissipation. Therefore, its combination with the MCB
scheme does possess a similar amount of numerical dissipation. The reason
that the SCB scheme performs similarly is rooted in its inherent Godunov
Riemann solver, Eq.(79), which is essentially an upwinding procedure, based
on the local eigenvalues. As was stated by Ekaterinaris [65], ”Upwind-biased
schemes, however, based only on formal accuracy (truncation error) inher-
ently introduce some form of artificial smoothing”. Thus, even the third order
accurate polynomial scheme employed in this study has to sacrifice some of
its accuracy in favour of stability through the Riemann solver of Godunov.
As was seen in the previous test case, the SCB scheme did indeed promote
stability over the non-characteristic treatment which was based on the same
polynomial reconstruction scheme. Both the non-characteristic and MCB
treatment, as well as the central scheme with artificial dissipation show that
they struggle to produce the correct dissipation rate once the vortices start to
decay. The FSAC-PP method, on the other hand, shows very little difference
among the schemes at Re=100. This can be attributed again to the smooth-
ing properties of the elliptic pressure Poisson solver that has also provided
scheme independent-like solutions at low Reynolds number for the lid driven
cavity problem and in the literature [37, 38]. Morinishi et al. [66] investi-
gated different numerical schemes on regular, staggered and collocated mesh
arrangements and investigated their conservative properties. They showed
that simultaneously conservation of momentum and kinetic energy is only
achievable with specialised numerical schemes. Their schemes were losing
the conservative properties if the order of accuracy was increased beyond
second-order on non-uniform meshes. Despite the use of a regular mesh in
this study, there are indicators which suggests that the departure from the ki-
netic energy decay rate is indeed rooted in the reconstruction scheme used in
this study. First of all, we solve the momentum equation in non-conservative
form according to Eq.(2) and Eq.(4) with respect to the non-linear term. Ac-
cording to Morinishi et al. [66], a fully conservative momentum equation is a
prerequisite to construct fully conservative interpolation schemes. Secondly,
we purposefully have chosen a low-dissipative numerical scheme to keep the
inherent artificial dissipation low with the aim to provide locally scaled nu-
merical dissipation through the Riemann solver. We can see in-fact that the
MCB scheme relying solely on the third-order reconstruction scheme is not
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conserving energy while its combination with the Rusanov Riemann solver
is at Re=100 using the AC method. It was furthermore stated in [66] that
a collocated primitive variable arrangement for unsteady flows may result in
larger errors. For increasing Reynolds numbers, all schemes produce a decay
rate lower than the expected rate, which is again in agreement with Khayyer
et al. [64] at Re=1000. It should be noted here that the initial bumps ob-
served by Khayyer et al. are due to the SPH method and thus absent in the
current plots. However, as discussed above, the Finite volume approach can
have its own characteristics in the energy decay.
At Re=500, it can be seen that the Rusanov Riemann solver in conjunction
with the MCB scheme shows improved decay rates over the Rusanov Rie-
mann solver alone, when using the FSAC-PP method. For the AC method
there is little difference between these two schemes. At Re=1000, however,
both schemes produce very similar results for both methods. Furthermore,
it can also be confirmed that the Rusanov Riemann solver is the most dis-
sipative approach in the current case, especially at high Reynolds numbers.
It is positive to note here, however, that the added numerical dissipation
within the Rusanov Riemann solver does not adversely affect the overall so-
lution at low Reynolds numbers. Despite the discrepancies at Re=100, it
is the non-characteristic and central scheme with artificial dissipation, that
produces the best agreement with the expected dissipation rate for Reynolds
number of Re=500 and above for both methods. It can also be seen that for
an increase in Reynolds number, the MCB scheme seems to perform better
than the SCB scheme using the AC method. While the MCB scheme showed
a departure from the expected decay rate at Re=100, it shows comparable
decay rates at Re=500 compared to the SCB scheme and even improves at
Re=1000. This is another indicator that the anisotropic effects, that may be
introduced as the Reynolds number increases, may be better captured by a
multi-directional approached compared to the single-directional one. Using
the FSAC-PP method, however, the MCB and SCB scheme show very simi-
lar performance even at Re=1000.
Finally, we would like to point out that a more favourable decay in kinetic
energy may be obtained using a less dissipative Riemann solver, for example
the HLL or HLLC Riemann solver, which both respect the non-linearity of
the Navier–Stokes equations. It should be noted, however, that an extension
is not straight-forward for the FSAC-PP method for which the pressure bias
needs to be removed first, as was shown by Smith et al. [45].
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(d) FSAC-PP, Re=500
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(e) AC, Re=1000

0 10 20 30 40 50
tU/L [-]

10-4

10-3

10-2

10-1

100

L
1(u

) 
[-

]

AD
no CB
SCB
MCB
Rus
Rus, MCB

(f) FSAC-PP, Re=1000

Figure 12: Evolution of the L1 error norm of the u-velocity component for both the AC and
FSAC-PP method using different Reynolds numbers for the Taylor–Green vortex problem.
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To further elaborate on the accuracy of each scheme and its role on the
velocity field, we plot the L1 error norm of the u-velocity component which
was averaged over the entire domain for each time step and is shown in Fig-
ure 12. It is a useful measure as the decay in kinetic energy only provides
information on the relative error compared to the exact solution, while the
error norm provides an absolute comparison to the exact solution.
For all error curves, we see an initial increase in error which then decays over
time with varying slopes. The peak of the error increases for both methods
as the Reynolds number is increased, indicating that the numerical viscosity
becomes dominant with decreasing physical viscosity. At the lowest Reynolds
number of Re=100, it can be seen that the AC method experiences a linear
decrease in log space for the error while the FSAC-PP method shows three
distinct regions with different slopes. After the initial increase in error, the
FSAC-PP method produces steeper error reduction curves. These slopes are
then reduced before plateauing for all schemes. It follows from the initial
steeper slopes that the overall error is lower using the FSAC-PP method
over the tested period which is also confirmed by Table 5 and 6. The same
behaviour was observed by Könözsy and Drikakis [38], where the FSAC-PP
method was tested for various examples at Re=100. They showed that the
FSAC-PP method has a tendency to reduce the error faster than the AC
method and then starts to flatten to a point at which the error does not
change anymore. This is an inherent property of the FSAC-PP method and
the same behaviour could be observed in the present test case. For higher
Reynolds numbers, the errors decay monotonically for both methods after
the initial error peak. At Re=500, we can observe that the MCB scheme
produces the highest error with the AC method while it produces errors
close to the best error curves with the FSAC-PP method. Furthermore, the
pairing of the Rusanov Riemann solver and the MCB scheme produces ini-
tially the highest error while its steeper slope is able to reduce the error the
most so that at the end of the simulation its error has become the lowest of
all schemes. Its peak in error is initially comparable to that of the Rusanov
Riemann solver alone which is to be expected, as the peak in error is solely
due to the numerical dissipation in the Rusanov Riemann solver. The MCB
scheme, low in dissipation by design, is not increasing this error, rather it
provides a mechanism to reduce the error fastest, albeit at an initially higher
overall error. For the highest tested Reynolds number of Re=1000, both the
Rusanov Riemann solver and its hybridisation with the MCB scheme produce
similar results using both methods. For both the Re=500 and Re=1000 case,
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it is again the non-characteristic scheme which produces the most accurate
results. This may be seen as a disadvantage of the Rusanov approach and
the MCB scheme by either itself or in combination with the Riemann solver,
however, the reader is reminded that the Rusanov Riemann solver has been
primarily used to extend the MCB scheme to higher Reynolds numbers. In
the present case the Navier–Stokes equations may not be sufficiently chal-
lenged at the moderate Reynolds number of Re=1000 so that the scheme
with the lowest inherent numerical dissipation produces the best agreement.
This is in-fact the case here where the non-CB scheme relies on the low-
dissipative polynomial reconstruction. Furthermore, the current test case
is initialised with an already developed vortical flow field. These vortical
structures are merely decayed over time and so do not challenge the solver
in form of predicting vortical flow structures, rather, the current test case
investigates how well vortical flow structure are preserved. Thus, it would be
wrong to dismiss the more dissipative results of the Rusanov Riemann solver
in favour of the non-characteristic approach. We saw for the lid driven cavity
case that at higher Reynolds numbers, where the vortical flow field needs to
be established by the solver and thus presents a greater challenge, the Ru-
sanov Riemann solver provided stability for all tested Reynolds numbers and
grid sizes where the non-characteristic approach struggled due to the loss
of physical and numerical dissipation. We can see from the current results
on the Taylor–Green vortex problem, however, that the additional numerical
dissipation inherent to the Rusanov Riemann solver and Godunov’s Riemann
solver in the SCB scheme do have an effect on the accuracy while providing
reasonable errors curves.

Figure 13 shows the evolution of the L1 error norm in pressure for both AC
and FSAC-PP method across the different tested Reynolds numbers. This
is of particular interest as the FSAC-PP method is very similar to the AC
method, the difference being the removed pressure gradient from the momen-
tum equation which then is solved in a second Fractional-Step through the
pressure Poisson equation from the Pressure Projection method of Chorin.
Thus, the pressure presents an important quantity to establish comparisons
between the AC and FSAC-PP method. As can be seen from Figure 13, the
pressure is decreasing over time. Unlike the L1 norm of the velocity compo-
nent, there is no clear peak structure in the error of the pressure. The AC
method does observe a small increase in error at Re=500 and Re=1000 and
so does the FSAC-PP method at Re=1000, however, below these values a
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Figure 13: Evolution of the L1 error norm of the pressure for both the AC and FSAC-PP
method using different Reynolds numbers for the Taylor–Green vortex problem.
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monotonic decrease in error is achieved.
We can observe similar behaviours of the different numerical schemes as
seen for the L1 error of the velocity component u. The Rusanov Riemann
solver and its combination with the MCB scheme provides initially a close
agreement at low Reynolds number while its accuracy decreases at higher
Reynolds numbers using the FSAC-PP method. The non-CB scheme pro-
vides the best agreement for both methods at Re=1000 which is again due to
its less inherent numerical dissipation. However, another aspect emerges from
this discussion which provides further insight in the comparison among the
AC and FSAC-PP method themselves. At Re=100, both methods provide
very similar error curves. The FSAC-PP method may have closer agreement
between the different schemes, but overall all schemes reduce the error in
pressure to approximately 10−10 for both methods. At Re=500, however,
the discrepancies start to show more prominent. Here, the non-characteristic
approach, as well as the central scheme with artificial dissipation both pro-
duce errors of approximately 10−6 using the AC method while this value
becomes 10−7 using the FSAC-PP method. At Re=1000, the same schemes
just drop below 10−4 for the AC method and 10−6 for the FSAC-PP method.
This order of magnitude difference in the error for the pressure is again at-
tributed to the more physical treatment of the pressure in the FSAC-PP
method, where the momentum equation in the first Fractional-Step is fully
hyperbolic which is then coupled with the elliptic Poisson solver in the sec-
ond Fractional-Step for the pressure. This elliptic and implicit treatment of
the pressure promotes stability and a smoothed pressure field. Furthermore,
while some incompressible methods require the linearisation of the convec-
tive term in order to provide stability at the expense of losing the non-linear
behaviour of the Navier–Stokes equations, we are able to smooth and sta-
bilise the pressure through the elliptic and implicit Poisson equation. This
is already a linear equation and does not require linearisation and so we are
able to numerically solve the fully non-linear Navier–Stokes equations. Since
the pressure is smoothed, which is driving the flow, instabilities are damped
and a non-linear solution with rather low error values for the pressure is
obtained. This shows that the numerical method used, especially its numeri-
cal character, has a large influence on the overall performance of the method.

Table 5 and 6 summarise the previous discussion quantitatively. Here, the
L0 and L1 error norms for velocity and pressure are shown for each Reynolds
number, which were obtained by integrating the errors over time. It can be
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Table 5: Integrated L0 and L1 error norms for both velocity components and the pressure
over time. Results are shown for the AC method.

AD no Riemann Solver Rusanov Riemann Solver

Re no CB no CB SCB MCB no CB MCB

100

L0(u) [%] 3.47e-05 3.56e-05 1.80e-05 4.97e-05 1.85e-05 1.85e-05
L0(v) [%] 3.47e-05 3.56e-05 1.80e-05 4.97e-05 1.85e-05 1.85e-05
L0(p) [%] 1.44e-05 1.46e-05 8.52e-06 1.77e-05 8.80e-06 8.80e-06
L1(u) [%] 7.83e-06 8.09e-06 3.61e-06 1.17e-05 3.68e-06 3.68e-06
L1(v) [%] 7.83e-06 8.09e-06 3.61e-06 1.17e-05 3.68e-06 3.68e-06
L1(p) [%] 2.55e-06 2.68e-06 1.27e-06 3.53e-06 1.43e-06 1.43e-06

500

L0(u) [%] 2.94e-04 2.89e-04 3.24e-04 4.23e-04 3.64e-04 3.64e-04
L0(v) [%] 2.94e-04 2.89e-04 3.24e-04 4.23e-04 3.64e-04 3.64e-04
L0(p) [%] 7.62e-05 7.41e-05 8.72e-05 9.61e-05 9.34e-05 9.34e-05
L1(u) [%] 7.64e-05 7.49e-05 8.33e-05 1.14e-04 9.46e-05 9.46e-05
L1(v) [%] 7.64e-05 7.49e-05 8.33e-05 1.14e-04 9.46e-05 9.46e-05
L1(p) [%] 1.52e-05 1.50e-05 1.76e-05 2.08e-05 1.96e-05 1.96e-05

1000

L0(u) [%] 1.13e-03 1.06e-03 1.56e-03 1.45e-03 1.67e-03 1.67e-03
L0(v) [%] 1.13e-03 1.06e-03 1.56e-03 1.45e-03 1.67e-03 1.67e-03
L0(p) [%] 2.04e-04 1.91e-04 3.04e-04 2.75e-04 3.30e-04 3.30e-04
L1(u) [%] 3.68e-04 3.41e-04 5.40e-04 5.15e-04 5.87e-04 5.87e-04
L1(v) [%] 3.68e-04 3.41e-04 5.40e-04 5.15e-04 5.87e-04 5.87e-04
L1(p) [%] 5.75e-05 5.31e-05 9.84e-05 8.68e-05 1.11e-04 1.11e-04

seen that the integrated L1 error norm of the velocity components are gener-
ally lower with the FSAC-PP method compared to the AC method across the
tested schemes and Reynolds number, with a few exceptions. Notably, the
MCB scheme at Re=100 produces error norms which are an order of mag-
nitude lower when using the FSAC-PP method. This difference decreases
at higher Reynolds numbers while the FSAC-PP method still produces bet-
ter results. Similar observations can be made about the Rusanov Riemann
solver and its combination with the MCB scheme, where lower integrated
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Table 6: Integrated L0 and L1 error norms for both velocity components and the pressure
over time. Results are shown for the FSAC-PP method.

AD no Riemann Solver Rusanov Riemann Solver

Re no CB no CB SCB MCB no CB MCB

100

L0(u) [%] 1.41e-05 1.41e-05 1.42e-05 1.44e-05 1.93e-05 1.93e-05
L0(v) [%] 1.41e-05 1.41e-05 1.42e-05 1.44e-05 1.93e-05 1.93e-05
L0(p) [%] 1.02e-05 1.01e-05 1.00e-05 1.01e-05 1.14e-05 1.14e-05
L1(u) [%] 2.78e-06 2.77e-06 2.78e-06 2.83e-06 3.86e-06 3.86e-06
L1(v) [%] 2.78e-06 2.77e-06 2.78e-06 2.83e-06 3.86e-06 3.86e-06
L1(p) [%] 2.71e-06 2.67e-06 2.65e-06 2.66e-06 2.84e-06 2.84e-06

500

L0(u) [%] 1.70e-04 1.66e-04 1.80e-04 1.93e-04 2.88e-04 3.31e-04
L0(v) [%] 1.70e-04 1.66e-04 1.80e-04 1.93e-04 2.88e-04 3.31e-04
L0(p) [%] 6.88e-05 6.79e-05 6.93e-05 7.16e-05 8.13e-05 8.75e-05
L1(u) [%] 4.11e-05 4.01e-05 4.40e-05 4.73e-05 7.07e-05 8.44e-05
L1(v) [%] 4.11e-05 4.00e-05 4.40e-05 4.73e-05 7.06e-05 8.44e-05
L1(p) [%] 1.70e-05 1.67e-05 1.70e-05 1.75e-05 2.20e-05 2.15e-05

1000

L0(u) [%] 6.58e-04 6.46e-04 7.68e-04 1.02e-03 1.54e-03 1.53e-03
L0(v) [%] 6.59e-04 6.46e-04 7.67e-04 1.02e-03 1.54e-03 1.54e-03
L0(p) [%] 1.70e-04 1.68e-04 1.75e-04 1.86e-04 2.49e-04 2.49e-04
L1(u) [%] 1.74e-04 1.61e-04 1.96e-04 2.92e-04 5.13e-04 5.13e-04
L1(v) [%] 1.74e-04 1.61e-04 1.96e-04 2.93e-04 5.13e-04 5.13e-04
L1(p) [%] 4.35e-05 4.27e-05 4.47e-05 5.16e-05 7.98e-05 7.98e-05

L1 error norms are obtained using the FSAC-PP method, where only at
Re=100 slightly better results occur using the AC method which shows inte-
grated error norms that are 4.7% lower compared to the FSAC-PP method.
Similar observations are also true for the L1 error norm of the pressure, where
generally better results are obtained using the FSAC-PP method. It is note-
worthy here that higher errors are obtained using a Rusanov Riemann solver
approach at higher Reynolds numbers, which suggests that its dissipative na-
ture has measurable impact on the solution. On the other hand, the non-CB
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Table 7: Average number of iterations required to converge in pseudo time to the conver-
gence threshold of ε = 10−4. Results are shown for the AC and FSAC-PP method and
the speed-up of the FSAC-PP method over the AC method is given in parenthesis.

AD no Riemann Solver Rusanov Riemann Solver

Re no CB no CB SCB MCB no CB MCB

AC
100 3559 4513 820 4595 823 823
500 1554 1596 793 1742 847 847
1000 2099 2078 2111 2205 2177 2177

FSAC-PP
100 26 (137) 25 (181) 25 (33) 23 (200) 29 (28) 25 (33)
500 64 (24) 63 (25) 69 (11) 61 (29) 122 (7) 46 (18)
1000 73 (29) 66 (31) 88 (24) 89 (25) 102 (21) 93 (23)

schemes shows consistently a low amount of error, which is in line with the
previous discussion on the dissipative properties of the scheme. However, the
increase in accuracy comes at the cost of loss in stability at higher Reynolds
numbers with challenging flow structures, as was observed for the lid driven
cavity case.

Table 7 shows the average number of iterations that were required to
converge the solution in pseudo time for each scheme and method at all
Reynolds numbers. The speed-up that was gained by the FSAC-PP method
over the AC method is further given in parenthesis. It is immediately clear
that the FSAC-PP method has significant performance advantages over the
AC method, where the worst speed-up is a factor of 7 and the best speed-up is
a factor of 200. With other words, the FSAC-PP method required, at worst,
14.3% of total simulation time to convergence compared to the AC method
or, at best, 0.5%. This makes the FSAC-PP method a prime candidate for
unsteady flows, independent of the underlying scheme. Although the MCB
scheme requires a substantial amount of iterations using the AC method, es-
pecially at Re=100, this number can be reduced by pairing the scheme with
the Rusanov Riemann solver, which by itself has a lower number of required
iterations per pseudo time step. At Re=1000, the number of iterations are
reduced and comparable among the different schemes using the AC method.
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For the FSAC-PP method, it can be seen that the Rusanov Riemann solver
provides the highest number of required iterations. Using the MCB scheme
here, however, provides potential to reduce this number substantially. At
Re=500, for example, this number is reduced by a factor of 2.7, showing the
potential of the MCB scheme to increase the convergence rate when using
the FSAC-PP method.

In summary, we have seen that not just the scheme, but also the incom-
pressible method that is being used has a significant influence on the accu-
racy and computational time. Differences up to an order of magnitude in
the integrated L1 error norm were observed and computational speed ups
of a factor of 200 were achieved, which shows the potential of the FSAC-
PP method to treat unsteady flows at a highly improved convergence rate.
The Rusanov Riemann solver showed the largest amount of inherent numer-
ical dissipation which was manifested itself in an increased integrated error
norm. Although the MCB scheme was not able to reduce this error, it was
able to provide significant convergence rate improvements. While the lower
dissipative numerical schemes generally showed lower error values, we have
seen previously that these schemes have problems to reproduce the correct
physical behaviour at higher Reynolds numbers. Thus, a certain amount of
dissipation is required and introduced through the Riemann solver which is
scaled locally through the eigenvalues of the system.

5.3. Forced separated flow over a backward-facing step

We have chosen to present results here for the backward facing step as
another classical validation case which deals with forced separation and flow
reattachment, the latter being a numerically difficult task to predict cor-
rectly. Zamzamian and Razavi [30] also validated their results against the
backward facing step problem and based their simulations on the experi-
ments of Denham and Patrick [67], who investigated laminar flows for a step
to upstream channel height ratio of 1:2. Results were provided for Reynolds
numbers of Re = 73, 125, 191, 229 using an aspect ratio of the inlet channel
of L/h = 100/15 = 6.6̇. Durst et al. [68] reviewed several studies which
measured the downstream location as a function of Reynolds number, at
which point a fully developed velocity profile is obtained. They provided an
empirical formula of the form

L/h =
[
0.6191.6 + (0.0567 ·Re)1.6

]1/1.6
, (87)
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Table 8: Grid convergence study for the backward facing step. Shown are the number of
elements of the channel in x(nx) and y(ny), the normalised reattachment point of the flow
behind the step (x/S)re, the extrapolated value using the Richardson extrapolation (φext)
and the grid convergence index GCI.

l1 l2 l3 l4 l5

nx × ny 15×38 30×75 60×150 120×300 240×600
(x/S)re 4.60108 5.21966 5.48584 5.60057 5.64340
φext - 5.27 5.50 5.61 5.65
GCI - 0.6605 0.2436 0.0994 0.0362

for which the aspect ratio can be obtained from the Reynolds number.
With this equation and an aspect ratio of L/h = 6.6̇, the maximum Reynolds
number that can be achieved while still providing a fully developed velocity
profile is Re = 116. This number is, however, only an indication as it has
been determined for pure channel flows without expanding channel geome-
tries. None the less, this suggests that the experiments at higher Reynolds
numbers do not exhibit a fully developed velocity profile at the intersec-
tion of the smaller and larger channel. This can be confirmed by inspecting
the velocity profiles provided in [67]. At Re = 125 and higher, the veloc-
ity profiles visually deviate from the fully developed case; even the flow at
Re = 73 shows slight deviations. This creates a major difficulty in terms of
the boundary conditions. In order to be consistent with the experiments, we
need to sample the velocity profile at the entrance of the larger channel and
impose the experimental values in our simulation. We digitized all velocity
profiles at the inlet for the different Reynolds numbers and fitted a spline
through them. We then interpolated values on the spline which coincided
with the locations of the vertices of the mesh and imposed those values in
the simulation. Zamzamian and Razavi took the same approach except for
the Re = 73 case, where they imposed a parabolic velocity profile. With the
velocity profile given at the entrance to the larger channel, the smaller chan-
nel becomes redundant and is removed from the simulation domain. This
means, however, that the pressure cannot develop upstream and thus its
boundary condition becomes uncertain. In our experience with a full back-
ward facing step geometry, the pressure plays a dominant role in determining
the reattachment length and development of the overall flow. For example,
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different pressure boundary conditions applied to the convex corner point at
which the forced separation occurs can have measurable difference on the
reattachment length. Despite the aforementioned difficulties, we decided to
replicate the study of Zamzamian and Razavi using the same reference data
and numerical set up of the boundary conditions to compare our results.

We first present a grid convergence study to show at which mesh size a
grid independent solution can be obtained. The results are shown in Table 8
using the AC method at Re = 73. Here we show the number of elements
for each grid level, the length of the reattachment point normalised by the
step height, the expected value using the Richardson extrapolation and the
grid convergence index (GCI) according to Roache [69]. The reattachment
point was determined as the zero-crossing of the skin friction coefficient at
the wall. For the current study, we have chosen mesh level l4 for all subse-
quent simulations as the change in the reattachment point to the next finer
mesh (l5) dropped below 1%. At the same time, the computational times
were kept at a reasonable level. We use a convergence parameter of ε = 10−8

for all simulations.

Figure 14 and 15 show the velocity profiles for the AC and FSAC-PP
method using the various combinations of CB schemes and Riemann solver
at Re = 229 at different downstream locations. The non-CB and central
scheme with artificial dissipation show almost the same result and most of
the velocity profiles overlap. They do, however, show the best match with
the reference data for both methods. For the AC method, the SCB, MCB
and both Rusanov Riemann solver-based schemes show an increased momen-
tum. For the FSAC-PP method, it is the SCB scheme which produces an
excess momentum while the MCB scheme, the Rusanov Riemann solver and
the combination of the two show closer agreement with the reference data.
As stated by Denham and Patrick, at higher Reynolds numbers there is a
tendency for the flow to separate at the upper wall. They did not observe
such a behaviour and we could confirm with our simulation that no recir-
culation at the upper wall is present. However, the flow starts to deflect
downwards at the upper wall, effectively reducing the cross-sectional area
seen by the flow, which may cause acceleration of the flow at the centreline.
The boundary conditions play a crucial role here and it is likely that the
inherent uncertainty in those boundary conditions, as discussed above, may
have a significant influence on the behaviour of the schemes.
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Figure 14: Velocity profiles for the backward facing step problem at different locations
x/S using the AC method at Re=229. The reference data is taken from Denham and
Patrick [67].
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Figure 15: Velocity profiles for the backward facing step problem at different locations
x/S using the FSAC-PP method at Re=229. The reference data is taken from Denham
and Patrick [67].
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Table 9: Comparison of the reattachment length at different Reynolds numbers. Results
shown are obtained with the AC method.

CD no Riemann Solver Rusanov Riemann Solver

Re no CB no CB SCB MCB no CB MCB [70]

73
iteration 62410 62662 62312 63098 63565 63565
xr/S 5.59 5.61 6.29 6.03 6.45 6.45 6.6

125
iteration 62651 72381 83744 92276 62577 62577
xr/S 7.92 7.95 9.19 8.71 9.18 9.18 9.1

191
iteration 80471 86760 110229 101934 65749 65749
xr/S 9.77 9.86 11.10 10.71 11.07 11.07 11.2

229
iteration 75199 81321 100963 92220 63399 63399
xr/S 10.13 10.23 11.37 11.07 11.35 11.35 12.4

We chose to highlight the flow at Re = 229 as Zamzamian and Razavi showed
velocity profiles at the same Reynolds number. However, their implementa-
tion of the SCB scheme showed significantly different results compared to the
MCB scheme, concluding that the MCB scheme shows superior performance
over the SCB scheme. We cannot confirm the same findings and in-fact can
see that the SCB and MCB scheme show very similar trends. The velocity
profiles presented by Zamzamian and Razavi [30] showed that the velocity
on the wall at the step was not set to zero, which was effectively replac-
ing the wall with an open boundary condition in a numerical sense. It was
further mentioned by Zamzamian and Razavi that the central scheme with
artificial dissipation was too unstable to obtain converged results. This is
in contrast with our findings, where we showed that the central scheme is
matching the reference data in this case best, along with the non-CB scheme.

Table 9 and 10 show results for the different CB scheme and Riemann
solver combinations for all four Reynolds numbers provided by Denham and
Patrick [67]. Here, we show results of the number of iterations and reattach-
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Table 10: Comparison of the reattachment length at different Reynolds numbers. Results
shown are obtained with the FSAC-PP method.

CD no Riemann Solver Rusanov Riemann Solver

Re no CB no CB SCB MCB no CB MCB [70]

73
iteration 30324 30363 41359 34391 46230 38366
xr/S 5.60 5.61 6.98 6.46 6.48 6.48 6.6

125
iteration 45053 45056 59419 45151 58640 46345
xr/S 7.89 7.94 10.10 9.40 9.30 9.29 9.1

191
iteration 53222 53260 72671 65272 74927 62033
xr/S 9.79 9.86 11.10 10.77 10.71 10.68 11.2

229
iteration 58939 58997 85547 79635 89388 73514
xr/S 10.14 10.23 11.07 10.83 10.76 10.74 12.4

ment point as no further tabulated data for the velocity profiles are available.
We can make similar observations as in the previous Sections. The number of
iterations are again comparing favourably for the FSAC-PP method, where
we can see a speed-up over the AC method of up to a factor of two. We need
to stress here that we used the same boundary conditions as Zamzamian
and Razavi who used a fixed pressure outlet boundary condition while they
applied a Neumann condition for the velocity. This particular choice com-
bined with the upstream inlet boundary condition poses its own challenges
from a numerical point of view. Due to the elliptic nature of the pressure
Poisson solver in the second Fractional-Step of the FSAC-PP method, the in-
stantaneous pressure propagation results in backscatter at the outlet which
induces pressure waves that travel backward through the domain. Those
pressure waves cannot propagate upstream through the smaller channel as
it has been removed from the simulation. Therefore, the pressure reflects at
this boundary, interacting with itself and the velocity field which introduces
an oscillatory behaviour and may prohibit convergence at higher Reynolds
numbers. To circumvent this problem, the smaller inlet section is required so
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as to allow the pressure to develop correctly without disturbing the velocity
field. Our experience shows, that a fully Neumann boundary condition at
the outlet for the pressure can reduce the backscattering and thus enhancing
convergence. However, the pressure is then required to be fixed by some
other means in order to avoid the singularity of the solution matrix which
arises for a fully Neumann boundary problem. To overcome this problem
and to be consistent with the reference data against which comparisons are
made, we impose a fixed pressure boundary condition at the outlet.
To assess the accuracy of the predicted reattachment length from our simula-
tions, we compare the results against data provided by Leal and Acrivos [70],
which was also used as a comparison by Denham and Patrick. The data pro-
vided by Leal and Acrivos was obtained without a top wall which replaced
this physical boundary by the freestream velocity, so the results are only
given here as a reference. It can be seen, however, that the Rusanov Rie-
mann solver with and without the MCB scheme provides consistently the
best agreement with the reference data, closely followed by the SCB scheme.
This shows that the Riemann solver may indeed improve accuracy. Further-
more, the convergence rate has also been positively affected by the Riemann
solver treatment. For the AC method, it can be seen that the number of
residuals are lowest by using the Rusanov Riemann solver with or without
the MCB scheme, apart from the Re=73 case where the non-CB, SCB and
central scheme with artificial dissipation perform marginally better. There
are significant performance differences to be gained by the Rusanov approach,
where at Re=191, for example, a reduction in the number of iterations was
observed to be as high as 35.5% and 40.4% compared to the MCB and SCB
scheme, respectively. Although identical results were obtained in terms of
number of iterations for the Rusanov Riemann solver with and without the
MCB scheme, the latter provides an approximate 20% over the former when
using the FSAC-PP method. Using the FSAC-PP method, this scheme may
not perform always best in terms of iterations, however, it shows closer agree-
ment with the reference data over a scheme with slightly less iterations. With
increasing Reynolds number, it is also evident that the Rusanov and MCB
scheme combination becomes faster than the MCB scheme by itself in terms
of iterations. This again hints the performance benefits that may be derived
from this scheme combination for high Reynolds number flows.
In addition to the above discussion, we also show our predicted reattachment
lengths for all four Reynolds numbers using the MCB scheme without the
Rusanov Riemann solver and compare these with the reattachment lengths
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Figure 16: Comparison of the reattachment length of our implementation of the MCB
scheme with that of Razavi and Zamzamian [29]. Experimental data provided by Denham
and Patrick [67], Lean and Acrivos [70] and Goldstein et al. [71] are given as a reference.

given in [67]. We further compare them with other experiments cited by
Denham and Patrick and show an approximate measure of the reattachment
length obtained by Razavi and Zamzamian [29] for the MCB scheme, which
was deducted from streamline plots which is therefore only approximate.
This is shown in Figure 16.

We can see that the geometrical similar experiments of Goldstein et
al. [71] and Denham and Patrick [67] provide similar data while our results
compare more favourable with the work of Leal and Acrivos [70]. At lower
Reynolds numbers, the reattachment length obtained by Razavi and Zamza-
mian compares well with our MCB scheme. At higher Reynolds numbers,
however, their results are midway between our prediction and the experi-
ments of Denham and Patrick. Keeping in mind that in their simulation
fluid was allowed to exit the domain at the step, momentum was removed
from the flow which thus had less energy and attached earlier to the wall
than in our simulations. The fact that there is a large discrepancy between
the simulations and experimental data, shows that a comparison for this
geometry becomes problematic, if a non-fully developed velocity profile has
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to be imposed at the intersection of the smaller and larger channel, as was
discussed earlier.

Although we hope to have convey the intrinsic difficulties attached to the
reference data and numerical set up, we decided to include these results here
to show that the SCB scheme does not perform as poorly as claimed by Za-
mzamian and Razavi compared to the MCB scheme. Furthermore, the fact
that we did not observe any difficulties in getting converged results with the
central scheme with artificial dissipation which was reported by Zamzamian
and Razavi to ”show remarkable instabilities” [30, p. 8706], combined with
the fact that the velocities were not set to zero at the wall, suggests to us
that there might be issues with their particular implementation. Any re-
sults about the performance of the MCB scheme against the SCB scheme are
therefore misleading and in order to provide a fair comparison, reference data
with a fully developed velocity profiles at the larger channel’s inlet should be
used for comparison purposes.

6. Conclusion

In the present work, a generalised multi-directional characteristics-based
(MCB) scheme has been proposed which is applicable to any hyperbolic
incompressible flow method. Furthermore, we have modified the Rusanov
Riemann solver in a geometrical sense so that it is directly applicable to the
novel MCB scheme. This approach is different from the literature on multi-
directional Riemann solvers, see for example [72, 73, 74], where the Riemann
solver itself is made multi-directional. In the current approach, the multi-
directional nature is provided through the MCB scheme while the Riemann
solver provides additional numerical dissipation that scales with the Reynolds
number. In this way, a low-dissipative interpolation scheme can be used to
reconstruct the inter-cell values of the primitive variables which otherwise
may become unstable and non-physical. Thus, the order of the scheme can
be set arbitrarily high to control the accuracy while the Riemann solver pro-
vides the stability. The MCB scheme, on the other hand, is able to resolve
anisotropic behaviour better than the single-directional characteristics-based
(SCB) scheme and thus may be more favourable at higher Reynolds num-
bers where the flow becomes turbulent. This allows the splitting of accuracy,
stability and sound physical description and thus each part can be modified
separately to adapt to a given flow problem. Through the addition of the Rie-
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mann solver, we have created a generalised multi-directional Godunov-type
framework for incompressible flows, which, through the geometrical modifica-
tion of the Riemann solver, can also be used for unstructured meshes without
modifications. The scheme has been applied to the Artificial Compressibility
(AC) method as a benchmark and further to the Fractional-Step, Artificial
Compressibility with Pressure Projection (FSAC-PP) method which is a re-
cent unification of Chorin’s AC and Pressure Projection method.
We have tested the MCB scheme with and without a Riemann solver and
compared it against the SCB and a non-CB scheme. Additional compar-
isons were made against the central scheme with artificial dissipation. The
test cases considered were the lid driven cavity flow, the backward facing
step problem and the Taylor–Green vortex flow. The latter case also allowed
to make comments on the unsteady behaviour of each scheme. Overall it
was found that the accuracy and potential speed-up was highly flow regime
and case dependent. Unlike in the previous literature on the MCB scheme
which was only used in conjunction with the AC method, we could not attest
the same favourable convergence and accuracy properties across all methods
and have shown the potential boundary condition issues which may have
contributed to the biased comparisons. For laminar Reynolds numbers and
steady state flows, there was little differences observed in the accuracy of the
schemes. It was found, however, that the FSAC-PP method could speed-up
the simulations by up to a factor of 5.8. At higher Reynolds numbers, the
MCB scheme was able to delay oscillations in the pressure field more than its
non-CB counterpart but required a Riemann solver to preserve stability when
the Reynolds number was increased further. Interestingly, the implicit and el-
liptic treatment of the pressure in the FSAC-PP method showed no oscillation
of the pressure and provided a mechanism to stabilise the flow. The Riemann
solver was still necessary, however, to balance the lost physical dissipation
through numerical dissipation. When an unsteady flow was considered, the
FSAC-PP method showed further significant acceleration properties, where
the average number of iterations per pseudo time step were 7–200 times lower
than those obtained with the AC method. At the same time, the error in
pressure was up to an order of magnitude lower when the same schemes at
the same Reynolds number were compared between the AC and FSAC-PP
method. The role of the upwinding of the Riemann solvers and the resulting
numerical dissipation, as well as the non-conservative discretised form of the
implemented equations have been discussed in conjunction with the decay
of the kinetic energy, where all numerical schemes showed a steeper decay
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compared to the analytic solution. Those schemes that have shown an excess
in numerical dissipation also produced larger errors in the predicted kinetic
energy, while preserving stability at higher Reynolds numbers. However, we
have not only shown advantages and disadvantages of the schemes but also
highlighted that the accuracy and convergence rate is noticeably influenced
by the underlying incompressible flow method.
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D. L. Youngs, Comput. Meth. Appl. M. 293 (2015) 207–231.
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