
1

Incorporating Safety in Early (Airframe) Systems Design

and Assessment

Sergio Jimeno Altelarrea,* Arturo Molina-Cristóbal,† Atif Riaz‡ and Marin D. Guenov§

School of Aerospace, Transport, and Manufacturing

Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom

Presented is a novel framework for incorporating safety analysis in early systems

architecture design. Traditionally, a systems architecture is first defined by the architects and

then passed to safety experts, who manually create artefacts such as Function Hazard Analysis

(FHA) or Fault Tree Analysis (FTA) for safety assessment. The problem with this manual

approach is that if the architect modifies the systems architecture, then the whole safety

assessment process needs to be repeated, which is tedious and time consuming. To overcome

this limitation, the proposed framework automates the creation of safety models such as FHA

and FTA by utilizing the Requirement, Functional, Logical, and Physical (RFLP) systems

engineering paradigm. The framework supports three main activities. First, the safety targets

are determined by performing a FHA of the architecture and the Requirements view is

updated. Second, compliance with the safety requirements is analyzed using dynamic fault

trees, automatically generated from the Logical view. Interactive visualization techniques are

proposed to interpret the safety results, e.g. highlighting the greatest contributors to the

probability of failure. Third, an algorithm is developed that enables the designer to

interactively improve the architecture’s safety by introducing more reliable components or

increasing redundancy. The concept is illustrated with a representative example, where the

environmental control system of a civil aircraft is studied from a safety point of view.

I. Introduction

System safety is of paramount importance in all industries, and particularly in aerospace. Specifically, in relation to

(civil) aircraft, there are many failure conditions which may lead to a potentially fatal accident, involving multiple

casualties, damage to the aircraft, the surrounding area of the accident and which incur substantial monetary losses.

Currently, safety analyses are performed manually, based on informal models and various documents regulating the

certification of aircraft, such as the Certification Specifications CS-25 [1], which establish safety objectives on the

different parts of the aircraft in order to keep the probability of catastrophic accidents to a minimum. However, this

manual approach brings unnecessary subjectivity and lack of consistency to the analyses [2]. Furthermore, safety

assessment usually takes place later on in the product development process, after the design is finalized [3]. This, in

turn may lead to costly redesign efforts.

Different approaches to this problem have been proposed in recent years focusing on automating safety analyses

such as the fault tree analysis (FTA). Although they have many aspects in common, differences between the methods

can be found mainly in two areas: 1) the input to the algorithms, the underlying data structures representing the

architecture e.g. SysML diagrams or AADL models; and 2) its level of the detail, which appears to be correlated with

the design phase. With respect to the latter, the methods can be abstracted in two categories: those who use only the

connections between components, and those who consider additional failure information such as different component

states, events and transitions from one state to another.

In the first category, Mhenni et al. [3] propose the integration of safety analysis within a systems engineering

approach by using SysML internal block diagrams for automatic component-based fault tree generation. Roth et al.

* Research Student, Center for Aeronautics, Cranfield MK43 0AL, United Kingdom.
† Lecturer, Centre for Aeronautics, Cranfield, MK43 0AL, United Kingdom.
‡ Research Fellow, Centre for Aeronautics, Cranfield, MK43 0AL, United Kingdom.
§ Professor, Head of the Centre for Aeronautics, Cranfield, MK43 0AL, United Kingdom, AIAA Senior Member.

e805814
Text Box
Proceedings of the AIAA Scitech Forum 2019, San Diego, 7-11 January 2019.
DOI: 10.2514/6.2019-0553

e805814
Text Box
Published by AIAA. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).
The final published version (version of record) is available online at DOI:10.2514/6.2019-0553. Please refer to any applicable publisher terms of use.

2

[4] found their method for automatic FTA on the Structural Complexity Management methodology**, producing fault

trees based on the system functions. One addition limitation of the later is that redundancy needs to be included in the

FTA manually.

Amongst the method that use additional failure information, Xiang et al. [5] enable automatic fault tree synthesis

and reliability analysis by combining internal block diagrams and sequence diagrams with a reliability configuration

model and a static fault tree model. Papadopoulos et al. [6] extend the Safety Argument Manager†† to simplify the

development of FTAs for complex programmable and electronic systems. Delange and Feiler [7] introduce an Error-

Model annex to the AADL language to model failure states of components, failure propagation and internal and

external failure events, thus enabling the automatic computation of different safety analyses. FTA capabilities similar

to the previous approach are also provided by Li and Li [8], who base their safety analysis tools on Altarica, and by

Majdara and Wakabayashi [9], who facilitate automatic fault tree synthesis by developing their own modelling

language. Tajarrod and Latif-Shabgahi [10] propose an extension of Simulink models containing functional (failure)

and behavioral information, in order to automatize FTA. Simulink is also the preferred approach for Papadopoulos

and Maruhn [11] where fault propagations are modelled for each component. Without explicitly obtaining fault trees,

Schallert [12] proposes a method to obtain FTA results from extended Modelica models.

One of the main limitations, common to all the methods, is that they consider safety analysis as a one-way only

process. Given a particular design, the methods can be used to evaluate its safety characteristics and compliance with

a pre-existing set of requirements. However, the learnings from this process are not used to improve the architecture,

with the exception of [6] which considers the modification of the design but does not propose any methodology. We

believe that safety analysis should be viewed as a two-way process which is repeated through the design process and

improves the safety characteristics of the design iteration after iteration. In addition, potential modifications made to

improve safety, will have implications on the sub-system and system level performances. These implications have

been neglected in the all previous methods limiting the applicability of their results. Another shared downside to the

methods is that they only consider standard fault trees, as opposed to dynamic fault trees or other more advanced

extensions.

Within this context, the aim of the work presented in this paper is to improve safety assessment in the early product

development process in order to overcome the previously discussed limitations of existing methods. The scope of the

presented work is limited to early design, under the assumption that the requirements, functions, and logical views of

the (systems) architecture are defined to a basic level. The physical view is not considered at this level of detail.

Computational models for sizing and performance are also out of the scope of this work. The safety analyses are

limited to simple operational scenarios, where only one configuration of the system is considered and details about

the different phases of the mission are excluded.

The rest of the paper is organized as follows. Section II provides background information and terminology used in

the manuscript. The proposed methods for aiding the automation of safety analysis are described in Section III. Section

IV demonstrates the application of the proposed approach to a representative test case. Finally, summary, conclusions

and plans for future work are drawn in Section V.

II. Background

This section explains the terminology and gives a very brief overview of some of the safety analysis methods referred

to in this paper.

A. FHA - Functional Hazzard Assessment [1].

Comprehensive and systematic study of functions to identify failure conditions and classify them according to

their severity. It can be done at aircraft or system level, depending of the examined functions. The system levels FHA

are used as an input to the system PSSA.

B. PSSA - Preliminary System Safety Assessment [1].

Systematic examination of a system, to determine how failures can cause the FHA functional hazards and how the

safety requirements can be met. It employs Fault Tree Analyses or similar tools to determine the latter.

C. SSA - System Safety Assessment [1].

** A methodology for handling complex system and structural dependencies by combining Design Structure Matrices

and Domain Mapping Matrices [2]
†† A tool for safety management described in [3]

e805814
Text Box

3

It is a systematic, comprehensive evaluation of a system, its architecture and installation to show that requirements

from the FHA and system PSSA are met. Similar tools to those of the PSSA are employed.

D. FTA – Fault Tree Analysis

Deductive failure analysis that focuses on one undesired event, the top event, and determined its causes in terms of

basic events and their relations expressed through logical gates. According to the review paper by Ruijters and

Stoelinga [14], two main kinds of fault trees exists, standard and dynamic, as well as several less known extensions.

The principal distinction is that standard fault trees can only model system failure through combinations of component

failures, whereas dynamic fault trees introduce the notion of temporal sequence of failures.

Standard fault trees only use mainly three types of gates:

• AND: the output event needs all input events to happen (Some variations may include the INHIBIT gate,

whose function is equivalent to the AND gate).

• OR: any of the input events occurring is sufficient to make the output event happen.

• K out of N: any sets with k of the N input events is sufficient to make the output event happen.

. Dynamic fault trees add three new kinds of gates:

• PAND: priority AND, specifying the order of input events that leads to the output event.

• FDEP: the first input of the gate acts as a trigger, making all other inputs to occur when it fails.

• SPARE: when the primary unit fails, it is substitute by any of the available spares, which become active.

Regarding the probability of failure of the basic events, standard fault trees use generally inverse exponential

distributions [14] 𝑃𝑓(𝑡) = 1 − exp(−𝜆𝑡), which are determined by the failure rate 𝜆. Dynamic fault trees include a

dormancy factor 𝛼 ∈ [0, 1] that reduces the probability of failure for inactive components.

E. Importance measures

Importance measure indicate how important is each basic event with respect to the probability of failure of the top

event. There exist many importance factors, Dutuit and Rauzy [15] analyze six of them, their mathematical formulation

and possible physical interpretation. Here we will focus on two well-known measures.

The Fussell-Vesley importance factor, also known as diagnostic importance factor measures the fraction of the

system unavailability that involves the basic event happening.

𝐹𝑉 ≔
𝑃𝑓(𝑡𝑜𝑝 / 𝐴 = 1)

𝑃𝑓(𝑡𝑜𝑝)
 (1)

where 𝑃𝑓(𝑡𝑜𝑝/𝐴 = 1) is the probability that the top event occurs give that event A do occur (Pf(𝐴) = 1). The

Birnbaum importance factor, also called marginal importance factor, indicates the conditional probability that fixing

the problem with the event A stops the top event from happening

𝐵𝑖𝑟𝑛𝑏𝑎𝑢𝑚 ≔ 𝑃𝑓(𝑡𝑜𝑝 / 𝐴 = 1) − 𝑃𝑓(𝑡𝑜𝑝 / 𝐴 = 0) (2)

where 𝑃𝑓(𝑡𝑜𝑝/𝐴 = 0) is the probability that the top event occurs give that event A does not occur (𝑃𝑓(A) = 0).

F. RFLP Paradigm, augmented with Computational Domain

It assumes that functional reasoning as part of the systems architecting process is distributed over four notional

domains: Requirements, Functional, Logical, and Physical [16]. It is based on the German guideline VDI 2206,

“Design methodology for mechatronic systems” [17]. RFLP is augmented with a Computational Domain to provide

the capability of automated systems sizing, as proposed by Bile et al. [18]. Additionally, traceability between different

view of the architecture is incorporated by Guenov et al. [16], enabling a more effective and interactive design process.

Requirements View: The requirements view displays all the architecture requirements, which represent the

stakeholder needs. Requirements can be of functional or performance type, and it is possible to decompose them

hierarchically. Requirements are mapped to the functions of the system in the Functional View.

Functional View: This view contains all the architecture functions, actions that the system must perform to meet

the stakeholders' needs. Functions are linked to components, and vice-versa. Function support decomposition.

Logical View: The logical view consists of components, solutions satisfying the functions, and their

interconnections via ports.

Computational View: Strictly speaking, this is not part of RFLP. It is a notional domain introduced in [18] with its

primary purpose to automatically orchestrate the computational code (e.g. steady state models) associated with each

component in the logical view into sizing (computational) workflows. Indirectly this domain is used to manage the

4

dependencies between parameters, i.e., the numerical values that describe some (behavioral) characteristics of the

components, and which can be linked to performance requirements.

G. Redundancy

The concept of redundancy was introduced as a means of constructing reliable systems out of unreliable components

[19]. Two main kinds of redundant structures have been developed, static redundancy where all the redundant items

are on-line contributing to the output, and dynamic structures where only one part of them are on-line and the others

wait to be activated in case another component fails, usually in a dormant state [20]. Analogous strategies have been

also developed for improving the reliability of software, e.g. N-version programming and recovery blocks [21].

Safety and reliability concerns are of maximum importance for the aerospace industry, and application of

redundancy can be found in most of the subsystems. Some examples (taken form Moir and Seabridge [22]) are the

flight control system, with redundant actuators and in case of fly by wire redundant computers and buses, the hydraulic

system with various hydraulic channels, or the power distribution system, with redundant distribution lines and various

sources including emergency ones.

III. Proposed Approach

In order to improve safety assessment in the early product design, a novel safety framework, based on the RFLP

paradigm, is proposed. As shown in Fig. 1, safety is regarded in the framework as a two-way process. It uses the

architecture definition as an input to safety analyses such as FTA or FHA. In turn, their results are used to update the

architecture, for example by adding new requirements or logical components to keep safety compliant. These changes

may have an impact on the system performance which might demand even further modification, which in turn affect

safety and so forth. As discussed in [18], the RLFP paradigm augmented with a computational view provides a means

of assessing such impact. Nevertheless, the main focus of this paper is on the safety part.

Fig. 1 Overview of the Architecting process including safety

In this section the main parts of the proposed framework are introduced. Fig. 2 shows an overview of the framework

(in light blue) and its links with existing RFLP elements. The main purpose of these extensions is to support the

automation of FTAs and partial automation of FHAs from early design stages, e.g. in the scope of PSSAs or SSAs.

This framework not only enables safety assessment, but, in combination with the existing traceability between RFLP

domains, it also helps keeping it up to date as the design evolves. Additionally, it can provide guidance to the architect

in the process of modifying the architecture to meet the safety requirements, as indicated in the link between FTA and

L in Fig. 2.

Architecture Definition

• Requirements

• Functions

• Components

Architecture Assessment

Sizing & Performance

Safety

5

Fig. 2 Overview of the RFLP Safety Framework

A. Functional Hazzard Assessment

The first part of the framework aims to support the creation of FHAs. One of the first steps of a FHA is obtaining

a list of functions of the system [23], to analyze the hazards related to them. This list is compiled automatically by

traversing part of the Functional view of the architecture in its hierarchical form. In this form, functions are organized

using parent child relationships (with at most one parent), resulting in a data structure known as tree‡‡. The scope of

the FHA is determined by the selected components to analyze, e.g. the components forming the subsystem being

studied. The functions that map to the selected components, plus all their children are included in the FHA.

It is recommended to use a worksheet to perform this kind of analysis [23], consequently this is the approach

followed here. The views of the architecture contain enough information to fill some of the columns of the worksheet

such as the function and the hazard number. The rest of the FHA fields need to be filled in manually. Even though this

prevents full automation of the assessment, the information in the functional view can provide valuable support, for

example by helping to obtaining the potential functions affected by the failure of another one, as suggested by

Wilkinson and Kelly [24]. From the point of view of enabling Fault Tree Analysis only one additional field needs to

be completed by the architect, “Classification”, as it determines the level of detail necessary in further analysis (e.g.

FTA) and the required probability target.

For each requirement mapped to a function considered in the FHA, a child safety requirement can be created and

appended to it. The safety requirements will display a message describing qualitatively or quantitatively the severity

of the requirement, following to the definitions specified in CS-25 [1], Book 2 AMC 25.1309. For example, for a

failure condition classified as Major, the qualitative requirement message will be “No more frequent than remote” and

the quantitative one will display “With a maximum average probability per flight hour of order 10−5 or less”. These

safety requirements store the probability target that will be used in future analysis like FTA. All mapped functions

plus their children are considered for one requirement, in case their number is greater than, only strictest of them is

displayed.

In this way, the FHA is used to update the requirements view in order to reflect safety concerns. Furthermore,

these requirements are automatically linked to the elements in other views, enable the automatic setup of further

analysis such as Fault Tree or Dependency Diagram analyses.

B. Fault Tree Analysis

During a system PSSA the architecture needs to be evaluated to show, among others, how item failures lead to the

various failure conditions, and how the qualitative and quantitative objectives for those conditions. Fault Tree Analysis

is the first of the three recommended tools by the ARP4791 [13] in order to perform the previous tasks. Similar

activities need to be performed during an SSA, although it is generally more detailed as it occurs later in the design

and incorporates the results from the PSSA.

‡‡ A rooted tree [4] is a connected, acyclic, undirected graph in which one of the vertices the highest-level function of

the architecture is distinguished from the others, creating a hierarchy via parent/child relations. Multifunctional

architectures are represented by a set of rooted trees, also called a forest.

6

The logical view can be used to generate fault trees automatically by using an algorithm which is described later

in this section. This fault tree, will be based on the system components, whose faults correspond to the basic events in

the tree; and connections between components, which model the different kinds of redundancy present in the system,

and translate into one of the various types of logical gates described in the previous section.

Some additional elements, not considered part of the RFLP paradigm so far [16] are necessary to enable some

FTA features. For quantitative analysis, the definition of the logical components in the architecture must be extended

with a component probability of failure and a dormancy factor in case that dynamic redundancy is employed. To

indicate advanced cases of redundancy, it is necessary to extend the connections with information about the

redundancy type. These are the only two required changes to enable the level of FTA described in this paper.

Algorithm for tree creation

The algorithm for creating the fault tree from the logical view (Table 1), traverses the tree in as similar way to the

one proposed by Mhenni et al. [3], but the rest of the elements are different. First, the algorithm presented here is

designed to handle RFLP logical views instead of the SysML internal block diagrams. Second, it can handle more

variety of redundancy cases, such as dynamic redundancy. Finally, unlike in the Mhenni et Al. algorithm, the

construction of the tree occurs in a bottom up way. The subtrees corresponding to the children of a gate are built before

the gate itself. In this way it is possible to omit single output gates, which are more compact and therefore easier to

interpret.

The algorithm CREATE-TREE is used to initialize the tree and the auxiliary sets of parent components in the

recursion tree and visited components, and to call the algorithm CREATE-TREE-RECURSIVE-COMPONENT. This

second algorithm needs the following inputs: an output of any of the components in the logical view, which will

provide the name for the output of the gate to be added to the tree and the component to be modelled by this gate; the

tree itself, to which the gate will be added; the logical view, which will provide all the necessary information about

the architecture components and interconnections; the set of parent component in the recursion tree, to avoid

introducing cycles in the tree; and the set of visited components to avoid analyzing components more than once. First

the algorithm gathers the necessary information to construct the gate that describe a failure in the output. This is

assumed to happen when the component that provides the output of any of its inputs fail, hence the type being set to

OR. This information is provided respectively by GET-COMPONENT and GET-INPUTS. Before constructing the gate,

the subtrees rooted on the gates inputs are determined by calling CREATE-TREE-RECURSIVE-CONNECTION for each

one of them. Finally, these subtrees and the basic event of component fail are put together with the OR gate.

The algorithm, CREATE-TREE-RECURSIVE-CONNECTION works analogously to the previous one, but instead of

receiving a model output receives a model input. This input is used to get the connection to be modelled by the gate

using GET-CONNECTION. The type of the gate is determined by redundancy type specified in the connection, e.g. AND

when any output can be used, k/N for voting systems where k correct inputs out of N are needed, and SPARE gates

for modelling dynamic redundancy. Then, the outputs reached are obtained by get-outputs, the outputs will be filtered

according to whether they belong to the set of parents and the logic determined by the type of gate. E.g. for and OR

gate, removing the gate inputs contained in the set of parents is enough, but in case of an AND gate if any of the inputs

is false, all of them are remove since the gate output is always false. Before constructing the gate, the subtrees rooted

on the gates inputs are determined by calling CREATE-TREE-RECURSIVE-COMPONENT for each one of them.

Finally, these subtrees describing the failure of the component inputs are put together with the gate.

It is important to note that the neither of the two previous algorithms is recursive by itself as both can either call

the other or just return without calling any in the base case (component with no inputs or connection that does not

reach any output). However, if both of them are considered together, we can see that the first one calls the second,

which I turn calls the first, behaving effectively in a recursive manner.

The update of the fault tree happens in the ADD-GATE algorithm. If there is more than one input, the algorithm

will create a gate of the selected type is created, producing the desired output, and depending on the selected inputs.

It will append the gate to the tree, updating set of events E and the set of gates G and it will return the output, which

represent the gate. Otherwise, no gate is created and the only input (or null set) is returned to be appended to a gate

higher in the fault tree.

The approach used here for creation of the fault tree shares common subtrees, using only one instance in the

underlying data structure (acyclic graph). This approach is the one used by Ruijters and Stoelinga [14] to model fault

trees as it allows for a more compact directed acyclic graph, instead of mimicking its graphical representation which

usually models common subtrees either by duplication or by separating the subtree and referencing in through the use

of transfer in/out gates. The conventional tree layout can be recovered when rendering for visualization.

7

Table 1 Algorithm for FTA creation

CREATE-TREE (logical-view, top-event)

1 tree = 〈∅, ∅〉 // a fault tree is described by the tuple T = 〈E, G〉, where E is the set of events (basic and

intermediate) and G is the set of gates

2 parents = ∅ // set of parent nodes in the tree, will help to avoid loops in the tree

3 visited = ∅ // set of visited nodes in the tree, will help to avoid visiting a node more than once

4 return CREATE-TREE-RECURSIVE-OUTPUT (logical-view, top-event, tree)

CREATE-TREE-RECURSIVE- COMPONENT (output, tree, logical-view, parents, visited)

1 component = GET-COMPONENT (logical-view, output)

2 parents = parents ∪ component // the component will be a parent in the subsequent recursive calls

3 inputs = GET-INPUTS (logical-view, output)

4 gate-inputs = ∅

5 for each input ∈ inputs

6 gi = CREATE-TREE-RECURSIVE-INPUT (input, fault, logical-view, output, tree, parents, visited)

7 gate-inputs = gate-inputs ∪ gi

8 parents = parents – solution // exclude from the set, the component is not a parent any longer

9 visited = visited ∪ component // the component is marked as visited so it is not visited again

10 return ADD-GATE (tree, output, component ∪ gate-inputs , OR) // Failure of the component or any of its inputs

CREATE-TREE-RECURSIVE-CONNECTION (input, fault-tree, logical-view, output, tree, parents, visited)

1 connection = GET-CONNECTION (logical-view, input)

2 type = GET-GATE-TYPE (logical-view, input)

3 outputs = GET-OUTPUTS (logical-view, input, parents, type) // will exclude connections to parent components

4 gate-inputs = ∅

5 for each output ∈ outputs

6 gi = CREATE-TREE-RECURSIVE- OUTPUT (output, fault-tree, logical-view, output, tree, parents, visited)

7 gate-inputs = gate-inputs ∪ gi

8 return ADD-GATE (tree, input, gate-inputs , type) // Failure of any of the valid outputs related to the connection

ADD-GATE (tree, output, inputs, type)

1 if |inputs| > 1 // Only add gates with more than one input

2 Create a new gate with name gate

3 gate.type = type

4 gate.inputs = inputs

5 gate.output = output

6 〈E, G〉 = tree

7 E = E ∪ output ∪ inputs

8 G = G ∪ gate

9 Tree = 〈BE, G〉

10 return output

11 else

12 return inputs

Algorithms for tree evaluation

The algorithm for Fault Tree qualitative evaluation is based of MOCUS algorithm [26]. The main modification is

adapting it to our own data structures, a hash table. Once all the minimum cut sets have been obtained, the table allows

to retrieve in constant time the minimal cut sets for a desired basic event.

The algorithm for quantitative evaluation is based on the implementation of equations 11.1 in Kececioglu [27]. It

is used to obtain the probability of failure of the top event as well as to calculate the ranking of contributors to the

fault condition according to the selected importance measures. The higher order terms in the computation of the

probability can be truncated according to a selected level of accuracy to be achieved, often called relative cutoff [28],

thus reducing the computational time.

8

The authors acknowledge that there are other algorithms, e.g. using Binary Decision Diagrams, that can provide

better performance in some situations. However, their implementation demands more resources and the selected ones

are enough to demonstrate the proposed approach to safety evaluation.

C. Interactivity enablers

In order to enable a highly interactive architecting process, the following links between the safety framework and

existing RFLP elements are proposed, in a similar fashion to those proposed by Guenov et Al. [16]. The results of the

analyses, FHA tables, FTA diagrams and their quantitative and qualitative results are linked to the views of the

architecture providing seamless navigation. For example, the FHA table entries navigate to the corresponding

function, fault tree basic event map to the corresponding component, gates map to their inputs and, similarly, minimum

cut sets map to their elements.

D. Architecture modification for safety purposes

In some occasions, the initial architecture may be found to be not safe enough and thus it needs to be modified to

comply with the requirements. This modification might involve substituting components for more reliable alternatives,

for which functional-logical knowledge capture mechanism described in [16] can provide support. Another option is

to add redundancy to parts of the design, for this purpose, an algorithm to support architects and simplify the process

is described next.

Algorithm for redundancy addition

It allows the architect to create redundancy in an interactive manner. The algorithm reduces the effort of applying

redundancy to the architecture and prevents possible inconsistencies resulting from a manual duplication process. It

automatically handles duplication of components, linking between newly created components and between those and

existing ones including the setup of redundancy properties, and mappings between components and other architectural

elements such as functions.

In order to apply redundancy, the algorithm requires the user to provide information to solve any issue that might

appear (e.g. if an already redundant connection is found it can be further replicated or combined with the one to be

created) and to limit the number of components included. This way all the necessary decisions are made explicit and

considered before actually modifying the architecture. This not only increases the architect’s awareness of the changes

to be made but also eliminates the possibility of introducing some modifications that are found later to be wrong due

to a not considered issue.

The process starts by selecting the component to be made redundant, along with the number of channels and type

of redundancy to be created. Then the framework will traverse the architecture including or excluding components

based on their connections and whether they have conflicts. If a connection is free of conflicts, or the conflict is marked

to be resolved by making the connection redundant the algorithm will continue the traversal through that connection.

Otherwise the traversal will not go further. These conflicts are added according to a set of default rules or defined by

the user. Every time the architect introduces a new conflict the traversal is repeated. Once the designer is satisfied

with the components to be included and the duplication behavior introduced, the framework can be used to perform

the actual modification of the architecture.

Every time a component is visited during the traversal, every connection is examined for existing redundancy and

if it is found, they are marked as links with an existing redundancy conflict. Additionally, the rest of outputs are added

an external output conflict if they connect one of the visited components with one that is not. Sometimes, the later

component is visited later during the traversal, so the conflict does not apply anymore. An additional traversal detects

them and mark to be resolved by making the connection redundant.

The user can define stop conflicts to determine the extent of the redundancy propagation. A stop conflict can be

defined for a particular connection, or for a component, in this case it will apply to every connection belonging to the

component. The architect can also include more components by solving existing redundancy conflicts as described

before. Several resolution options are offered, namely merge “one to one”, each “new one with each old one” or

“duplicate existing redundancy”.

IV. Evaluation

In order to demonstrate the proposed framework, it has been implemented into AirCADia Architect, a prototype

software for systems architecting under the RFLP paradigm. An aircraft Environmental Control Systems (ECS), is

analyzed form a safety perspective. The initial ECS architecture consists of the following views: requirements view

(Fig. 3), functional view (Fig. 4) and logical view (Fig. 5). It features an ECS pack with a single heat exchanger which

is fed high pressure air by an electrical compressor. The power for the compressor comes from one of the engine

9

electric generators. The ECS pack provides cold air and hot (trim) air. The former is mixed with recirculating air from

the cabin at the manifold, this mix is further combined with trim air. The system is designed to accommodate this way

the various atmospheric conditions in which the aircraft will flight. Since the focus is the safety of the architecture,

proper performance of the architecture is assumed.

Fig. 3 ECS requirements view

Fig. 4 ECS functional view

10

Fig. 5 ECS logical view

 As it will be shown by the analysis, it fails to match some of the safety criteria. The proposed methodology is used

to interactively locate the source(s) of the problem and to assist the architect into modifying the architecture to comply

with safety requirements. Finally, the modified architecture is evaluated at to check if the changes have effectively

solved the safety problems.

A. Functional Hazard Analysis

The first step is to determine the safety targets by performing a Functional Hazard Analysis of the architecture which

is obtained from the functional view. The columns “Hazard Number” and “Function” in Table 2 are completed

automatically. Although the rest must be completed by the user, which prevents the automation of an important part

of the safety process, the FHA creation process still improves some aspects of the process. It enforces consistency

between the architecture and the safety analysis. Additionally, it provides valuable help when determining the effects

and causal factors of a hazard, as the functional-logical links of the architecture can be used to seamlessly navigate

between FHA and the logical view, which possess relevant information about how elements are connected. An excerpt

of the final results can be found in Table 2, where the gray colored text is the one added manually.

Table 2 – FHA results

ECS FHA

Hazard

Number

Function Hazzard Effect Causal Factors Classification

1 Control Mass

Flow

Inability to

Control Mass

Flow

No right amount of

new air can be

provided to

occupants.

Loss of

capability to

Source or

Release Air

Catastrophic

2 Control Ozone

Concentration

Inability to

Control Ozone

Concentration

Inadequate ozone

concentration in air

breathed by

occupants

Loss of

capability to

Control Ozone

Concentration

Hazardous

3 Control

Temperature

Inability to

Control

Temperature

Inadequate

temperature of air in

cabin

Loss of

capability to

Provide hot or

cold air

Major

4 …

11

Once the classification of a failure is done, the affected requirements are updated using the hazards mapped to

them. This relation is determined by the links between requirement and functional views, by using the graphs

representing them [16], and the ones between functions and hazards, created with the FHA. For every requirement,

all mapped hazards are examined, and the safety target displayed is the one with the strictest classification according

to the FHA. It is possible to add them in quantitative or qualitative form. The updated requirements are shown in Fig.

6.

Fig. 6 Functions/Requirements traceability and safety requirements addition

B. Fault Tree Analysis

For those events that need qualitative or quantitative analysis (e. g. with severity equal or greater than Major) a

fault tree can be created automatically using the information in the logical and functional views by using the fault tree

algorithm describe in the previous section. If the probabilities of failure are included for all the components involved

in the FTA it is possible to obtain quantitative results as well. For example, the Failure to control the cabin pressure

leads to the tree in Fig. 7. The minimum cut sets are displayed in Table 3. As expected from the lack of redundancy

of the architecture, every cut set is composed of only one item which generally indicates that the design of the

architecture needs to be improved as the failure of only one component would prevent the system for performing the

desired function. This is especially important in catastrophic failure conditions, for which certification requirements

such as CS-25.1309(b)(1)(ii) impose that single failures must not exist.

Regarding quantitative results, the probability of the top event is displayed in the first row of Table 3. The safety of

the system is not satisfactory since the probability of failure is greater than the target value. The minimal cuts are

displayed in descending importance according to their relative probability (probability of the sets divided by the

probability of the top event). The failure probabilities assigned to each element are for demonstration purposes. They

are not real values, but they allow showing how different probabilities modify the rankings of components. All

components have been assigned a probability of failure of 1e-10, except the ECS Pack, the Electric Compressor and

12

Generator which have been assigned 1e-5. As expected the greater contributor to the failure are the three elements

with a higher failure probability. The Fussell-Vesley component ranking shows the same trend. The Birnbaum

importance reflects the fact that every single failure causes the failure of the top event, all measures are one with the

precision employed. However, with this precision no ranking information is provided by this measure. These elements

are good candidates for modification in order to improve safety to acceptable levels.

Table 3 – FTA results

Probability of Failure: 𝑃(Failure to control the cabin pressure) = 3 ∙ 10−5 > 10−7

Minimal Cut Set Number of

Components

Relative

Probability

Fussell-

Vesley

Birnbaum

Generator 1 0.333 0.333 1.0

ECS Pack 1 1 0.333 0.333 1.0

Electric Compressor 1 1 0.333 0.333 1.0

Zone 1 1 3.33e-6 3.33e-6 1.0

Outlet Vent 1 1 3.33e-6 3.33e-6 1.0

Mixing Manifold 1 1 3.33e-6 3.33e-6 1.0

Ram Air Inlet 1 1 3.33e-6 3.33e-6 1.0

Ram Air Inlet 2 1 3.33e-6 3.33e-6 1.0

Inlet Vent Regulator 1 1 3.33e-6 3.33e-6 1.0

Fig. 7 Component-based and Function-based fault trees

13

C. Redundancy Addition

In order to improve safety, the effect of adding redundancy to the architecture is investigated. In a first stage, a

redundant compressor is added. The first iteration of the algorithm selects for redundancy the compressor, the

generator and the air inlet that feeds it, shown in blue in Fig. 8 Redundancy addition process Fig. 8a. It also detects

one external output conflict regarding the connection with the ECS Pack, by default it is solved by duplicating the

connection but not the ECS Pack (green connection in Fig. 8a). Since the probability of failure of the Ram Air Inlet is

believed to be remote, it is decided to exclude it from redundancy by adding a user defined stop conflict, which is

reflected as a green connection in Fig. 8b. Finally, the algorithm is ready to apply the redundancy as instructed. The

final result corresponds to Fig. 8c, where the added elements are highlighted in yellow. Links with other elements of

the architecture, such as function are also duplicated by the algorithm.

In a second stage, a redundant ECS Pack is added. The first iteration selects only the Pack itself as every output is

marked by default as an output conflict as in the first stage and the inputs correspond to existing redundancy (marked

in red in Fig. 9a), which also prevents the algorithm to continue the selection. In order to duplicate the Air Outlet, the

default behavior is overridden, and the conflict resolution is changed to “make redundant”. The existing redundancy

conflict is solved by making redundant (again) the compressors. The algorithm reaches now every element on the left

of the ECS Pack: electric compressors, generators and air inlet. Since the aircraft for which the system is being

designed only has two engines, the generators are excluded so their final number is two. The final selection to be

duplicated is shown in Fig. 9b. The resultant architecture, after applying redundancy can be seen in Fig. 9c.

Fig. 8 Redundancy addition process. Stage 1

a) b)

c)

14

Finally, it is necessary to assess the improvement on the architecture safety, for this purpose fault trees are

generated automatically from the new architecture. It can be observed from Fig. 10 that the topology of the fault tree

for Failure to control the cabin pressure has changed substantially. In particular, the changes concentrate on the event

that originally was labeled “ECSPack1.AirOut”, and now correspond to “MixingManifold1.AirIn” whose child is an

AND gate reflecting the redundant ECS packs. The redundant compressors also determine the presence of two more

AND gates, one per each pair.

Fig. 9 Redundancy addition process. Stage 2

The new fault tree also presents different minimum cut sets (Table 4), where the single element cut sets have been

reduced to four (the cardinality of the sets is displayed in the second column - N). The rest is ten sets of two elements,

twenty sets of three and one set of four. Regarding their relative probabilities of failure, adding redundancy have

shifted to lower values the contribution of the most unreliable components. Now they don’t appear individually, and

consequently the highest contribution is achieved when a combination of two of them causes the top event.

Nevertheless, the contribution of them in pairs is only as important as that of the single element cut sets. The rest of

combinations are from five to ten orders of magnitude smaller.

The diminution of the importance measures for redundant components is even clearer in the ranking in Table 5,

where components are ordered by descending Fussell-Vesley importance. In particular the ECS Packs and generators

have reduced their Fussell-Vesley importance down to the same level as more reliable non-redundant components

a) b)

c)

15

such as vents, mixing manifold or cabin zone. In case of the electric compressors, which present the greatest

redundancy, this value is even lower, being close to the more reliable redundant air inlets. The Birnbaum measures

show a different information. In this case, they seem to be correlated with the level of redundancy of the components.

This seems to agree with its definition and the intuition that the more redundant a component is, the smaller is the

impact of this component in the top event probability.

Regarding the overall impact of adding redundancy on the probability of the top event, it can be seen that the value

has been improved in several orders of magnitude (6e-10). Now the architecture meets the safety requirement.

Table 4 – FTA results

Probability of Failure: 6 ∙ 10−10 > 10−7

Minimal Cut Set N Relative

Prob.

Inlet Vent Regulator 1 1 0.167

Zone 1 1 0.167

Outlet Vent 1 1 0.167

Mixing Manifold 1 1 0.167

Generator 1, Generator 2 2 0.167

ECS Pack1, ECS Pack2 2 0.167

ECS Pack1, Ram Air Inlet 3 2 1.67E-06

ECS Pack1, Ram Air Inlet 4 2 1.67E-06

ECS Pack2, Ram Air Inlet 1 2 1.67E-06

ECS Pack2, Ram Air Inlet 2 2 1.67E-06

Ram Air Inlet 1, Ram Air Inlet 3 2 1.67E-06

Ram Air Inlet 1, Ram Air Inlet 4 2 1.67E-06

Ram Air Inlet 2, Ram Air Inlet 3 2 1.67E-06

Ram Air Inlet 2, Ram Air Inlet 4 2 1.67E-06

Compressor 1, Compressor 2,

Ram Air Inlet 3

3
1.67E-06

Compressor 1, Compressor 2,

Ram Air Inlet 4

3
1.67E-06

Compressor 1, Compressor 2,

ECS Pack 2

3
1.67E-06

Compressor 3, Compressor 4,

Ram Air Inlet 1

3
1.67E-06

Compressor 3, Compressor 4,

Ram Air Inlet 2

3
1.67E-11

Compressor 3, Compressor 4,

ECS Pack 1

3
1.67E-11

Compressor 1, Compressor 3,

Generator 2

3
1.67E-11

Compressor 2, Compressor 4,

Generator 1

3
1.67E-11

Generator 1, Compressor 4,

ECS Pack 1

3
1.67E-11

Generator 1, Compressor 2,

ECS Pack 2

3
1.67E-11

Generator 1, Compressor 4,

Ram Air Inlet 1

3
1.67E-11

Generator 1, Compressor 4,

Ram Air Inlet 2

3
1.67E-11

Minimal Cut Set N Relative

Prob.

Generator 1, Compressor 2,

Ram Air Inlet 3

3
1.67E-11

Generator 1, Compressor 2,

Ram Air Inlet 4

3
1.67E-11

Generator 2, Compressor 3,

ECS Pack 1

3
1.67E-11

Generator 2, Compressor 1,

ECS Pack 2

3
1.67E-11

Generator 2, Compressor 3,

Ram Air Inlet 1

3
1.67E-11

Generator 2, Compressor 3,

Ram Air Inlet 2

3
1.67E-11

Generator 2, Compressor 1,

Ram Air Inlet 3

3
1.67E-11

Generator 2, Compressor 1,

Ram Air Inlet 4

3
1.67E-11

Compressor 1, Compressor 2,

Compressor 3, Compressor 4

4
1.67E-11

Table 5 – FTA results

Component Fussell-

Vesley

Birnbaum

ECS Pack 1 0.167 1.0E-5

ECS Pack 2 0.167 1.0E-5

Generator 1 0.167 1.0E-5

Generator 2 0.167 1.0E-5

Zone 1 0.167 1.0

Outlet Vent 1 0.167 1.0

Mixing Manifold 1 0.167 1.0

Inlet Vent Regulator 1 0.167 1.0

Electric Compressor 1 5.00E-6 1.0E-10

Electric Compressor 2 5.00E-6 1.0E-10

Electric Compressor 3 5.00E-6 1.0E-10

Electric Compressor 4 5.00E-6 1.0E-10

Ram Air Inlet 1 1.67E-6 1.0E-5

Ram Air Inlet 2 1.67E-6 1.0E-5

Ram Air Inlet 3 1.67E-6 1.0E-5

Ram Air Inlet 4 1.67E-6 1.0E-5

16

Fig. 10 Detail of the fault tree of the redundant architecture

Fig. 11 Example of interactivity enablers

Rest of the tree

Example 2:

Minimum Cut Sets Selection

Example 1:

Fault Tree Element Selection

17

D. Interactivity enablers

Finally, the interactive capabilities are shown through two examples in Fig. 11. The first one shows how the leftmost

gate on the fault tree in Fig. 10 maps to the respective components in the logical view. This link has been created

automatically at the same time than the fault tree. Similarly, example two shows how the cut set containing the

elements Generator 1, Compressor 2 and ECS Pack 2 maps to their representation in the logical view. This way, the

effort of locating the components while interpreting FTA results is greatly decreased.

V. Conclusions and future work

Presented is a framework for incorporating safety analysis in early systems architecture design. It utilizes the

Requirement, Functional, Logical, and Physical (RFLP) paradigm, augmented with a Computational domain for

automated systems sizing. An algorithm to support partial automation of the Functional Hazard Analysis process,

using the Functional View as input, is described. The FHA results are then used to update the safety objectives in the

requirements view. Another algorithm is introduced to automatically generate Fault trees are from the Logical view.

These trees can be evaluated both qualitatively and quantitatively and the contribution to the probability of failure of

their components can be ranked through importance measures, helping the architect to focus on the most problematic

parts of the architecture. Finally, and interactive approach to introducing redundancy in the architecture is proposed.

The application of the framework is illustrated with a representative example.

The algorithms require only minimum modification of the RFLP views definitions: addition of probabilities of

failure for logical components and redundancy type for logical connections. This has the advantage that

automatic/interactive safety assessment can be applied easily to any RFLP existing architecture definition. However,

this introduces some limitations when describing more complex fault propagation scenarios and component with

different states. Incorporating these advanced scenarios is planned for future work.

Also, when the system is modified to comply with the safety requirements, the performance of the aircraft might

change depending on the scale of the changes. For example, the added components might add weight, and this could

affect the sizing of other components and consequently the performance at aircraft level. Work is already underway

to adapt the method proposed by Bile et al. [18] for (semi)automated sizing and system performance assessment after

safety-related modifications.

References

[1] EASA, “Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS­25,” no.

Ammendment 20, 2017.

[2] A. Joshi, S. Vestal, and P. Binns, “Automatic Generation of Static Fault Trees from AADL Models,” DSN Work. Archit.

Dependable Syst., 2007.

[3] F. Mhenni, N. Nguyen, and J.-Y. Choley, “Automatic fault tree generation from SysML system models,” in 2014

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2014, pp. 715–720,

doi:10.1109/aim.2014.6878163.

[4] M. Roth, M. Wolf, and U. Lindemann, “Integrated Matrix-based Fault Tree Generation and Evaluation,” Procedia

Comput. Sci., vol. 44, pp. 599–608, Jan. 2015, doi:10.1016/j.procs.2015.03.027.

[5] J. Xiang, K. Yanoo, Y. Maeno, and K. Tadano, “Automatic Synthesis of Static Fault Trees from System Models,” in 2011

Fifth International Conference on Secure Software Integration and Reliability Improvement, 2011, pp. 127–136,

doi:10.1109/ssiri.2011.32.

[6] Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner, “Analysis and synthesis of the behaviour of complex

programmable electronic systems in conditions of failure,” Reliab. Eng. Syst. Saf., vol. 71, no. 3, pp. 229–247, Mar. 2001,

doi:10.1016/s0951-8320(00)00076-4.

[7] J. Delange and P. Feiler, “Architecture Fault Modeling with the AADL Error-Model Annex,” in 2014 40th EUROMICRO

Conference on Software Engineering and Advanced Applications, 2014, pp. 361–368, doi:10.1109/seaa.2014.20.

[8] S. Li and X. Li, “Study on Generation of Fault Trees from Altarica Models,” Procedia Eng., vol. 80, pp. 140–152, Jan.

2014, doi:10.1016/j.proeng.2014.09.070.

[9] A. Majdara and T. Wakabayashi, “Component-based modeling of systems for automated fault tree generation,” Reliab.

Eng. Syst. Saf., vol. 94, no. 6, pp. 1076–1086, Jun. 2009, doi:10.1016/j.ress.2008.12.003.

[10] G. Latif-Shabgahi and F. Tajarrod, “A New Approach for the Construction of Fault Trees from System Simulink,” in 2009

International Conference on Availability, Reliability and Security, 2009, pp. 712–717, doi:10.1109/ares.2009.172.

[11] Y. Papadopoulos and M. Maruhn, “Model-based synthesis of fault trees from Matlab-Simulink models,” in Proceedings

International Conference on Dependable Systems and Networks, pp. 77–82, doi:10.1109/dsn.2001.941393.

[12] C. Schallert, “Inclusion of Reliability and Safety Analysis Methods in Modelica,” in Proceedings of the 8th International

Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany, 2011, no. 63, pp. 616–627,

doi:10.3384/ecp11063616.

[13] “ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and

18

Equipment,” 1996.

[14] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools,” Comput.

Sci. Rev., vol. 15–16, pp. 29–62, Feb. 2015, doi:10.1016/j.cosrev.2015.03.001.

[15] Y. Dutuit and A. Rauzy, “Efficient algorithms to assess component and gate importance in fault tree analysis,” Reliab.

Eng. Syst. Saf., vol. 72, no. 2, pp. 213–222, May 2001, doi:10.1016/s0951-8320(01)00004-7.

[16] M. D. Guenov, A. Riaz, Y. Bile, A. Molina-Cristóbal, and A. S. J. van Heerden, “Information System Support for

Aerospace Vehicle Systems Architecting,” J. Aerosp. Inf. Syst., 2018.

[17] VDI, Design methodology for mechatronic systems (VDI 2206). Verein Deutscher Ingenieure, 2004.

[18] Y. Bile, A. Riaz, M. D. Guenov, and A. Molina-Cristobal, “Towards Automating the Sizing Process in Conceptual

(Airframe) Systems Architecting,” in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, 2018, pp. 1–16, doi:10.2514/6.2018-1067.

[19] J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable Organisms From Unreliable Components,” in

Automata Studies. (AM-34), Princeton: Princeton University Press, 1956.

[20] F. P. Mathur and P. T. de Sousa, “Reliability Modeling and Analysis of General Modular Redundant Systems,” IEEE

Trans. Reliab., vol. R-24, no. 5, pp. 296–299, Dec. 1975, doi:10.1109/tr.1975.5214914.

[21] D. E. Eckhardt et al., “An experimental evaluation of software redundancy as a strategy for improving reliability,” IEEE

Trans. Softw. Eng., vol. 17, no. 7, pp. 692–702, Jul. 1991, doi:10.1109/32.83905.

[22] M. Ian and A. Seabridge, Design and development of aircraft systems, 3rd ed. West Sussex, England: John Wiley & Sons,

2012.

[23] C. A. Ericson and others, Hazard analysis techniques for system safety. John Wiley & Sons, 2015.

[24] P. J. Wilkinson and T. P. Kelly, “Functional hazard analysis for highly integrated aerospace systems,” in IEE Certification

of Ground/Air Systems Seminar, 1998, pp. 4–4, doi:10.1049/ic:19980312.

[25] Y. Bile, “Yogesh´s Thesis,” Cranfield University, 2018.

[26] J. B. Fussel, E. B. Henry, and N. H. Marshall, “MOCUS a Computer Program to Obtain Minimal Sets From Fault Trees,”

ANCR Math. Comput., vol. 55, no. 2, pp. 51–55, 1974.

[27] D. Kececioglu, Reliability engineering handbook, vol. 2. DEStech Publications, Inc, 2002.

[28] A. Rauzy, “Toward an efficient implementation of the MOCUS algorithm,” IEEE Trans. Reliab., vol. 52, no. 2, pp. 175–

180, Jun. 2003, doi:10.1109/tr.2003.813160.

[29] U. Lindemann, M. Maurer, and T. Braun, “The procedure of structural complexity management,” in Structural Complexity

Management, Berlin, Heidelberg, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 61–66.

[30] J. A. McDermid, “Support for safety cases and safety arguments using SAM,” Reliab. Eng. Syst. Saf., vol. 43, no. 2, pp.

111–127, Jan. 1994, doi:10.1016/0951-8320(94)90057-4.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. The MIT Press, 2010.

	Incorporating Safety in Early (Airframe) Systems Design and Assessment
	I. Introduction
	II. Background
	A. FHA - Functional Hazzard Assessment [1].
	B. PSSA - Preliminary System Safety Assessment [1].
	C. SSA - System Safety Assessment [1].
	D. FTA – Fault Tree Analysis
	E. Importance measures
	F. RFLP Paradigm, augmented with Computational Domain
	G. Redundancy

	III. Proposed Approach
	A. Functional Hazzard Assessment
	B. Fault Tree Analysis
	Algorithm for tree creation
	Algorithms for tree evaluation

	C. Interactivity enablers
	D. Architecture modification for safety purposes
	Algorithm for redundancy addition

	IV. Evaluation
	A. Functional Hazard Analysis
	B. Fault Tree Analysis
	C. Redundancy Addition
	D. Interactivity enablers

	V. Conclusions and future work
	References

