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Abstract. Driven by the great success of deep Convolutional Neural Networks (CNNs) that are currently used by 

quite a few computer vision applications, we extend the usability of visual based CNNs into the Synthetic Aperture 

Radar (SAR) data domain without employing transfer learning. Our SAR Automatic Target Recognition (ATR) 

architecture efficiently extends the pre-trained Visual Geometry Group CNN from the visual domain into the X-band 

SAR data domain by clustering its neuron layers, bridging the visual – SAR modality gap by fusing the features 

extracted from the hidden layers and by employing a local feature matching scheme. Trials on the moving and 

stationary target acquisition dataset under various setups and nuisances demonstrate a highly appealing ATR 

performance gaining 100% and 99.79% in the 3-class and 10-class ATR problem respectively. We also confirm the 

validity, robustness and conceptual coherence of the proposed method by extending it to several state-of-the-art CNNs 

and commonly used local feature similarity/ match metrics. 
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1 Introduction 

Automatic target recognition (ATR) for military applications is an active research topic that seeks 

further reducing collateral damage and fratricide targeting. Investigations involve solutions based 

on numerous spatial, i.e. 2D/ 3D and data domains, such as 2D infrared (IR) 1–5, 2D Synthetic 

Aperture Radar (SAR) 6–21, 2D Inverse SAR (ISAR) 22 and 3D Light Detection and Ranging 

(LIDAR) 23–27, with each of these data modalities having its own strengths and weaknesses. For 

example, state-of-the-art local feature (data) descriptors from the visual domain have already 

proven their capabilities in the IR domain, but IR suffers from the time of day and the target’s 

history 28. LIDAR involves 3D data manipulation with numerous advantages such as invariance 

to illumination variation and invariance to target pose changes 25. Despite these advantages, the 

processing burden implied by 3D data processing is much higher compared to the 2D data domain. 

Regarding SAR imagery, its main advantages are the 2D data structure that affords computational 
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efficiency, being invariant to the target’s history and the all-weather night-and-day data acquisition 

capability that extends considerably the operational capabilities on the battlefield.  

SAR ATR has been attempted using various techniques. For example, feature based solutions 

encode the SAR image by a set of attributes that are sufficiently descriptive to achieve target 

classification under various nuisances. Current literature includes extracting features based on 

Krawtchouk moments 29 derived from the discrete-defined Krawtchouk polynomials, using 

biologically inspired features such as episodic and semantic features 30 or sparse robust filters 31 

originating from the human cognition process. Further methods include binary operations 32, 

utilizing the target’s scattering centers 17,33 and fusing the azimuth and range target profiles 34. 

Stacked Auto-encoder (SA) type of SAR ATR solutions rely on features that are extracted from 

the SAR imagery and are input to an SA type neural network. The latter adopts an unsupervised 

learning strategy used in neural networks that can convert the input data into abstract expressions 

utilizing a nonlinear model. For the current SA type solutions, SAR ATR oriented literature 

suggests either exploiting Local Binary Features 20 or modifying the reconstruction error of the 

typical Auto-encoder scheme by adding a Euclidean distance restriction for the neural network 

hidden layer features 19. Compressive Sensing (CS) based SAR ATR approaches aim at recovering 

a signal that has been remapped from the originating domain to a domain where the signal is 

sparse, using a non-adaptive linear projection. Signal recovery is achieved via an l1-norm 

optimization process. In the context of SAR ATR, Multitask CS 35 exploits the statistical 

correlation among multiple target views to recover the target’s signature that is then used for target 

recognition under a compressive sensing scheme. Bayesian CS 16 relies on the scattering centers 

of the SAR image that are used as an input signal to the CS technique. Sparse Representation 

Classification (SRC) type of solutions aims at recovering the testing imagery out of a dictionary 
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where the training images are the dictionary’s base elements. SRC aims at identifying the sparsest 

representation of the testing imagery within the dictionary by employing an l1-norm optimization 

scheme. The final classification decision matches the class that provides the smallest residual 

error. In the context of SAR ATR, Joint SRC 36 exploits three target views to increase the 

completeness of the target’s SAR signature and a mixed l0\l2-norm for the optimization. The 

reasoning behind the multiple views is that these are highly correlated sharing the same response 

pattern within the dictionary and thus this conciseness can enhance the overall ATR performance. 

L1/2-NMF 21 uses the l1/2-norm optimization to identify the sparsest solution. The features used as 

input to the SRC technique are the result of a non-negative matrix factorization process applied 

on the SAR imagery. Dong et al. in 11 exploit the monogenic signal of a SAR image as an input to 

the SRC process. This signal comprises of the 2D SAR image signal and its Riesz transformed 

representation. Deep Convolutional Neural Networks have also been suggested for SAR ATR. 

Literature suggests several Convolutional Neural Networks (CNN) based solutions that rely on 

data specific handcrafted structures 6,8,14,15. A common feature of these CNN architectures is the 

relatively small number of hidden layers, which opposes to the multilayered mainstream CNNs 

used in the visual domain, i.e. AlexNet 37, Visual Geometry Group (VGG) 38, GoogleNet 39 and 

ResNet 40. This is because visual images have a higher information content per pixel compared to 

the radar reflections within a SAR image.  

Current mainstream CNNs have an unarguable classification capability in the visual domain. A 

typical way to deviate the classification capabilities of these CNNs from the training data domain 

to a different dataset and data domain is by exploiting the Transfer Learning technique 41. 

Nevertheless, the combination of completely different data modalities, i.e. SAR and visual 

imagery, along with the lack of SAR training samples impose a huge constrain to steer these CNNs 
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to operate with SAR data. Therefore, current CNNs operating on a multi-modal data scheme offer 

moderate classification performance 42. A solution to overcome the lack of SAR training samples 

is to populate the SAR training images via data augmentation. However, this is a time consuming 

process and most importantly is a try and evaluate process as the size and the manner to augment 

the training data is not known a priori.  

Driven by the object classification performance of the pre-trained in the visual domain CNNs, 

this work proposes a multi-modal and multi-discipline architecture that combines the advantages 

of CNN and local feature matching. Specifically, the suggested method aims to transfer the already 

proven classification capability of the VGG-16 38 from the visual domain to the X-band SAR 

without involving transfer learning. This operation is not straightforward as directly activating 

VGG with data of a different modality, i.e. SAR imagery, is a suboptimal solution. Therefore, we 

bridge the data modality gap by pre-processing the SAR imagery and clustering the VGG’s hidden 

layers into feature-specific based groups. Then a number of clusters are activated and the multi-

dimensional responses of the deepest activated layer are transformed and fused into a 1D-feature 

vector. Finally, the scene and the template feature vectors are input to a local feature-matching 

scheme that relies on the Cosine similarity measure.  

The innovations and contributions of this paper can be summarized as: 

a. We extend the usability of the VGG CNN from the visual domain to the SAR by 

introducing a hidden layer-clustering technique. This strategy extends the usability of the 

mainstream state-of-the-art VGG network that is trained in the visual domain, to a completely 

different data modality, the SAR domain.  
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b. We demonstrate that it is feasible to steer a CNN towards a different data modality 

without employing the transfer learning technique or data augmentation, and thus avoid their 

disadvantages. 

c. We highlight the importance of the ATR classification method by comparing the 

effectiveness of the Cosine similarity measure over several similarity/ match metrics. 

d. We extend our architecture to several mainstream state-of-the-art CNNs and validate the 

conceptual coherence of our technique by presenting high quality ATR performance. 

e. We demonstrate that our ATR architecture presents the highest to date SAR ATR 

capability on the moving and stationary target (MSTAR) acquisition dataset. 

The rest of the paper is organized as follows: Section 2 presents the proposed ATR architecture. 

Section 3 evaluates our pipeline under various setups and nuisances, and extends this concept to 

various mainstream CNN’s. Finally, Section 4 concludes this paper. 

2. Proposed Architecture 

The suggested clustered VGG-16 SAR ATR architecture is presented in Fig. 1 and is analyzed 

in the following sections. 

2.1 Clustered Convolutional Neural Network 

VGG-16 is a multi-layered CNN that encodes the scene and template features from the visual 

imagery that vary from low-level corners and blobs, in the initial layers, up to high-level data 

specific features in the last layers. For completeness, the scene and template features are 

characteristic local patches that ideally should describe the scene and template images respectively 

in a unique manner, and are robust to geometric transformations and to nuisance factors. Although 

VGG is powerful, it has been trained on RGB images that are fundamentally different from SAR 
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imagery. In fact, VGG is trained on RGB color bands while SAR imagery contains radar 

reflections. Therefore, directly applying on VGG SAR imagery is not an optimum solution. To 

bridge this modality gap, we exploit the descriptiveness of VGG’s hidden layers by dividing them 

into six groups of layers, i.e. clusters l  of varying feature description capability and introduce the 

clustered VGG (C-VGG) presented in Table 1. The latter table shows, for example, that C-VGG 

cluster one contains VGG’s layers one to five. Notation l  refers to the cluster layer activated with 

 1,2,3,4,5,6l . This means, for instance, that 2l   activates up to C-VGG’s clustered layer 2 while 

the remaining layers  3,4,5,6  are discarded. During the algorithm’s tuning process, the optimum 

activation layer is selected which is then fixed for the experimental evaluation. The features of 

that layer are then linked to the corresponding template labels used to activate the C-VGG. The 

optimum layer selection is presented in Section 3.2. In this work C-VGG uses the same parameters 

(stride, padding and convolutional filter sizes) as in the original implementation 38. It should be 

noted that the suggested C-VGG is an extension of the current VGG architecture and aims at 

exploiting the hidden layers of the pre-trained in the visual domain VGG for ATR tasks in the 

SAR imagery domain, where originally VGG was not trained.  

 

The reason behind suggesting the specific layer grouping/ clustering strategy for C-VGG is 

directly related to the position of the convolutional layers of VGG-16. Hence, we cluster VGG’s 

hidden layers so that the first layer of each cluster is a convolutional layer. This strategy affords 

Table 1 C-VGG layers 

C-VGG 

cluster ID (l) 

original VGG 

layers included 
Operations involved 

1 1-2-3-4-5 Image input – Convolution – ReLU – Normalization – Max pooling 

2 6-7-8-9 Convolution – ReLU – Normalization – Max pooling 

3 10-11 Convolution – ReLU 

4 12-13 Convolution – ReLU 

5 14-15-16 Convolution – ReLU – Max pooling 

6 17 - end  remaining layers (not exploited) 
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controlling the complexity of the features that are extracted from each cluster, because the deeper 

the convolutional layer, the more complex and data specific to the extracted features are. Thus, 

exploiting for a SAR ATR application the deep features of VGG, e.g. layer 14 of the original 

VGG, which corresponds to layer five for C-VGG, is not an optimum choice because the features 

of that layer are heavily established for visual imagery and not for SAR. In this work we 

demonstrate that the shallow layers of C-VGG/ VGG that extract generic features are more 

appropriate for SAR ATR, despite these features being originally established for the visual domain 

(during the VGG’s original training on the ImageNet dataset). It should be clarified that C-VGG 

is not re-trained in the SAR domain and the capacity of the C-VGG is not restricted in the SAR 

imagery domain, but only in the visual domain where VGG was trained in, which is not the scope 

of this paper. 

 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Discarded layers

Input – Convolution

ReLU

Normalization

MaxPool

Convolution  
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MaxPool

Convolution

ReLU

Convolution

ReLU

Convolution

ReLU

MaxPooling

Remainig 

layers

Training 

SAR 

imagery

Multi-dimensional 

Tensor fusion

Testing 

SAR 

imagery

Multi-dimensional 

Tensor fusion

Local feature 

matching

Target 

classification

Legend

Offline 

Online

SAR data 

remapping

SAR data 

remapping

  

Fig.1 Proposed SAR ATR architecture showing activated cluster 2   
  

Given a SAR image mI xn , ,m n   and ( , ) {0,1,...,255}I s t   with 1 s m   and 1 t n  , we remap  

I  into a 3D tensor by stacking in the third dimension three replicates of a processed version of  
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the SAR image I , notated as ( )B I , in order to simulate the visual/ RGB image format and meet 

the image input requirements of VGG: 

 1 ( ) ( ) ( )I B I B I B I   (1) 

where ( )B   is a bicubic interpolation process to resize I  to the VGG image input size, and   is a 

3D concatenation process.  

Then 1I  is input to the C-VGG and is transformed into a 4D tensor 
l l ll H xW xD xNX   that propagates 

through the hidden layers until it becomes the output lY  of the end-layer of cluster l . H, W and D 

are the height, width and depth of the tensor at layer l and N  refers to the mini batch size, i.e. the 

number of training instances used in one iteration to estimate the gradient of the loss function and 

update the parameters of the neural network. In our experiments we use 1N   to increase accuracy 

and thus we convert the 4D tensor into a 3D one, i.e. 
, ,

l l ll l H xW xD

i j dX X  , where 0 li H  , 

0 lj W  , 0 ld D   (Fig. 2).  

 

 
Fig. 2 Examples of 2D response maps of clustered layer l=2. The 3D tensor descriptor is the ensemble of the 2D 

matrices. (as an example only five out of the 128 response maps are shown) 

 

3D tensors lX  and lY  are stacks of 2D matrices that highlight features of various complexity in 

a response map type of representation (Fig 2.). As the lX  tensor propagates through the CNN’s 

activated clusters and ultimately transforms to the output tensor lY , the tensor’s size changes based 
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on the size of the convolutional kernel of each layer.  

Therefore, tensors lX  and lY  can be regarded as a generalized implementation of the scale- 

space theory 43 concept where the scale changes are envisaged via the subsequent shrinking of the  

convolutional kernel size and the degree of blurring via the kernel weights that are automatically  

adjusted by the CNN during the training stage.   

As noted in Table 1, the output feature lY  is provided by the end-layer of the activated clustered  

layer l  that may be a Rectified Linear Unit (ReLU) layer or a Max Pooling layer. Therefore, it is  

important to present the operating details of these layers.  

2.1.1  ReLU  

This layer aims at increasing the non-linearity of a CNN by applying an individual truncation  

process on every 
, ,

l

i j dX :  

  , , , ,max 0,l l

i j d i j dY X   (2)  

where , ,

l

i j dY  is the output of cluster layer l .   

The advantages of ReLU against the classic tanh activation function are the reduction in training  

time 37 and incorporating a purely supervised training scheme avoiding the need of unsupervised  

pre-training 44. Current trends in neural networks either use a ReLU layer or its extension named  

the Parametrized ReLU that has an adaptive slope for the negative part of the activation function.  

In this paper, the CNNs evaluated use a ReLU activation function.  

2.1.2  Max Pooling  

This operation substitutes a sub-region l

sX  of size  x s s  named pooling size of the tensor 
, ,

l

i j dX  with  
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its maximum value: 

  , , maxl l

i j d sY X   (3) 

The output size of , ,

l

i j dY  after the max pooling operations will be 1 /l lH H s   and 1 /l lW W s  . Max 

pooling operates independently on each dimension d  on a non-overlapping regional basis and 

therefore 1l lD D  . 

2.2 Feature Fusion and Matching 

Driven by the appealing classification performance and robustness to nuisances of the local 

feature based techniques 46, we partially adopt the sparse coding classification (SRC) 45 method 

and combine the advantages of both these theories with the 3D output feature of the proposed C-

VGG , ,

l

i j dY . Specifically, we extend the method of 45 and perform a multi-dimensional tensor fusion 

process to convert the sparse 3D output tensor , ,

l

i j dY  (Fig. 2) into a single 1D-feature vector in order 

to input the latter to a local feature matching scheme. It is important to note that in contrast to the 

technique of 45 that exploits the raw pixel values of the entire model/ scene imagery, we take full 

advantage of the entire 3D tensor that encompasses the full response map of the activated layer 

providing an enhanced descriptiveness for the 1D-feature vector.  

The multi-dimensional tensor fusion process comprises of a multi-dimensional vectorization 

process defined as: 

  , , , , ,

1

W

i d i j d j i j d j

j

a e a e


    (4) 
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over dimension j, where 
je  is the jth canonical basis vector in the w-dimensional space and   the 

Kronecker product. The output of Eq. (4) is then followed by a vectorization procedure to create 

the 1D-feature vector: 

  
,

, ,
1, 1

H d
l

i d
i d

f vec Y 
 

 
  

 
 (5) 

where [1,..., ]d  . The fusion product f  encodes the features of the complete 3D tensor , ,

l

i j dY  in a 

1D-vector form encompassing both the feature responses and the topology of the features for the 

entire 3D tensor depth.  

Then we exploit the appealing classification performance and robustness of the local feature 

based techniques 46 by feeding the 1D-feature vector into a local feature matching strategy. Hence, 

given a scene feature Sf  and the template features T

iif , {1,2,..., }ii k , with k the number of 

templates, the proposed feature matching strategy relies on the Cosine similarity measure (C) that 

is combined with a Nearest Neighbor matching scheme 47: 

   1

2 2

1 1

,

( ) ( )

k
T S

ii
T S ii

ii
k k

T S

ii

ii ii

f f

f f

f f



 

 


 

 (6) 

     arg min ,T S

ii
ii

matched class m f f   (7) 

3 Experiments 

In this section we evaluate the robustness of the proposed architecture on the MSTAR dataset. 

In order to be consistent with current literature we challenge our techniques against contemporary 

solutions on the 3-class target classification problem, the 10-class problem and on a number of 

nuisance factors such as depression angle, resolution and noise variation. Finally, we also extend 
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the suggested architecture to facilitate current state-of-the-art CNNs and several local feature 

match metrics. 

3.1 MSTAR Dataset 

We evaluate the performance of the proposed architecture on the publicly available subset of 

the MSTAR database 48 that includes 10 classes of ground targets as presented in Fig. 3. Each 

class contains chirps of 15° and 17° depression angles using an X-band SAR sensor, while some 

classes contain views from additional depression angles. In any case, chirps cover a full 0°-360° 

azimuth orientation. Table 2 presents the number of targets per type and depression angle used in 

this paper.  

For compatibility reasons with current literature we adopt 48 and establish a training set based 

on the 17° depression angle. To validate the effectiveness of the combined C-VGG and Cosine 

similarity measure, dubbed C-VGG-C, we compare the ATR performance achieved by our 

architecture against current algorithms. All trials are implemented in MATLAB on an Intel i7 with 

16GB RAM and for VGG the MatConvNet 49 version is used. 

 

 

 

     

 

  
2S1 BMP-2 BRDM-2 BTR-60 BTR-70  15° 17° 

     

 

 

 

ZIL-131 ZSU 23-4 D7 T-62 T-72  30°  

(a)  (b) 

Fig. 3 (a) 10 classes of the MSTAR database at 17° depression angle (b) the 2S1 target at various depression angles 
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3.2 3-Class ATR 

In this experiment, we aim at tuning the performance of our architecture by defining the optimal 

activation layer l of the C-VGG-C. The target classes used are the BMP-2, T-72 and BTR-70. For 

the former two we use all three variants namely for the BMP-2 the 9563, 9566 and c21 and for the 

T72 the 132, 812 and s7. For the BTR-70 we use the c71, which is the only variant available. As 

a reminder, images captured at 17° depression angle are used as training and images at 15° for 

testing.  

Fig. 4 reveals that C-VVG-C excels at layer l=2 attaining a peak performance of 100% target 

recognition. The peak performance at this relatively shallow layer can be explained as follows. As 

the depth of the activated output layer increases, the extracted features are less generic e.g. corners, 

blobs, and become more complex. In parallel, as the depth of the output layer increases, features 

become more data specific for the training templates. Since the training and the testing data domain 

are substantially different (visual vs. SAR), our trials highlight that the balance between feature 

complexity and data training vs. testing variability is found in layer l=2. Driven by the high ATR 
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Serial No 9563 9566 c21 c71 132 812 s7 k1 b01 e71  a51 e12 d08 

train 17° 233 232 233 233 232 231 228 256 299 298 299 299 299 299 2747 

test 15° 195 196 196 196 196 195 191 195 274 274 274 273 274 274 3203 

test 30° - - - - - - - - 288 287 - - - 288 863 
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performance achieved, applying a dimensionality reduction strategy 50,51 to improve classification 

performance is not required. 

The X-band SAR ATR concerned in this paper is envisaged to be applied on either ground based 

stations or aerial platforms such as large Unmanned Aerial Vehicles and aircrafts that have a 

sufficient size to host a standard CPU based processing architecture. In this context, current 

algorithms that are designed for low processing capability platforms 52,53 are not required. 

We also compare the 3-class ATR performance achieved by our suggested architecture with 

current literature. From Table 3 it is evident that our proposed SAR ATR architecture gains both 

the highest overall ATR performance (100%) and achieves the highest inter-class ATR 

performance for each of the three classes.  

 

 

Fig. 4 Proposed architecture’s SAR ATR performance on the 3-class problem 

 

Table 3 3-class ATR (%) 

Method BMP-2 BTR-70 T-72 average 

SRF 31 93.56 96.43 96.91 95.63 

Huang’s 30 94.38 98.47 96.91 96.04 

DFSS 54 91.65 99.48 96.04 95.72 

ASC 33 97.27 97.96 97.53 97.58 

PCA 55 97.44 99.49 95.92 97.61 

BMO 32 97.28 98.98 97.78 97.58 

C-VGG-C 100 100 100 100 

 

 

 

0

5

50
60
70
80
90

100

1 2 3 4 5 P
ro

ce
ss

in
g
 t

im
e 

(s
/ 

sc
en

e)

R
ec

o
g
n
it

io
n
 

p
er

fo
rm

an
ce

 (
%

)

C-VGG activation layer
C-VGG-C Processing time



15 

3.3 ATR Assessment Against Depression Variation 

Next trial involves assessing the SAR ATR performance under various depression angles. Alike 

current literature 16,21,33,36,55–57, we use three similar targets, namely the 2S1, the BRDM-2 and the 

ZSU 23-4. Images at 17° depression angle are used as training images, while the 15° and 30° for 

testing. We intentionally do not evaluate the recognition performance at 45° as it is well known 

that SAR imagery is extremely sensitive to the depression angle variation and thus such an 

extensive depression variation cannot secure very high ATR rates that are mandatory for military 

applications. 

From Table 4 it is evident that the suggested C-VGG CNN combined with a local feature-

matching scheme based on the Cosine similarity measure can afford a higher ATR performance 

compared to current solutions. This is due to the low-level abstract features extracted by activating 

the 2l   layer of the C-VGG CNN that are invariant to the large depression angle variations 

examined in this trial. 

 

Table 4 3-class large depression variation ATR (%) 

 

3.4 ATR Assessment Against Resolution Variation 

We evaluate the robustness of our SAR ATR architecture under different resolution variations 

ranging from 0.3m×0.3m, which is the original resolution, down to 0.7m×0.7m. Fig. 5 shows a 

target from the MSTAR database under these resolutions. In Fig. 6, we show that our ATR 

architecture achieves 98.64% ATR even under the lowest resolution case of 0.7m×0.7m. This 

 ASC 33 NNMF 21 
Bayesian 

CS 16 
JSRC 36 PCA 55 NMF 21 EFS 56 Zernike 57 C-VGG-C 

15° 99.15 98.91 99.20 99.50 98.65 99.25 97.88 96.46 99.88 

30° 97.91 91.42 89.60 91.80 97.82 98.24 93.42 93.24 99.88 
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performance is much higher compared to ASC 33 (85.9%). This is mainly because ASC performs 

feature matching based on the Kullback-Leibler divergence while the suggest feature matching 

scheme is based on the Cosine similarity metric. In Section 3.8 we demonstrate that the Cosine 

similarity metric is quite insensitive to several nuisance factors, including resolution variation, 

affording a robust ATR performance.  

 

     

(a) (b) (c) (d) (e) 

Fig. 5 MSTAR images (focusing on the target) at different resolutions    (a) 0.3m×0.3m (original) (b) 0.4m×0.4m 

(c) 0.5m×0.5m (d) 0.6m×0.6m (e) 0.7m×0.7m. 

 

 

Fig. 6 Robustness in various scene resolutions 

 

3.5 10-class ATR 

For the 10-class ATR problem, the MSTAR related literature suggests various target set 

configurations. Two commonly used configurations are the Standard Operation Conditions 1 

(SOC-1) and the SOC-2. Both exploit all 10 classes with the difference being that SOC-1 includes 

only the 9563 serial number for BMP-2 and serial number 132 for T-72, while SOC-2 all available 
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serial numbers for these two targets as presented in Table 2. Thus, SOC-1 is essentially a 10-class 

and SOC-2 a 14-class ATR problem. For both target set configurations, the 17° depression angle 

is used for training and the 15° for testing. Table 5 compares the ATR performance achieved by 

C-VGG-C on SOC-1 against current literature and Table 6 presents the corresponding confusion 

matrix of our technique. Table 7 and 8 present the corresponding results for SOC-2. Results on 

both SOC trials highlight that C-VGG-C outperforms current ATR algorithms as it attains 99.71% 

ATR on SOC-1 and 99.79% on SOC-2. 

Table 5 SOC-1 average ATR performance (%) 

Chen’s 8 MtCS 35 Bayesian CS 16 SAE 20 DNN 17 C-VGG-C 

84.70 84.00 92.60 95.40 96.00 99.71 

 

Table 6 SOC-1 confusion matrix of the proposed C-VGG-C architecture 
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1
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U
 2
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recognition 

(%) 

2S1 273 0 0 0 0 0 0 0 1 0 99.64 

BMP-2 0 196 0 0 0 0 0 0 0 0 100 

BRDM-2 0 0 269 1 0 0 0 4 0 0 98.18 

BTR-60 0 0 0 195 0 0 0 0 0 0 100 

BTR-70 0 0 0 0 196 0 0 0 0 0 100 

D7 0 0 0 0 0 272 0 0 0 2 99.27 

T-62 0 0 0 0 0 0 273 0 0 0 100 

T-72 0 0 0 0 0 0 0 196 0 0 100 

ZIL-131 0 0 0 0 0 0 0 0 274 0 100 

ZSU 23-4 0 0 0 0 0 0 0 0 0 274 100 

average           99.71 
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Table 7 SOC-2 average ATR performance (%) 

method DNN 17 IGT 58 
Morgan’s 

15 
BMO 32 KM 29 ASC 33 EFS 56 Zernike 57 PCA 55 NMF 21 C-VGG-C 

avg  95.00 95.00 92.30 95.74 84.58 95.41 94.10 93.46 90.24 93.76 99.79 

 

 

Table 8 SOC-2 confusion matrix of the proposed C-VGG-C architecture 
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recognition 

(%) 

2S1 273 0 0 0 0 0 0 0 1 0 99.64 

BMP-2 (9566) 0 196 0 0 0 0 0 0 0 0 100 

BMP-2 (9563) 0 196 0 0 0 0 0 0 0 0 100 

BMP-2 (c21) 0 196 0 0 0 0 0 0 0 0 100 

BRDM-2 0 0 269 1 1 0 0 1 0 2 98.18 

BTR-60 0 0 0 195 0 0 0 0 0 0 100 

BTR-70 0 0 0 0 196 0 0 0 0 0 100 

D7 0 0 0 0 0 272 0 0 0 2 99.27 

T-62 0 0 0 0 0 0 273 0 0 0 100 

T-72 (132) 0 0 0 0 0 0 0 196 0 0 100 

T-72 (812) 0 0 0 0 0 0 0 195 0 0 100 

T-72 (s7) 0 0 0 0 0 0 0 191 0 0 100 

ZIL-131 0 0 0 0 0 0 0 0 274 0 100 

ZSU 23-4 0 0 0 0 0 0 0 0 0 274 100 

average           99.79 
 

 

3.6 ATR Assessment Against Noise 

In this trial, we evaluate the robustness of C-VGG-C against current methods on the SOC-1 

dataset where noise is added. Noise simulation is consistent with the literature 6,11 ,i.e. we 

randomly select a percentage of pixels in the target scene and replace their value with samples 

generated from a Gaussian distribution. Fig. 7 presents a scene image from the MSTAR dataset 

under the various noise levels simulated in this trial. The performance gained on the SOC-1 dataset 

is presented in Fig. 8, where our suggested technique presents a considerable improvement over 

current methods. This is because the interpolation process presented in Eq. (1) smooths the noise 

nuisances, and combined with the C-VGG features and the Cosine similarity metric affords to our 
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suggested architecture a robust performance. Regarding the match metric, Section 3.8 

demonstrates the effectiveness of the Cosine similarity metric. 

 

     

(a) (b) (c) (d) (e) 

Fig. 7 MSTAR images at different noise levels (a) 0% (original) (b) 1% (c) 5% (d) 10% (e) 15% 

 

 

Fig. 8 Robustness in various noise levels 

 

3.7 Extending to Other Mainstream CNNs  

We also extend the suggested layer-clustering strategy to the AlexNet, GoogleNet and ResNet 

CNNs. For AlexNet we use MATLAB’s implementation while for GoogleNet and ResNet their 

MatConvNet 49 implementations. The clustering methodology for each CNN is equivalent to the 

one used for C-VGG, i.e. each cluster contains one convolutional layer. Based on the tuning 

process presented in Section 3.2, the optimum activation layer for the clustered AlexNet (C-

AlexNet) is l=2 that concludes with the MaxPool_2 layer and for clustered GoogleNet (C- 

GoogleNet) is l=2 ending with the Pool_2 layer. Finally, for the clustered ResNet (C-ResNet) 

optimum ATR is achieved at l=3 that concludes with the res2a_branch2b layer. 
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The first trial involves evaluating the ATR performance in the 3-class recognition case of 

Section 3.2. Table 9 shows the coherency of our clustered CNN concept as it affords a high ATR 

performance for every mainstream CNN. This is also evident from the results in the 10-class SOC-

1 dataset presented in Table 10.  

 

Table 9 3-class ATR (%) per clustered CNN variant 

 

 

 

 

Table 10 SOC-1 10-class ATR (%) per clustered CNN variant 

 

 

 

3.8 Extending to Other Distance/ Similarity Metrics  

We also extend the C-VGG concept to several distance/ similarity measures used by various 

computer vision algorithms. The measures evaluated are based on the grouping of 59 and are:  

3.8.1 Lp Minkowski family 

L1-norm, which measures the absolute value distance: 

  
1

,
k

T S T S

ii ii

ii

f f f f


    (8) 

 C-VGG-C C-GoogleNet-C C-AlexNet-C C-ResNet-C 

BMP-2 100 95.40 99.66 97.78 

BTR-70 100 96.94 100 97.96 

T-72 100 100 99.83 100 

average 100 97.45 99.83 98.58 

 C-VGG-C C-GoogleNet-C C-AlexNet-C C-ResNet-C 

average  99.74 98.2 99.68 98.06 
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L2-norm or Euclidean, which measures the shortest distance: 

  
2

1

,
k

T S T S

ii ii

ii

f f f f


    (9) 

 

3.8.2 Intersection family 

Tanimoto metric that compares the similarity and diversity of the features 
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3.8.3 Inner Product family 

Cosine, as introduced Eq. (6). 

Jaccard 
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 (11) 

 Fidelity family 

that measures the similarity of two probability distributions 

 
1

, log
k

T S T S

ii ii

ii

f f f f


 
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Hellinger,  

   
1

, 2
k

T S T S

ii ii

ii

H f f f f


     (13) 
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3.8.5 Shannon entropy family 

Kullback-Leibler divergence, which measures the similarity by calculating the relative entropy: 

    
1

, log
Tk

T S T S ii

ii ii S
ii

f
f f f f

f

  
     

  
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Shannon Entropy function, which measures the disorder of the features 
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, log
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f f f f f f
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3.8.6 x2 family  

x2 distance, which measures the underlying distance of the features and emphasizes their 

dissimilarity: 
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In addition, we also investigate the SAR ATR performance by substituting the distance/ 

similarity measure with a Multi-class Support Vector Machine (M-SVM) scheme similar to the 

strategy suggested in 60.  

Table 11 presents the ATR performance attained by each C-VGG vs. measure combination. 

From Table 11 the following conclusions can be made: 

a. Even though the Cosine measure excels, the majority of the measures evaluated achieve a 

quite appealing SAR ATR performance. 

b. The distance/ similarity measure has a substantial impact on the ATR performance. 

Nevertheless, the majority of the distance/ similarity measures attains a high ATR performance 

validating the robustness of the suggested clustering method. 
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c. The performance of each metric is associated with the distance/ similarity measure family 

that it belongs. From our trials this is clearly demonstrated as measures from the same family have 

a similar performance.  

We also highlight the contribution of the Cosine similarity measure to achieve high performing 

ATR on SAR imagery that is affected by noise and subsampling nuisances. For that purpose, we 

corrupt a scene feature 
S

corruptedf
 with the noise and subsampling levels of Section 3.4 and 3.6 

respectively, and calculate the feature distance/ similarity measure to the uncorrupted 
Sf  scene 

feature. Both 
S

corruptedf
 and 

Sf  are extracted using the C-VGG architecture and are then matched 

using the match/ similarity metrics presented. Fig. 9 shows the distance/ similarity per metric from 

which the following conclusions can be made: 

a. The importance of the feature match metric is evident because the matching distance 

between 
S

corruptedf
 and 

Sf  highly depends on the metric itself.  

b. The Cosine similarity metric affords the smallest feature metric between 
S

corruptedf
 and 

Sf , 

with Jaccard to follow. It is worth noting that even when the level of corruption increases 

substantially, the Cosine based feature metric remains quite stable. Hence, feature matching is 

only minor affected by nuisance factors affording the high quality ATR performance demonstrated 

in Fig. 6 and Fig. 8. This can be explained as both Cosine and Jaccard involve the angular variation 

of the feature vectors 
S

corruptedf
 and 

Sf  rather than their distance, which is the norm in a feature 

matching scheme.  

 c. The hierarchy of the noise nuisance trial (Fig. 9 (a)) and resolution variation trial (Fig. 9 

(b)) is the same, enhancing the validity of selecting the Cosine metric. 
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Table 11 3-class ATR (%) for C-VGG and various feature distance/ similarity measures 

 

 

 
(a) 

 
(b) 

Fig. 9 Robustness in various nuisances and levels (a) noise (b) resolution 

 

3.9 Discussion  

The robustness of the proposed architecture is due to combining the suggested clustered CNN, the 

multi-dimensional vectorization process and the cosine similarity metric. Specifically, the 3D 
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response tensor lY  of the activated clustered VGG layer reveals different and distinctive local 

patches of the target. In addition, applying the multi-dimensional vectorization process on lY  

exploits the entire the 3D tensor, i.e. the complete 3D response map, enhancing the distinctiveness 

and robustness of the 1D-feature vector to inter-class and intra-class variation as well as to 

nuisance factors. An additional advantage of the multi-dimensional vectorization process is 

converting the 3D topology of the features within lY  into 1D-feature vector without any 

information loss. Finally, the performance of the suggested architecture is further enhanced by 

exploiting the cosine similarity metric that is appropriate for classification tasks taking full 

advantage the suggested highly descriptive 1D-feature vector. 

4 Conclusion 

Deep learning techniques are widely used for SAR ATR and aim at extracting deep features that 

can uniquely describe a target within a SAR image. Instead of handcrafted CNNs, the suggested 

strategy extends the usability of the state-of-the-art pre-trained in the visual domain CNNs into 

the SAR data domain by clustering the CNN layers into feature-specific based layers. Specifically, 

SAR imagery is remapped to meet the requirements of the clustered VGG CNN, then a number of 

clusters are activated and the output response is transformed into a 1D-feature vector by applying 

a multi-dimensional tensor fusion. Template and scene feature vectors are matched based on the 

Cosine similarity measure.  

Experimental results on the MSTAR data set under various configurations and nuisances such 

as 10-class and 3-class ATR problems with and without target variants, noise, large depression 

angle variation and resolution variation, illustrate the effectiveness of our suggested architecture 

against current ATR techniques. We also demonstrate that among current CNNs used by the 
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computer vision community, the combination of VGG with a Cosine measure can afford a highly 

appealing and robust ATR performance.  
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Fig.1 Proposed SAR ATR architecture showing activated cluster 2  

Fig. 2 Examples of 2D response maps of clustered layer l=2. The 3D tensor descriptor is the 

ensemble of the 2D matrices. (as an example only five out of the 128 response maps are shown) 
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Fig. 3 (a) 10 classes of the MSTAR database at 17° depression angle (b) the 2S1 target at 

various depression angles 

Fig. 4 Proposed architecture’s SAR ATR performance on the 3-class problem 

Fig. 5 MSTAR images (focusing on the target) at different resolutions    (a) 0.3m×0.3m 

(original) (b) 0.4m×0.4m (c) 0.5m×0.5m (d) 0.6m×0.6m (e) 0.7m×0.7m. 

Fig. 6 Robustness in various scene resolutions 

Fig. 7 MSTAR images at different noise levels (a) 0% (original) (b) 1% (c) 5% (d) 10% (e) 15% 

Fig. 8 Robustness in various noise levels 

Fig. 9 Robustness in various nuisances and levels (a) noise (b) resolution 

 

 


