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Abstract

The influence of global interactions between the static atomic structure and the valence electrons on structure formation in binary
Al-(Ni,Cu,Zr), Zr-(Ni,Cu) and ternary Al-(Ni,Cu)-Zr metallic glasses is investigated over wide concentration ranges and discussed
in terms of a Hume-Rothery-like theory by analysing and comparing data available in the literature. The results suggest that global
interactions lead to an improvement of thermal stability and glass-forming ability. A complete understanding of structure formation
in the considered alloys is assumed to be possible only by taking into account both local and global effects.
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1. Introduction

Metallic glasses are a promising class of materials for versa-
tile future applications[1, 2]. However, the small critical casting
thicknesses still limit the dimension of parts engineered from
thesematerials. Although Zr-basedmetallic glasses exhibit com-
paratively high casting thicknesses a comprehensive understand-
ing of the conditions necessary for good glass-forming ability
(GFA) is still missing. Most often only effects on the local
level, i.e. due to clusters, chemical short range order (CSRO) or
medium range order (MRO), are considered. On the other hand
it is known that global interactions between the static atomic
structure and the valence electrons, i.e. the electronic structure,
play an important role during structure formation in liquid and
amorphous (a) systems [3–11].

The influence of global effects was first recognised byHume-
Rothery in crystalline (c) solid-solutions by scaling their phase
diagrams not versus composition but the mean valence Z̄ (mea-
sured in electrons per atom, e/a) simply taking the usual va-
lence of the components according to their position in the pe-
riodic table[12]. It became obvious that these systems exhibit
the same sequence of crystalline phases as function of Z̄. An
explanation of this correlation was given by Jones in terms of
the dimensions of the Fermi sphere and Brillouin zones relative
to each other[13]. Since then the model was refined and put on
the basis of state-of-the-art solid state theory[14, 15] as well as
adapted to be applicable as guide in the search for new mate-
rials with promising applications and to understand phase sta-
bility in many different classes of materials[7, 15–22]. These
include amorphous alloys to which the ideas were first trans-
ferred by Nagel and Tauc[23] and later elaborated on by several
authors[3, 4, 6–11].
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In this global description instead of looking at single elec-
trons and local bonds the subsystem of the valence electrons as a
whole is considered and characterised by the Fermi sphere with
the diameter

2kF = 2 3

√

3�2Z̄ 1
Ω̄0

, (1)

where Ω̄0 is the mean atomic volume of the alloy[24]. The en-
ergy of the highest occupied electronic states, at the edge of the
Fermi sphere, is called Fermi energy EF. The structure on the
other hand is characterised by the Brillouin zone in c-systems
or pseudo-Brillouin zone in a-systems, respectively. The latter
is always spherical and characterised by its diameter Qp which,
in metallic systems, is identical with the position of the princi-
pal peak, i.e. the modulus of the according scattering vector,
in the static structure factor S(Q)[3]. Due to (pseudo-)Bragg
scattering of valence electrons a rearrangement of electronic
states to both higher and, more importantly, to lower energies
is caused. This leads to the occurrence of gaps (c-systems) or
pseudogaps, i.e. local minima, (a-systems) bordered by max-
ima in the electronic density of states (DOS)[25, 26]. If opti-
mally EF lies close to the centre of the (pseudo)gap, only the
states shifted to lower energies are occupied and the energy of
the whole system is decreased, i.e. the system is more stable
than without the (pseudo)gap. If in an alloy the composition is
changed generally themean valence and thereforeEF changes as
well. Accordingly,EF does not fall in the (pseudo)gap any more
and the system loses its advantage. It is now favourable for the
alloy to change its structure to re-achieve the advantage which
explains Hume-Rothery’s original observation[13–15]. Due to
the lack of different phases a-systems react on a change of 2kF
by an according change of Qp which has been shown experi-
mentally in a large number of so-called “simple" a-alloys with
only s- and p-states present at EF[3]. The matching of 2kF and
Qp is referred to as resonance[27].

If the alloys contain transition metals (TM) the assumption
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that it is only the static structure that is adjusting to electronic
constraints had to be to be dropped[28]. Especially in the case
of binary a-Al-TM alloys it was argued that 2kF can be influ-
enced by hybridisation effects between Al-sp- and TM-d-states
atEF which can be described by an effective valence of Al or the
TM[28–30]. This flexibility of the electronic system provides
a further degree of freedom for the system to achieve its most
favourable state[4, 7, 10, 31]. Furthermore, hybridisation has
been demonstrated to cause effective valences already for pure
TM[32–34]. In this respect a valence of Z = 1.5 was found to
be appropriate for the complete row of the 3d-TM, including Ca
and Cu [33]. For Zr, a 4d-TM, Z was assumed to lie between
1 and 2[32] and has been assessed successfully with, again, 1.5
in the context of amorphous alloys[5]. For the remainder of this
paper we will therefore adopt Z = 1.5 for Ni, Cu and Zr.

The presence of TM-d-states atEF, on the other hand, causes
high values of the DOS at EF, N(EF), which often impedes
the easy identification of a pseudogap[6]. In principal the mea-
sured N(EF) has to be compared to calculations without the
pseudogap, N0(EF), which can be done easily only for simple
a-alloys[3]. However, other things being equal, even a small
reduction of N0(EF), i.e. a small energy gain, maybe decisive
for the stabilisation of a specific structure of the alloy[3, 6]. In
general, DOS features like pseudogaps are the result of highly
intertwined structural and electronic properties[10, 30, 35]. A
careful angular-momentum projected analysis of the DOS from
experimental as well as theoretical considerations is inevitable.
Experimentally photo-electron spectroscopy (PES) as well as
inverse photo-electron spectroscopy (IPES) are necessary to ob-
tain the exact shape of the DOS in the vicinity of EF. If, for ex-
ample, EF is not located in the centre of the pseudogap and only
PES results are considered, it may appear that EF is mistakenly
related to the aforementioned maximum below the pseudogap
and not to the pseudogap itself leading to contradictory assump-
tions about the presence of resonance[36, 37].

Complementary to the discussion of a-systems in k-space
there is also an indication of the resonance in r-space in form of
the so-called spherical periodic order (SPO)[3]. If the radii

rn =
(5
4
+ n

)

⋅
2�
Qp

(n = 0, 1, 2,…) (2)

of the coordination spheres around any chosen atom resonantly
match with the wavelength �Fr = 2�∕2kF of the Friedel oscilla-
tions of the effective pair potential a characteristic sequence of
peaks in the pair correlation function according to

rn =
(5
4
+ n

)

⋅ �Fr with n = 0, 1, 2,… (3)

can be observed as a fingerprint of the resonance[3]. In that
situation an a-system is especially stable since the atoms are lo-
cated in the minima of the effective pair potential[3, 38–40].
Alternatively, the SPO can be understood as the result of a self-
organisation between the atoms and the valence electrons dur-
ing structure formation to adjust the interatomic distances for
an optimised pseudo-Bragg scattering in order to enhance the
pseudogap[25, 26]. It has to be noted that the SPO, in its cur-
rent form, does not distinguish between the different species in

an alloy and hence cannot explain the occurrence of the indi-
vidual partial pair correlation functions. In this regard, the SPO
is a purely topological but nevertheless powerful description of
the interplay of order and energetic stabilisation in the system
under consideration.

In the present study the impact of global effects on structure
formation in a-Al-(Ni,Cu,Zr), a-Zr-(Ni,Cu) and its implications
for the ternary systems a-Zr-(Ni,Cu)-Al is investigated. This is
done by comparing the positions of the peak centres Qp of the
principal peak in the respective structure factors S(Q) with 2kF
calculated using appropriate assumptions for the valences Z of
the elements involved as outlined above as well as elaborated in
more detail in the following sections. In the case of the binary
a-Zr-(Ni,Cu) alloys correlations with further properties are ex-
plored in order to substantiate the suggested global influences,
i.e. the presence of resonance. All experimental data discussed
is taken from the literature.

2. Binary systems

The ternary systems Zr-(Ni,Cu)-Al are bordered by the bi-
nary systems Al-(Ni,Cu), Al-Zr and Zr-(Ni,Cu). We therefore
begin our discussion with the latter four systems. Table 1 lists

element rat Ω0 ΔHmix
A−Zr

(nm) (Å3) (kJ/mol)
Al 0.141 16.61 -44
Ni 0.126 10.94 -49
Cu 0.126 11.78 -23
Zr 0.158 23.28 –

Table 1: Data of the chemical elements considered in the present study: atomic
radius (rat )[41], atomic volume (Ω0) (calculated from mass density[42] and
atomic mass[43]) and enthalpy of mixing with Zr (ΔHmix

A−Zr ) using the Miedema
model[44].

for the chemical elements involved in this study data relevant
for the subsequent discussion (atomic radius rat , atomic volume
Ω0, enthalpy of mixing with Zr ΔHmix

A−Zr). Table 2 lists for the
alloys under discussion the method of production, their thick-
nesses (where appropriate), the physical quantities considered,
the symbols used in Figs. 1 and 2 as well as the respective refer-
ence to the literature. Open, half-open and closed symbols are
used for thin film samples, mechanically alloyed samples and
melt-spun/bulk samples, respectively.

2.1. Binary a-Al-(Ni,Cu,Zr) alloys
Figure 1 shows the positions Qp of the principal peaks in

S(Q) for binary a-Al-(Ni,Cu,Zr) alloys. The lines in Fig. 1 rep-
resent calculations of 2kF using Eq. (1). For these calculations
the knowledge of the mean atomic volumes Ω̄0 are necessary.
Due to the absence of experimental values Ω̄0 were calculated
as an concentration-weighted average of the values of the pure
crystalline elements (Tab. 1) under the assumption that the val-
ues in the a-state are close those of the c-state and stay constant
during alloying. Especially for Al-Ni it is known that the latter
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mat. prep. thick. quantity fig. sym. ref.
Al-Ni f.e. ≈ 30 nm Qp 1a ○ [45]
Al-Ni f.e. ≈ 30 nm Qp 1b □ [46]
Al-Cu f.e. ≈ 30 nm Qp 1c ○ [47]
Al-Zr b.m. – Qp 1c ⬗ [48]
Al-Zr s.d. N/A Qp 1c ○ [49]
Al-Zr s.d. N/A Qp 1c △ [50]
Al-Zr b.m. – Qp 1c ⬖ [51]
Al-Zr b.m. – Qp 1c ◐ [52]
Al-Zr b.b. – Qp 1c ◑ [53]
Al-Zr b.m. – Qp 1c ◒ [54]
Al-Zr s.d. ≈ 2 �m Qp 1c,4 ⨞ [55]
Al-Zr s.d. ≈ 2 �m Qp 1c,4 ▽ [56]
Ni-Zr m.s. N/A Qp, TX 2c,g ● [57]
Ni-Zr m.s. 30 �m Ω0,Qp 2a,c ⬢ [58]
Ni-Zr m.s. 20–50 �m Ω0,Qp 2a,c ■ [59]
Ni-Zr m.s. ≈ 20 �m Ω0,Qp 2a ◆ [60]
Ni-Zr m.s. 20–30 �m Tg,TX,HX,� 2g,i,k ◆ [61]
Ni-Zr m.s. 25–35 �m Ω0,Qp 2a,c ▶ [62]
Ni-Zr m.s. N/A Qp,Tg,TX 2c,g ◀ [63]
Ni-Zr m.s. N/A HX 2i ● [64]
Ni-Zr m.s. N/A Qp 2c ⬙ [65]
Ni-Zr b.m. – Qp 2c ▼ [66]
Ni-Zr b.m. – Qp,TX 2c,g ◒ [67]
Ni-Zr d.c. – N(EF) 2e ⟍ [68]
Ni-Zr d.c. – Tg 2g ▶ [69]
Ni-Zr m.s. N/A Ω0 2a ▲ [70]
Ni-Zr m.s. N/A Qp 2c ▲ [71]
Ni-Zr s.d. 800 nm Qp 2c ○ [72]
Ni-Zr a.m. ≈ 2.5mm Qp,TX 2c,g ★ [73]
Ni-Zr s.d. 500 nm Qp 2c ◇ [74]
Ni-Zr s.d. 4–6 �m Ω0 2a □ [75]
Cu-Zr m.s. ≈ 20 �m Ω0, TX,HX, � 2b,h,j,l ● [76]
Cu-Zr m.s. ≈ 20 �m Ω0, � 2b,l ◆ [60]
Cu-Zr m.s. N/A Qp 2d ● [77]
Cu-Zr m.s. N/A Qp, TX 2d,h ◀ [63]
Cu-Zr m.s. N/A � 2l ■ [78]
Cu-Zr c.a. 2 �m Qp 2d ● [79]
Cu-Zr d.c. – N(EF) 2f ⟍ [68]
Cu-Zr d.c. – Tg 2h ▶ [69]
Cu-Zr m.s. N/A Ω0 2b ▲ [70]
Cu-Zr m.s. 25 �m Ω0,Tg,TX 2b,h ■ [80]
Cu-Zr s.d. ≈ 128 nm Ω0 2b □ [81]
Cu-Zr m.s. 25 �m Qp,Tg,TX 2d,h ◆ [82]
Cu-Zr i.c. 2 mm Tg,TX 2h ▼ [83]
Cu-Zr m.s. N/A Ω0,Qp 2b,d ▶ [84]
Cu-Zr m.s. ≈2 mm Qp 2d ▼ [85]
Cu-Zr m.s. N/A Qp 2d ▲ [86]
Cu-Zr a.m. ≈2.5 mm Qp 2d ★ [87]
Cu-Zr s.d. 4-6 �m Ω0 2b □ [75]

Table 2: Preparation method (f.e.: flash evaporation[88], m.s.: melt spinning,
b.m.: ball milling, d.c.: results are obtained from a data collection, a.m.: arc-
melting (i.e. arc-melted samples used directly), i.c.: injection casting) and thick-
ness (where appropriate) of the binary alloys considered in this study together
with the physical quantities used, the figures in which they are plotted, the re-
spective symbols (open (thin films), half open (mechanical alloying), closed
(preparation from the melt and bulk samples)) used in the figures and the liter-
ature reference.

assumption, at least in the c-case, is not fulfilled over the com-
plete concentration range and reduced values, i.e. higher pack-
ing densities, were observed[71, 89]. For Z̄ in Eq. (1) different
assumptions were used as discussed in the following. While,
as explained in the introduction, for all the TM ZTM = 1.5
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Figure 1: Positions of the principal peak Qp in S(Q) of a) binary a-Al-Ni, b)
binary a-Al-Cu and c) binary a-Al-Zr alloys versus the concentration x of the
respective TM element. Table 2 serves as legend for the symbols. The solid
lines represent 2kF calculated using Eq. (1) for different valences as denoted at
the curves. The red triangles indicateQp,at for the pure elements estimated from
the atomic radii rat via Eq. (4) (see text). (For interpretation of the references to
colour the reader is referred to the web version of this article.)

was assumed for Al different values were taken into consider-
ation: using ZAl = 3, as is to be expected from the position
of Al in the periodic table, Eq. (1) delivers values of 2kF, de-
noted by 2kF(3|1.5) (red dash-dotted lines in Fig. 1), that can
in no case describe the measured Qp. It has been proposed that
Al can exhibit an effective valence of 2 owing to the aforemen-
tioned hybridisation effects in a-Al-TM alloys[90] (2kF(2|1.5),
blue dashed lines in Fig. 1). This provides indeed a reasonable
assumption for a-Al-(Ni,Cu). For a-Al-Zr, especially for low
Zr-content, however,ZAl = 1.5, like for the TM, is more appro-
priate (2kF(1.5), green solid line Fig. 1c). For higher Zr-content
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a deviation towards even lower values ofZAl seems to take place
as illustrated by the black dotted curve in Fig. 1c which is cal-
culated assuming ZAl = 1.3, i.e. 2kF(1.3|1.5). Altogether, it
appears that depending on the TM, especially if it as an early or
a late TM, the alloys exhibit different structural behaviour, re-
flected in an unusual variability ofZAl. This, with special atten-
tion being paid to the behaviour for x ≲ 20, shall be addressed
in more detail in a future publication by additionally consider-
ing further a-Al-TM-systems. From the considerations above an
interval 1.3 ≤ ZAl ≤ 2 can be assumed which has to be taken
into account when the role of Al in multinary alloys has to be
evaluated.

The red triangles in Fig. 1 point to estimated values of Qp
for the pure components in their hypothetical a-state assuming
that the nearest-neighbour distance r0 (Eq. (2) with n = 0) is
determined by their respective atomic radius rat (Tab. 1), i.e.
r0 = 2rat , which gives

Qp,at =
5
4
⋅
2�
r0
= 5
4
⋅
2�
2rat

= 5
4
⋅
�
rat

. (4)

Regarding an extrapolation of the experimental results for Qp
shown in Fig. 1 this indeed seems to be a good assumption for
pure Cu, Ni and Zr. For Al, however, only in the case of a-Al-Zr
a good agreement can be found, highlighting again the possible
variable behaviour of Al depending on the alloying element. It
is interesting to note that Qp,at for Al, Ni, Cu and Zr is always
close to their respective 2kF(1.5) (Fig. 1).

2.2. Binary a-Zr-(Ni,Cu) alloys
In this section we discuss the relation between 2kF and Qp

for a-Zr-(Ni,Cu) alloys and its reflexion in several other proper-
ties of these alloys (Fig. 2). Again we use a valence of 1.5 for
Zr as well as Ni and Cu, i.e. the valence is assumed to stay con-
stant at 1.5 over the complete concentration range. The change
of 2kF therefore only depends on the change of the mean atomic
volumeΩ0 which is again calculated as concentration-weighted
average (solid black lines in Fig. 2a,b) over the values for the
pure elements (Tab. 1). Compared with experimental results
this seems to be a very good approximation over the complete
known concentration range for a-Zr-Cu (Fig. 2b) and is seen as
an indication for ideal-solution behaviour[91–93]. For a-Zr-Ni,
however, a deviation to smaller volumes, i.e. higher packing
densities, in the range 40 ≤ xNi ≤ 80 can be seen (dash-dotted
black line in Fig. 2a). This behaviour has been observed before
and was ascribed to strong local chemical interactions as hinted
by the high negative ΔHmix

Ni−Zr (Tab. 1)[71, 94].
The calculated 2kF are plotted in Fig. 2c,d over the complete

concentration range using the atomic volumes according to the
ideal-solution behaviour (solid green lines). For a-Zr-Ni addi-
tionally the deviation from ideal-solution behaviour is taken into
account which results in an increase of 2kF especially for high
Ni-content (dash-dotted green line in Fig. 2c). The close prox-
imity of Qp,at (red triangles in Fig. 2c,d) calculated via Eq. (4)
and 2kF(1.5) for the pure elements is already an indication that
global and local effects might act hand in hand. For both sys-
tems the measured Qp are close to 2kF(1.5) also over the com-

plete concentration ranges but Qp < 2kF(1.5) for xNi < 55 and
xCu < 50, respectively (Fig. 2c,d).

While for a-Zr-Ni a distinct S-shaped dependence ofQp ver-
sus xNi is obvious this behaviour is much less pronounced or
virtually absent for a-Zr-Cu. It can be seen that both systems
behave very similar, again, up to around x ≈ 55. For a better
comparison the composition dependence of Qp for the respec-
tive other system is drawn as thick grey lines in Fig. 2c,d. In
a-Zr-Cu for xCu ≳ 50 up to virtually the highest measured xCu
an almost perfect agreement of Qp and 2kF(1.5) becomes ob-
vious. For a-Zr-Ni this agreement (dash-dotted green line) can
only be found in the range 55 ≲ xNi ≲ 70.

The good agreement of Qp and 2kF(1.5), especially that Qp
follows the “hump” in 2kF for a-Zr-Ni, can be regarded as strong
indication for the influence of a global resonance as outlined in
the introduction. The concentration ranges with perfect agree-
ment, i.e. Qp = 2kF, are highlighted by vertical dashed lines in
Fig. 2c,d as well as in the remainder of Fig. 2.

ThatQp and 2kF(1.5) do not coincide over the complete con-
centration range suggests that further effects are active. Those
can be seen in constraints on the local scale that have to be ful-
filled as well. It can be assumed that none of the effects alone is
able to explain the structural behaviour completely. Only if both
local and global needs are satisfied the most favourable structure
can emerge. Global (resonance) and local effects (CSRO) might
support each other or are even mutually dependent on each other
to achieve the most favourable situation for the alloy. It might
furthermore be argued that an EF not optimally located in the
center of a pseudogap can be counterbalanced by local effects,
e.g. local covalent bonding, i.e. strong local chemical inter-
actions. The system can then be in a favourable state even if
Qp and 2kF do not coincide, as is observed in a-Zr-(Ni,Cu) for
xNi ≲ 55 and xCu ≲ 50, respectively (Fig. 2c,d). Altogether
this helps to understand the good GFA in a-Zr-(Ni,Cu) which,
particularly for a-Zr-Cu, was found unexpectedly less depen-
dent on factors like the occurrence of eutectics or intermetal-
lic phases[95–99]. A deeper analysis of the intricate interplay
between local and global effects might also be able to explain
finer details like the oscillating GFA observed in a-Zr-Cu for
48 ≤ xCu ≤ 69[81]. Below xNi ≈ 55 and xCu ≈ 50 global ef-
fects seem to be less important since for both systemsQp < 2kF.
Furthermore, Qp behaves virtually identical for both systems
(cf. grey lines in Fig. 2c,d) although the slope of 2kF(1.5) for
a-Zr-Ni is different than that for a-Zr-Cu. In this concentration
region Qp and 2kF seem to be decoupled. The achievement of
resonance accomplishes a smaller energy gain then optimising
the local constraints, i.e. local effects are improved at the ex-
pense of those on the global scale. Additionally, it would be in-
teresting to see how Qp approaches the respective Qp,at for the
pure elements in their hypothetical a-state for which the dashed
red lines in Fig. 2c,d may serve as a prediction.

For a further discussion the knowledge of experimentally
obtainedDOS spectra over awide concentration rangewith small
steps in xNi,Cu would be necessary to monitor composition de-
pendent changes in detail. Currently available PES or IPES re-
sults cover only a few compositions[100–106]. Theoretical in-
vestigations, on the other hand, cover a somewhat wider com-
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Figure 2: Comparison of a-Zr-Ni (left column) and a-Zr-Cu (right column) alloys. Table 2 serves as legend for the symbols. From top to bottom: a,b) atomic volume
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position region[36, 37], but their interpretation is controversial,
ranging from a “lack of DOS minimum at the Fermi level”[37]
to “always a pseudogap in the density of state at the Fermi level”[36]
for virtually the same Cu-content. It is, however, possible to dis-
cuss at least the DOS at the Fermi level,N(EF), over a relatively
wide concentration range. Those values can indirectly be ob-
tained bymeasurements of the magnetic susceptibility, low tem-
perature specific heat and superconducting properties[60, 68,
107]. Such results are shown in Fig. 2e,f[68]. For both sys-
tems a monotonic an almost linear decrease of N(EF) with de-
creasing difference between Qp and 2kF is visible whereby for
a-Zr-Ni the modulus of the slope even increases in the region
where Qp = 2kF. This indeed hints the energetic advantage as
expected from a system under resonance. Future measurements
have to show howN(EF) behaves for higher xNi,Cu.

To verify whether the agreement Qp = 2kF is indeed re-
flected in a higher thermal stability of the a-phase Fig. 2g,h
shows the crystallisation temperatures TX (orange) of the alloys
and furthermore the glass transition temperatures Tg (black).
Figure 2i,j shows HX, the molar enthalpy of crystallisation. In
the concentration region where Qp = 2kF for a-Zr-Ni a peak in
TX accompanied by a considerable drop of HX is obvious. At
the same time Tg also shows a maximum. A similar behaviour
can be observed in a-Zr-Cu. This provides further evidence for
the influence of global stabilisation effects as expected for sys-
tems under resonance.

Since electronic transport properties are inherently depen-
dent on the electronic structure atEF they can give further infor-
mation on the resonance. Therefore, in the last row of Fig. 2 the
electric resistivity � of a-Zr-(Ni,Cu) versus xNi,Cu is shown. For
a-systems Faber-Ziman-like theories are often used to directly
connect S(Q) with �[108–110]. Thereafter high � are expected
if the resonance conditionQp = 2kF is fulfilled. While for a-Zr-
Cu this indeed seems to be the case (Fig. 2l) the maximal � for
a-Zr-Ni occurs a few at.% below which reflects the more com-
plicated behaviour when d-states at EF are involved (e.g. Mott
s-d-scattering[109, 111, 112]). In addition to the properties pre-
sented in Fig. 2 it is known that a-Zr-Cu exhibits extrema for
further material parameters in the concentration region around
xCu = 65 for instance a minimum of the plastic strain and max-
ima of Young’s modulus and yield strength[113].

To get an impression of the resonance effects in r-space Fig. 3
shows the structure factorsS(Q) (left) and pair correlation func-
tions g(r) (right) of a-Zr-Cu for xCu = 33, 50, 60. The green
vertical bars at the curves indicate in Fig. 3a 2kF(1.5) and in
Fig. 3b the shell distances according to the SPO (Eq. (3)). A
good agreement both in k- and r-space can be seen. In r-space,
however, there are structural features, like the split first peak,
that cannot be explained by the SPO in its current form. A
possible way of including such effects of chemical order in a
refined future form is provided by the scattering interpretation
of the SPO as outlined in the introduction, taking into account
the different scattering properties of the individual species for
the valence electrons. Moreover, it is known from binary and
ternary a-Al-TM alloys that act as precursors for quasicrystals
that they show an additional sequence in g(r) which is corre-
lated with the Golden ratio � ≈ 1.618 indicating icosahedral

20 40 60 80 100
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

5.5
S(Q)

a-Zr40Cu60

a-Zr50Cu50

a-Zr67Cu33

modulus of scattering vector Q(nm-1)

2kF(1.5)
a)

0.25 0.50 0.75 1.00 1.25
0

1

2

3

4

5

6

g(r)

Pa
ir 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

distance r (nm)

5/4lFr

9/4
l Fr

13
/4l

Fr

17
/4l

Fr

21
/4l

Fr

b)
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a-Zr-Cu alloys[92]. The curves are shifted along the y-axes for better clarity.
The green vertical bars indicate in a) the positions of 2kF(1.5) (Eq. (1)) and in
b) the radii of the coordination shells according to the SPO (Eq. (3)) calculated
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referred to the web version of this article.)

order[114, 115]. Amore detailed analysis for a-Zr-Cu alloys, es-
pecially in the composition region where Qp = 2kF is fulfilled,
has to show whether this is also the case here, since icosahe-
dral order plays a major role in this system as well[116, 117].
At least in molecular-dynamics simulations it was found that in
this very composition region the icosahedron is the dominant
short-range structure[113, 118].

3. Ternary alloys

It is well-known that the addition of Al to a-Zr-(Ni,Cu) im-
proves their GFA greatly which was discussed mainly, again,
on a local basis taking into account the high negative values of
ΔHmix

Al−B (Tab. 1) causing deviations from the ideal-solution be-
haviour and leading to an increased CSRO[71, 92, 119–123].
Strong covalent-like directional bonding of Al with the other
species in the alloy as a result of hybridisation was identified as
an important driving force in shortening interatomic distances
which results in an enhanced cohesion of clusters[123, 124].
Global effects, on the other hand, can be discussed here as well
in the same manner as done for the binary systems in the previ-
ous sections if straight lines in the ternary phase diagrams are
chosen.

In this section we will briefly discuss only one of such lines
each for the ternary systems a-Zr-Ni-Al and a-Zr-Cu-Al, respec-
tively. Figure 4 shows Qp for a-(Zr64Ni36)100−xAlx (for x =
0, 5, 10, 15, 20, 25 from [125]) and a-Zr50Cu50−xAlx (for x =
0, 10, 20, 30 from [92], for x = 50 data for a-Al51Zr49 from
[55, 56] is used). Using Eq. (1) the green solid lines in Fig. 4
showing 2kF(1.5|1.5|1.3), i.e. assuming Z = 1.5 for Zr, Ni, Cu
and Z = 1.3 for Al, were calculated. The latter assumption is
based on the results from Sec. 2.1 for high Zr-content but has to
be validated by more thorough studies in the future.
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For both systems a good agreementQp ≈ 2kF can be found.
With increasing Al-content the distance between Qp and 2kF
decreases in both cases which seems to be correlated with an
increase of the crystallisation temperatures TX (orange points
and right y-axes in Fig. 4) indicating, again, the presence of res-
onance. To further investigate the influence of global effects

0 10 20 30 40 50
24

26

28

30

32

0 10 20 30 40 50
24

26

28

30

32

600

650

700

750

800

850

900

600

650

700

750

800

850

900

w
av

en
um

be
r 
k(

nm
-1

)

a-Zr50Cu50-xAlx

Zr50Cu50 Zr50Al50

Qp

2kF(1.5|1.5|1.3)
b)

Al content x (at.%)

Al Ni

Zr

w
av

en
um

be
r 
k(

nm
-1

)

a-(Zr64Ni36)100-xAlx

Zr64Ni36 Zr32Ni18Al50

Qp
2kF(1.5|1.5|1.3)

a)

te
m

pe
ra

tu
re

 T
(K

)TX

Zr

Al Cu

te
m

pe
ra

tu
re

 T
(K

)

TX

Figure 4: Positions of the principal peak Qp in S(Q) of the ternary alloys a)
a-(Zr64Ni36)100−xAlx[125] and b) a-Zr50Cu50−xAlx[92] (for x = 50 data for a-
Al51Zr49 from [55, 56] is used). The solid green lines represent 2kF(1.5|1.5|1.3)
calculated using Eq. (1) with the given valences for Zr, (Ni,Cu) and Al. The
insets may serve as an orientation as to where the respective alloys are located
in the ternary phase diagrams (blue lines). The orange points show TX (right
y-axes)[92, 125]. The orange lines are guides for the eye. (For interpretation of
the references to colour the reader is referred to the web version of this article.)

on the multinary systems and its correlation with other prop-
erties, a lot more experimental data has to be acquired. Espe-
cially the systematic study of the influence of Al-addition to a-
Zr-(Ni,Cu) in the region of their highest stability, i.e. around
60 at.% (Ni,Cu), would be desirable. It is, finally, worth noting
that a pseudogap at EF was found experimentally for one of the
most important bulk metallic glasses, a-Zr55Ni5Cu30Al10[126],
and was surmised to aid its large GFA[6].

4. Conclusions

The effect of global interactions on glass forming ability of
binary Zr-Ni and Zr-Cu metallic glasses has been studied. For

this the positions of the principal maximum Qp in the static
structure factors S(Q) have been investigated in terms of their
relation to the diameter of the Fermi sphere 2kF. A good agree-
ment is found by taking into account a mean valence of Z̄ = 1.5
over the complete concentration ranges. Furthermore 2kF is
close to a structure that is to be expected from local packing
constraints due to the atomic radii of the components which can
provide an explanation of the good glass forming ability over
wide concentration regions in these systems. The structure can
be considered as the result of a mutual arrangement of global
and local effects. Correlations of the atomic structure, formed
under these circumstances, with other properties of the alloys
are pointed out. The spherical periodic order can explain the
average positions of the maxima in the pair correlation function
very well but has to be refined in the future to be able to ac-
count for the details due to the partial pair correlations. In order
to get a more complete picture of the electronic structure a sys-
tematic synchrotron-based photo-electron spectroscopic study
over wide concentration ranges supplemented by according in-
verse photo-electron spectroscopy has to be undertaken. Only
the combination of PES and IPES can successfully reveal min-
ima and trends in the DOS at EF depending on the composi-
tion. Further valuable insights may arise from studies on a-Zr-
(Fe,Co) and a-(Hf,Ti)-(Fe,Co,Ni,Cu). Especially for a-(Hf,Ti)-
(Ni,Cu) similar behaviour can be expected as hinted by previous
studies[68, 93, 107].

Using the insights obtained for the binary alloys as a ba-
sis trends in the structure of multinary systems can be under-
stood, as shown exemplarily for a-Zr-(Ni,Cu)-Al. A more de-
tailed comprehension, however, is currently hampered by the
uncertainty in the valence of Al. Further studies have to clarify
what determines this quantity.
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