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Abstract 

The design, fabrication, and operation costs of a solar-powered unmanned aerial 

vehicle (SUAV) only comprise a small fraction of the various aspects of 

satellite systems. Given the easy redeployment of SUAVs with a newly 

enhanced payload, many researchers have become interested in studying the 

potential of SUAVs as pseudo-satellites. However, research on the capability of 

a small SUAV to achieve year-round global perpetual operation remains in its 

infancy. The endurance of small SUAVs may be further improved by reducing 

system weight and power consumption. Therefore, sensitivity analyses are 

performed to determine the effects of payload, propulsion’s weight to power 

ratio, and solar module’s weight to area ratio on the weight and power 

consumption of a small SUAV. The outcome of this investigation is vital to 

avoid unnecessary investment on product development that may not 

significantly improve the performance and capabilities of SUAVs. The payload 

exerts the greatest effect on the maximum take-off weight of a SUAV, followed 

by the battery, structure, solar module, and propulsion weight. The weight to 

area ratio of the solar module should be prioritized in technological 

advancements to promote the endurance of SUAVs. In addition, small SUAVs 

will considerably benefit from improvements in the weight to power ratio of the 

propulsion. 

Keywords: Solar-powered UAV, Solar, Electric Motor, Battery, Endurance, 

Power Consumption. 

 

1.  Introduction 

Unmanned aerial vehicles (UAVs) were initially developed for military 

applications. Since the last decade, however, UAVs have been used in 
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commercial and large-scale applications [1–4]. This development has been mainly 

driven by cost and safety concerns. Cost in terms of materials and manufacturing 

is low when using a small platform. In addition, the safety of the pilot can be 

guaranteed given that he/she is not onboard but rather in the ground station [5]. 

The maneuverability of an unmanned aircraft with a smaller platform is also 

better than that of an aircraft with a larger platform [6]. Hence, UAVs can be used 

in critical missions and applications without concerns on aircraft capability and 

pilot safety [7–8].  

Solar-powered UAVs (SUAVs) have recently received considerable interest 

from the research community because they can deliver more tasks than other 

types of UAV given the availability of solar energy [9–10]. The utilization of 

renewable solar energy with near-zero emission further strengthens the benefits of 

using SUAVs in various applications, particularly in environmental research, 

surveillance, and pseudo-satellite communication. However, research on the 

capability of a small SUAV to achieve year-round global perpetual operation 

remains in its infancy [11–15]. 

SUAVs generally collect solar irradiance during daytime and convert solar 

energy into electrical energy for propulsion. The excess energy is stored in 

secondary batteries for flight during nighttime. Moreover, SUAVs can fly at near-

space altitudes to allow them to absorb solar irradiance above the clouds, and 

thus, improve their endurance [12–13, 15]. Reducing the weight and power 

consumption of SUAVs may also improve their endurance despite limited solar 

irradiance and daylight duration [16].   

Therefore, this study analyzes the sensitivity in design of a small SUAV 

system. It investigates how maximum take-off weight, propulsion weight, solar 

module weight, maximum power point tracker (MPPT) weight, power 

consumption, and endurance vary when payload, propulsion’s weight to power 

ratio, and solar cell’s weight to area ratio change in a small SUAV.  

This study also includes sensitivity analyses of the effects of payload, 

propulsion’s weight to power ratio, and solar module’s weight to area ratio on 

SUAV weight and power consumption. These analyses are essential to determine 

the effects of these parameters on SUAV design. The outcome of this 

investigation is vital to understand which aspects of product development should 

be focused on to improve the performance and capabilities of SUAVs 

significantly. 

 

2. SUAV Design Methodology 

Numerous SUAV components have evidently become smaller, more 

powerful, and more efficient than their previous counterparts. Thus, the approach 

for assessing the effects of technological advancements on SUAV designs is 

crucial. The mathematical model of a SUAV design that has been developed 

earlier and used in this work is illustrated in Fig. 1 [1, 3, 5, 11, 14].  

This SUAV design model has seven components, namely, mass sizing, 

aerodynamics, performance, stability and control, mission profile, solar 

irradiance, and electric propulsion. The sensitivity analyses of this model will be 

used to identify the parts with the most significant advantage for further research 

to yield the best output for SUAV design. 



 
 

 

 

 

Fig. 1. Design Model of a SUAV design. 

 

3.  Design Parameters 

A series of sensitivity studies on a small SUAV developed by Cranfield 

University [3] is presented herein. This SUAV has been selected because its 

parameters are readily available. Moreover, the effects of changes on various 

parameters can be easily visualized in a SUAV with already five successful 

flights to date. A photograph taken during a scheduled flight test of this SUAV is 

shown in Fig. 2 [3, 11]. The initial payload of the aforementioned 3 kg SUAV 

weighs 0.25 kg. The propulsion’s weight to power ratio is 0.0125 kg/W, and the 

solar module’s weight to area ratio is 0.2845 kg/m^2.   

Five variables of the SUAV are examined by varying the payload, 

propulsion’s weight to power ratio, and solar module’s weight to area ratio. These 

variables are maximum take-off weight, solar module weight, propulsion weight, 

power consumption, and battery-only flight endurance. The propulsion’s weight 

to power ratio and solar module’s weight to area ratio are set to within ±10% error 

of the specification of the studied SUAV. The payload weight is set from 0 kg to 

0.5 kg to study the suitability of a wide range of payload applications. 



 

 

 
 

 

 

 

Fig. 2. SUAV developed by Cranfield University. 

 

3.1  Maximum Take-off Weight  
The effects of various parameters on the maximum take-off weight of the 

SUAV are presented in Fig. 3. The analysis of the sensitivity of the propulsion’s 

weight to power ratio on the maximum take-off weight of the SUAV is shown in 

Fig. 3(a). The findings indicate that improving the propulsion’s weight to power 

ratio will not considerably decrease the maximum take-off weight of the SUAV.  

   

(a) (b) (c) 

Fig. 3. (a) Propulsion’s weight to power ratio, (b) solar module’s weight to 

area ratio, and (c) payload vs. maximum take-off weight. 

The maximum take-off weight can be decreased by 1.87 kg when the 

propulsion’s weight to power ratio improves by 0.1 kg/W. Overall, the maximum 

take-off weight is lighter by only 0.75% as a result of a 10% improvement in the 

propulsion’s weight to power ratio.  
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 The maximum take-off weight of the SUAV after changing the solar 

module’s weight to area ratio is illustrated in Fig. 3(b). The result indicates that 

enhancing this ratio can significantly reduce the maximum take-off weight of the 

SUAV. As a consequence of reducing maximum take-off weight by 0.26 kg when 

the solar module’s weight to area ratio is decreased by 0.1 kg/m^2. Moreover, this 

decrease accounts for a nearly 2.4% reduction in the maximum take-off weight 

caused by a 10% improvement in the solar module’s weight to area ratio.  

 The effect of the changes in payload on the maximum take-off weight of 

the SUAV is shown in Fig. 3(c). The analysis shows that a ±10% change in 

payload will not affect the maximum take-off weight of the SUAV. Moreover, the 

result indicates that the maximum take-off weight of the SUAV increases 

nonlinearly by approximately 1.137 kg for every kilogram of additional payload. 

This increase accounts for approximately 0.92% with a 10% payload increment. 

 

3.2 Weight of the Solar Module  

Fig. 4 presents the results of the sensitivity analyses performed to predict the 

fluctuations of the weight of the solar module caused by the changes in the 

propulsion’s weight to power ratio, the solar module’s weight to area ratio, and 

the payload. Low propulsion’s weight to power ratio improves the weight of the 

solar module as illustrated in Fig. 4(a).  

   

(a) (b) (c) 

Fig. 4. (a) Propulsion’s weight to power ratio, (b) solar module’s weight to 

area ratio, and (c) payload vs. the weight of the solar module. 

A decrement of approximately 10% of the propulsion’s weight to power ratio 

reduces the weight of the solar module by 10.7%, which demonstrates that the 

weight can be reduced by 26 g for every 0.01 kg/W improvement of the 

propulsion’s weight to power ratio. Similarly, Fig. 4(b) shows that the weight 

increases as the solar module’s weight to area ratio increases. The weight of the 
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solar module decreases by 12.4% with a 10% improvement in the solar module’s 

weight to area ratio, that is, a 0.22 kg per 0.1 kg/m2 in the solar module’s weight 

to area ratio. Thus, the highest savings in the weight of the solar module can be 

obtained by improving its weight to area ratio.  

 The analysis of the effect of the payload on the weight of the solar 

module is illustrated in Fig. 4(c). The analysis shows that a ±10% change in 

payload will not affect the weight of the solar module. The payload affects the 

weight of the solar module only when it is lower than 0.25 kg. Moreover, the 

analysis shows that the weight of the SUAV’s solar module increases nonlinearly 

by approximately 0.577 kg for every kilogram of additional payload, which is 

approximately 0.91% with a 10% payload increment. This result is obtained 

mainly because the weight of the solar module is limited by the amount of 

available wing area. 

 

3.3 Propulsion Weight  

Propulsion weight is another factor that significantly affects SUAV design. 

Thus, sensitivity analyses have been performed (Fig. 5) on the propulsion’s 

weight to power ratio, the solar module’s weight to area ratio, and the payload.  

   

(a) (b) (c) 

Fig. 5. (a) Propulsion’s weight to power ratio, (b) solar module’s weight to 

area ratio, and (c) payload vs. propulsion weight. 

The propulsion’s weight to power ratio considerably affects propulsion weight 

as shown in Fig. 5(a). With a 10% improvement in the propulsion’s weight to 

power ratio, the propulsion weight of the SUAV can be reduced by 11.3%. This 

decrease is equivalent to 0.15 kg of propulsion weight per 0.01 kg/W of 

propulsion’s weight to power ratio. However, the solar module’s weight to area 

ratio only slightly affects propulsion weight.  
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The propulsion weight decreases by 3.85% with a 10% improvement of the 

solar module’s weight to area ratio, which is approximately 22 g per 0.1 kg/W, as 

illustrated in Fig. 5(b).  The effect of the payload on propulsion weight is shown 

in Fig. 5(c). The propulsion weight of the SUAV increases by 1.28% with a 10% 

increment in payload weight, which is approximately 86.6 g per kilogram of 

payload. 

 

3.4 Power Consumption 

Power consumption is a critical parameter because it affects the size and 

performance of a SUAV. Thus, the effect of the changes in the propulsion’s 

weight to power ratio, the solar module’s weight to area ratio, and the payload on 

power consumption has been analysed. The slight influence of the propulsion’s 

weight to power ratio on power consumption is shown in Fig. 6(a). The power 

consumption of the SUAV decreases by 1.1% with a 10% improvement of the 

propulsion’s weight to power ratio. This improvement is equivalent to a 1.25 W 

reduction per 0.01 kg/W decrement of the propulsion’s weight to power ratio. 

   

(a) (b) (c) 

Fig. 6. (a) Propulsion’s weight to power ratio, (b) solar module’s weight to 

area ratio, and (c) payload vs. power consumption. 

The effect of the solar module’s weight to area ratio on the power 

consumption of the SUAV is slightly higher, as illustrated in Fig. 6(b). The power 

consumption of the SUAV is reduced by 3.93% when the solar module’s weight 

to area ratio is improved by 10%. This finding indicates that reducing the 

propulsion’s weight to power ratio or the solar module’s weight to area ratio is 

ineffective in decreasing power consumption. A change in payload slightly affects 

the power consumption of the SUAV as shown in Fig. 6(c). Power consumption 

increases by less than 1.5% for the SUAV with a 10% increment in payload. This 
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translates into a 7.3 W increase in power consumption for every kg of payload 

added to the SUAV. 

 

3.5 Endurance of Battery-Operated Flight 

Fig. 7 illustrates the effects of the propulsion’s weight to power ratio, the solar 

module’s weight to area ratio, and the payload on the endurance of a battery-

operated flight. The influence of the propulsion’s weight to power ratio on the 

endurance of the battery-operated flight of the SUAV is illustrated in Fig. 7(a). 

The flight duration of the SUAV increases by 0.83% with a 10% reduction in the 

propulsion’s weight to power ratio. This increase is roughly 1.1 h per 0.01 kg/W 

of the propulsion’s weight to power ratio.  

The effect of the solar module’s weight to area ratio on the endurance of the 

battery-operated flight of the SUAV is illustrated in Fig. 7(b). A 10% 

improvement in the solar module’s weight to area ratio increases flight endurance 

by 4%, which is roughly 1.7 h of extra time per 0.1 kg/W of the solar module’s 

weight to area ratio. However, the endurance of the SUAV exhibits a steady loss 

with an increase in payload. It decreases by approximately 1.14% with a 10% 

increment in payload, which is 7.9 h per kilogram of payload. 

   

(a) (b) (c) 

Fig. 7. (a) Propulsion’s weight to power ratio, (b) solar module’s weight to 

area ratio, and (c) payload vs. the endurance of the battery-operated flight. 

 

4. Discussion 

Table 1 shows that a 10% change in payload can improve the maximum take-

off weight, solar weight, MPPT weight, propulsion weight, power, and endurance 

of the SUAV by up to 1.5% only. The propulsion’s weight to power ratio exerts 
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similar improvements on the maximum take-off weight, power, and endurance. 

However, the same propulsion’s weight to power ratio can significantly improve 

the solar, MPPT, and propulsion system weights of the SUAV by up to 11.3%. 

Moreover, the solar module’s weight to area ratio may improve its weight by up 

to 12.4% when this ratio is increased by 10%. A 10% reduction in the solar 

module’s weight to area ratio also considerably influences the maximum take-off 

weight, power consumption, and endurance by 2%–4%. Thus, the solar module’s 

weight to area ratio should be prioritized in technological improvements to 

improve SUAV design. 

Table 1. Summary of the sensitivity analysis of the SUAV design. 

Parameters 

Improvement (%) 

Propulsion’s 

Weight to Power 

Ratio 

Solar Module’s 

Weight to Area 

Ratio 

Payload 

Maximum Take-off 

Weight 
0.75 2.4 0.92 

Solar Module Weight 10.7 12.4 0.91 

Propulsion Weight 11.3 3.85 1.28 

Power Consumption 1.1 3.93 1.5 

Battery-Operated Flight 

Endurance 
0.83 4 1.14 

 

5. Conclusion 

The sensitivity analysis of the system shows that a ±10% improvement in the 

payload of the SUAV is not encouraging because this change only leads to a 

slight improvement in the overall performance of the SUAV. The improvement 

resulting from the changes in the propulsion’s weight to power ratio is similar to 

the trend of the payload. However, a 10% decrement in the propulsion’s weight to 

power ratio reduces propulsion and solar module weight by up to 11.3%. By 

contrast, the decrease in the solar module’s weight to area ratio significantly 

influences SUAV performance. Thus, the solar module’s weight to area ratio 

should be prioritized in technological advancements to improve the characteristics 

and specifications of SUAVs. 
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