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Using machine learning methods in airline flight 
data monitoring to generate new operational 
safety knowledge from existing data  
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Abstract

The aim of this work is to investigate the possibility of using machine learning (ML) 
methods in order to generate novel, safety-relevant knowledge from existing flight 
data. Airlines routinely generate vast amounts of flight data from routine monitoring, 
but the concept of extracting safety knowledge from this data is still based on 
detecting exceedances of expert-defined thresholds. This system is conceptually 
unable to detect novel occurrences for which no such filters exist. ML techniques are 
able to close this gap. 

This paper first reviews the literature to select an appropriate ML method. A form of 
unsupervised learning called “Local Outlier Probability” is selected. Next, an 
appropriate feature space is developed and implemented in the flight data monitoring 
system of a supporting airline to generate the dataset. This dataset is cleaned and 
the outlier calculation performed. The results are statistically analysed. Furthermore, 
the top outliers are reviewed by the airline’s review pilots in the same way as the 
traditional exceedance events. Last, the severities and safety relevance of both 
types of events are compared. 

This work successfully shows that the chosen approach is able to reduce the number 
of undetected safety-relevant occurrences by finding novel occurrence types which 
were undetected by a contemporary and mature flight data monitoring system.  

This research builds on recent literature by developing a novel method which can be 
scaled to work in an airline production environment with large datasets, as 
demonstrated by the efficient analysis of 1.2 million flights. 

1 Introduction and problem formulation 

A vast amount of flight data recorded onboard aircraft is created each day. Major 
airline groups conduct hundreds of thousands or even millions of flights each year 
(American Airlines, 2016; United Airlines, 2016). Each flight produces on average 
several hours of data, in which thousands of parameters can be recorded between 
one and eight times per second. Airlines and other aircraft operators are required to 
monitor this data with the purpose of improving flight safety (EASA, n.d.). Generally, 
airlines are interested in flights during which abnormal data patterns were recorded. 
Even though the concept of Safety II (Hollnagel, 2014) highlights the importance of 
using the normal data as well, the emphasis of flight data monitoring (FDM) is to 
detect abnormal occurrences which did not, but could have, credibly escalated into 
an accident.  

Due to the amount of data, it is impossible to use human experts to review all 
recorded data. Instead, the concept of FDM relies on a system which highlights 
relevant flights or portions of flights. A portion of a flight flagged by the system as 
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potentially interesting is commonly referred to as an “event”. In order to generate 
these events, exceedance detection algorithms are the state of the art approach. 
This concept of checking the flight data against pre-determined threshold values, 
which were set by subject matter experts, and flagging flights in which one threshold 
or a combination thereof were exceeded, has been used for decades (Federal 
Aviation Administration, 2004). During this time, it has been continually improved and 
fine-tuned and is now working well and trusted by the industry. However, there are 
two major drawbacks:  

First, if a threshold is incorrectly set, this can normally only be detected if the error 
results in too many events, so-called false-positives. In this case, these false events 
will be investigated and the cause can be found and corrected. If, however, the 
threshold is set too wide and thereby creating too few or no events at all – called 
false-negatives – then there is a high probability that this will not be noticed since the 
data without events is rarely reviewed.  

Second, events can only be triggered for occurrences for which an event was 
designed. In other words, there may be false-negatives in the data because no one 
has yet imagined such an incident to occur. 

A typical event set may comprise over one hundred algorithms (Civil Aviation 
Authority, 2013) to detect occurrences such as high speeds below specified 
altitudes, exceedances of flight manual limits and exceedances of normal pitch and 
roll attitudes. Whilst the typical event sets are quite comprehensive, it is very 
possible to have an abnormal flight which is not detected as such by the predefined 
algorithms. 

These traditional event sets are rooted in a time when it was difficult to handle the 
flow of data from aircraft, particularly if the airline had a large fleet, however the 
methods to handle large amounts of data have been intensively researched and 
improved in recent years. The field of machine learning (ML) has developed 
conceptually new approaches to use computationally intensive methods to extract 
hidden knowledge from data (Marr, 2015). 

The aim of this work is to use ML tools in order to increase the detection of unknown 
occurrences (false negatives) in real-world airline data. The detection of previously 
unknown occurrences should lead to improved hazard identification and enhanced 
risk mitigation. 

The aim is not to replace existing methods, but to introduce a complementary 
method to allow enhanced safety knowledge discovery. 

The resulting system must fulfil the following requirements: 

• Detect unknown occurrences: The system should not rely on pre-
programmed definitions but use the entire available data to find safety-
relevant events. It is not the goal to imitate an existing exceedance 
monitoring system, but to complement it by finding otherwise undetected 
false negatives 

• Handle large amounts of data: The system should be able to work with 
millions of flights and deliver results within 2 or 3 days (a timescale likely to 
be acceptable to an operational safety department) 

• Handle diverse data: The operation of a large airline will likely cover 
multiple aircraft types and many different airports. The system should not 
be restricted to a limited set of airports or aircraft 



3

• Deliver useful results: The results produced should not only be of 
academic interest but highlight safety-relevant occurrences which would 
otherwise be undetected 

To achieve these goals, the following steps are undertaken: Through literature 
review, the current state of the art in ML and ML in FDM is established and an 
appropriate ML concept chosen. Thereafter, a dataset is generated from the FDM 
system of a supporting airline. This dataset is then verified, cleaned and pre-
processed as necessary. In the next step, the ML tool is used to highlight interesting 
flights. Then the results are compared to the existing exceedance detection system 
and the most relevant new findings are reviewed by subject matter experts. Lastly, 
the overall usefulness of the new system is discussed and further possibilities for 
improvement are suggested. 

Note that the term “flight data” used here refers specifically to data recorded by 
airborne flight data recorders known as quick-access recorders (QAR) carried on 
aircraft, rather than a generic reference to data about flights. “Flight data”, as used 
here, does not refer to air traffic control data (as used by West and McCluskey 
(2000) for example), occurrence reporting or maintenance data. 

2 Literature review  

The approach used in this work uses machine learning algorithms on data from FDM 
systems. Both FDM and machine learning have had little overlap in the past, hence 
this literature review first covers machine learning on its own before looking at 
previous work on FDM machine learning in the second part. 

2.1 Machine learning 
The term ML generally refers to algorithms which learn from data. This can be 
understood as a software which builds a model based on the input data rather than 
working with a predefined model which was encoded into the software during the 
development of the algorithm. Mitchell (1997) concludes that ML is achieved when a 
computer program’s performance increases with relevant experience. 

The terms ML and “data mining” are often used interchangeably. Some authors 
define ML as focused more on prediction and data mining as focused on discovery, 
but especially in the subfield of unsupervised learning, these definitions are often 
mixed. 

ML is broadly divided into the subcategories of supervised and unsupervised 
learning. The main difference between these two is that in supervised learning a 
correct answer for a learning set of data is already known. For example, with a set of 
handwriting samples and existing correct transcriptions into digital text a machine 
can be trained to recognise new handwriting samples. In unsupervised learning, 
there is no known solution which can be used to train the algorithm. Unsupervised 
learning is commonly used to structure large datasets by means of clustering, or, as 
in this paper, to find outlier data in a large data pool. While there are also some 
examples of supervised outlier detection methods, the common approach is to treat 
outlier detection as an unsupervised ML task. 



4

2.1.1 Outlier detection 
Outlier detection is used to classify unusual, novel or anomalous observations in 
data. Its use is therefore widespread and Hodge and Austin (2004) list a number of 
examples, including: 

• Fraud detection in banking and other systems 
• Detecting novelties in images 
• Time series monitoring 
• Fault diagnosis 

They explain that outlier detection is often used in safety-critical domains for 
monitoring degradation in mechanical systems. Mechanical systems are well-suited 
to outlier detection because the system has boundaries in terms of operation and 
behaviour. In other words, there are a finite number of measures which could 
adequately describe the functioning of the system. There are fewer constraints and 
more potential for variability in non-mechanical systems and processes, such as an 
airliner flying from A to B, however, while the system might be more dynamic, 
constraints may still exist in the form of standard operating procedures or regulatory 
requirements. Therefore, meaningful measures can be taken to describe the 
performance of parts of the process, which can then be used for outlier detection. 

In order to detect outliers from a dataset several concepts are commonly used, 
including:  

• Extreme value analysis 
• Probabilistic and statistical model-based approaches 
• Proximity-based approaches 
• Angle-based approaches 
• Artificial neural networks 

A brief summary of some of these concepts is provided below, however the reader is 
directed to more comprehensive reviews such as Hodge and Austin (2004), Markou 
and Singh (2003a, 2003b) and Pimentel et al. (2014). 

2.1.1.1 Extreme value analysis 
The simplest approach to outlier detection is to look at the extreme values in a given 
set of observations. A threshold can be set above or below which represents an 
outlier. The threshold may be set by, for example, assuming the data is normally 
distributed and selecting a threshold a number of standard deviations away from the 
mean. Laurikkala et al. (2000) use simple box plots to produce a graphical 
representation of the data so that outliers can be readily identified. Extreme value 
analysis is mostly suited to one-dimensional data. 

2.1.1.2 Probabilistic and statistical model-based approaches 
In model-based approaches, the concept is to fit a model to the data and search for 
data points which are not explained by this model. Examples for such models are 
common statistical distributions (Gauss, Poisson etc.) or convex hulls fitted around 
the data points in two- or three-dimensional space (support vector machines – see 
Tax et al. (1999) for an example). Another variant of this approach is to search for 
points which minimise the variance of the given dataset when they are excluded. The 
underlying idea is to find the outliers at the outer edge of the data space. These 
approaches tend to work better when the underlying data distribution is known as 
they assume the distributions are Gaussian. Markou and Singh (2003a) provide a 
thorough review of statistical model-based approaches. 
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2.1.1.3 Proximity-based approaches 
In proximity-based approaches, the governing factor to determine whether a data 
point is considered an outlier or not is either the distance to its neighbour points or 
the density of other points around the point in question. Distance-based approaches 
can be understood as defining a radius around the point and counting the number of 
other data points that fall within this radius. If the result is below a pre-defined 
threshold, the data point is considered an outlier. Similarly, the inverse of this 
number can be considered as an outlier score, where a high number of neighbouring 
data points creates a low outlier score and vice versa. This approach tends to 
perform generally well and different variations are commonly used, for example, k-
Nearest Neighbours (kNN) and Orca. One of the disadvantages however, is their 
decreasing performance when the data density is of high variability. In this case, the 
use of a density-based algorithm is preferable. Density-based approaches are based 
on the concept that the density of other points around an outlier should be 
significantly different from the density around its neighbours. One common 
implementation of this concept is the Local Outlier Factor (LOF). Breunig et al. 
(2000) developed the concept for this algorithm which uses local densities to 
determine outliers. 

Figure 1: Local Outlier Factor concept. Source: Breunig et al., 2000, p. 94 

Figure 1 visualises a dataset with an area of lower density (C1) and one of higher 
density (C2). It further contains two outliers, O1 and O2. While a distance-based 
approach should be able to detect data point O1 as an outlier, since the distances to 
its neighbours are unusually high compared to the average, only a local density-
based approach can detect outlier O2. It is not further away from its neighbouring 
points than an average point in C1, but the density around it is less than the local 
density around its neighbours in C2. The LOF algorithm returns a dimensionless 
number as result for each point, which describes the outlierness. A value significantly 
greater than 1 generally characterizes an outlier. The runtime and memory 
requirements of LOF algorithms scale by n2, which means that a dataset of twice the 
size requires four-times as much memory and calculation time. Some variants of 
LOF specifically aim at decreasing the computation time by either reducing the time 
spent on the calculation of LOF scores for data points deep within clusters (FastLOF) 
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or improving its performance when using multiple computing cores in parallel 
(Goldstein, 2012). 

Lazarevic et al. (2003) found that LOF compared well to other approaches when 
trying to find novel network intrusion events. Network attacks are characterised by 
relatively sparse outliers amongst large amounts of routine data, which is similar to 
safety events in FDM data. Campos et al. (2016) evaluated different outlier detection 
approaches and found that classic LOF still remained amongst the “state-of-the-art” 
approaches. 

One improvement with regards to the interpretability of the LOF score is the Local 
Outlier Probability (LoOP) algorithm (Kriegel et al., 2009). The LoOP algorithm uses 
a concept of probabilistic distances of the nearest neighbours to estimate local 
densities. The density around a sample is compared to the density around its 
neighbours and the normalized difference serves as a measure of outlierness. It 
returns a probability in the range between 0 and 1, which is directly interpretable as 
the probability that this data point is an outlier. Due to this desirable feature as well 
as all the advantages of the LOF, the LoOP is used in this work as the primary 
approach to detect outliers in flight data. The Kriegel algorithm has been used in this 
paper without modification, therefore the reader is directed to Kreigel et al. (2009) for 
a full description. 

2.1.1.4 Angle-based approaches 
Angle-based approaches use the range of angles from one data point to its 
neighbours as a measure of its outlierness (Kriegel et al., 2008). The basic idea is 
that a data point in the centre of a cluster will have its neighbours approximately 
evenly spread around in all directions. Therefore, the angles between an arbitrary 
reference line and the line which connects the data point to a sufficient number of 
neighbours should fall within a wide range, i.e. 360°. For an outlier, however, the 
range should be much narrower. In Figure 1 the outlier O2 has all its neighbours on 
its lower left side and all angles are within a range of approximately 90°. The smaller 
the range of angles, the higher the probability of the point in question being an 
outlier. In theory, this approach is very robust to the increase in dimensionality, 
because angular based calculations are very stable when the number of dimensions 
increases. This is an advantage over proximity-based methods, where with 
increasing dimensionality the distances between two points tend to increase and the 
data is therefore becoming more sparsely distributed, a problem often called “curse 
of dimensionality”. One implementation is the Angle-Based Outlier Detection 
(ABOD). The main disadvantage of this approach is the required processing time. 
The algorithms scale at n³, which means that a dataset twice as big requires an 
eight-fold increase in processing time and memory usage. This makes the algorithm 
unsuitable for large datasets like the one used in this paper. Some improved 
implementations (LB-ABOD, FastABOD) have been developed to reduce processing 
time, however even though they are faster for a given dataset, they scale at n³ as 
well, making them unsuitable for very large datasets. 

2.1.1.5 Artificial neural networks 
Like the biological neural networks they imitate, artificial neural networks (ANN) learn 
by example and can be trained to classify observations (e.g. as outliers). They are 
very powerful and capable of handling high-dimensional data, making them suitable 
for classification in the realm of flight data monitoring, as demonstrated by Nanduri 
and Sherry (2016).  
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2.1.2 Machine learning in flight data monitoring 
Research in the area of FDM has been limited in the past. This may be due to 
several factors. For one, the access to the data is very limited. The relevant 
European regulation (EASA, n.d.) requires the operator to adequately protect the 
data. Since flight data is only recorded by the operator and may contain information 
about events which could be harmful to the operator’s reputation, there is very little 
interest to share this data for academic research. Furthermore, the degree of subject 
matter expertise required to understand flight data is high and the number of 
practitioners in this field is relatively low, especially compared to fields such as 
business administration or information technology, which are common areas of ML 
application. Therefore, the combination of limited data and limited subject matter 
expertise available results in few publications on ML in FDM. 

The literature that does exist has tended to use between hundreds and tens-of-
thousands of flights (e.g. Jesse (2011), Mendes (2012), Li and Hansman (2013)), 
and often focussed on a single aircraft type (fleet). This research differs in that the 
methods used are suitable for scaling into a production environment in a large 
airline, as demonstrated by the large dataset used. The methods here allow such 
large datasets to be analysed efficiently, which is crucial in an environment where 
data generation never stops. The methods used here can also handle diverse data 
relating to different fleets and routes, something that has not been explored in much 
of the research described below. 

Li and Hansman (2013) have carried out the most complete research in the field. 
They developed two products, ClusterAD-Flight and Cluster AD-Data Sample, which 
cover the entire process from data transformation, dimension reduction, cluster 
detection, outlier detection and visualisation of the results. The underlying outlier 
detection technique behind these tools is Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN), which was developed by Ester et al. (1996) and 
can discover both clusters and outliers from datasets even when noise is present. 
The developed tools were tested in several studies on datasets of up to 
approximately 26,000 flights and were able to detect occurrences of interest (Das et 
al., 2012; Li et al., 2016, 2015; Zhao et al., 2015). 

The research described here follows on from that of Li and Hansman (2013) and Li 
et al. (2015). However this approach differs by reducing the dimensionality of the 
data to 60 dimensions, relating to safety specific features, which allows a much 
larger number of flights to be analysed (in this case 1.2 million). Limiting the choice 
of dimensions to generic measures, which are largely indiscriminative of aircraft type 
or route flown, allows comparisons to be made between flights to different airports by 
different fleets. For example, during an aircraft’s final approach to a runway, it would 
be expected that there would be little deviation from the runway heading, but the 
runway heading will vary depending on the airport. Likewise, this deviation measure 
will be independent of aircraft type (fleet), thus allowing clustering methods to focus 
on safety specific features, rather than general differences in operating environment. 

Jesse (2011) investigated the usefulness of different clustering algorithms on a 
dataset using two dimensions at a single time point from 100 flights by one single 
aircraft type during approaches to a single runway.  
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Mendes (2012) used the supervised learning technique called Support Vector 
Machines (SVM) in order to investigate 629 automatic landings as part of an 
autoland study by an operator. He was able to label 518 landings as normal and 
detected 111 outliers, which needed further investigation. By labelling more than 
80% of the automatic landings as normal he could reduce the workload of the flight 
data analysts drastically, who would otherwise have to review every single landing. 

Smart (2011)also used SVM in his analysis of 1518 flights into a single airport by a 
single aircraft type. He developed a suitable feature space and used metrics such as 
the F-score to rate the quality of the results achieved by ML techniques. Even though 
he was specifically looking for novelty detection, he managed to reproduce 84% of 
the results created by conventional FDM methods. 

Biswas et al. (2013) used semi-supervised ML methods such as DBSCAN in 
different case studies using between 100 and approximately 2,500 flights. It could be 
shown that in conjunction with expert knowledge these approaches did produce 
meaningful results, some of them clearly safety-relevant. 

Matthews et al. (2013) investigated the use of different data mining algorithms to 
identify safety-relevant occurrences of different varieties in up to 19,243 flights. They 
found that in collaboration with review pilots it was possible to detect novel threats 
through this data mining approach. 

2.1.3 General issues with machine learning 
A frequent criticism of machine learning methods is that they lack transparency and 
that it can be difficult for the end-user to determine how any conclusion or finding 
was reached. In the domain considered here, that of a safety-critical system (SCS), 
resources cannot be squandered on false-positives nor targeted at issues which 
have little in the way of supporting evidence. 

In another SCS, that of medicine, Kononenko (2001) assesses the relative 
transparency and ability to explain the performance of several ML methods and finds 
that proximity-based methods, such as kNN, rate quite poorly. This is echoed by 
Kotsiantis et al. (2006). However, this is not a significant issue in the domain of FDM, 
where it is normal for suspected abnormalities, identified through event algorithms, to 
be manually validated by an expert. Resources exist to perform this function as part 
of any FDM programme, due to the vagaries of flight data (sensor anomalies, 
environmental factors and so on). The challenge is to enhance the detection of 
suspect abnormalities so that the expert has the opportunity to inspect the data and 
decide if further investigation is required. Due to this, and the fact that the methods 
described here are intended to complement existing methods, the transparency and 
explanatory ability of ML is not considered detrimental.   

3 Methods 

3.1 Method choice 
Extreme value analysis, as already stated, is most suited to one dimensional data, 
making it unsuitable for the multi-dimensional domain of flight data and the analysis 
of aircraft operations. Similarly, probability model-based approaches are also best 
suited to limited dimensions. 
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Proximity based methods do seem to be a suitable candidate for the problem, as 
they are relatively simple and can handle large volumes of data with multiple 
dimensions. Angle-based methods could be potential candidates, however the 
scalability issues are likely to be prohibitive in a production environment. 

Whilst ANNs show considerable promise in the realm of flight data classification, a 
key aim of this research is to detect outliers in large datasets (> 1 million flights), in a 
production environment (e.g. airline safety department, rather than computer 
laboratory or research institution), hence the relative simplicity of a proximity-based 
approach is preferred. 

3.2 Method overview 
A basic overview of the methods is provided in Figure 2 below. 

Figure 2: Overview of methods 

The data has been generated by approximately three hundred aircraft, belonging to 
six different fleets (e.g. A320 series) and 14 sub-fleets (e.g. A321 specific type), 
which conduct more than 1000 flights each day. They operate in a global route 
network to 895 different runways. For this work data of flights from March 2013 until 
March 2016 were available.  

Each flight records between 150 and 2000 different parameters with sampling rates 
that normally range between 1 Hz and 8 Hz. Each parameter set is individually 
adapted to the specific aircraft type, however all of them have basic parameters in 
common, such as airspeed, heading, geographic position and altitude.  

Airbus aircraft accident statistics (Airbus, 2016) show that 31% of all aviation 
accidents occur during the approach phase, more than during any other flight phase. 
The approach phase is the period between descent and landing and is characterised 
by the deployment of high-lift devices, landing gear and establishing on the final 
approach track. Boeing statistics (Boeing, 2016) support those of Airbus, hence this 
work concentrates on the approach phase of flight, or more specifically, the last 
10NM before the landing.  

In order to cope with the diversity of airports and aircraft, the dataset has to be 
defined in a way that is independent of individual technical characteristics of the 
aircraft or geographical position of the runway. The resulting subset is referred to as 
the feature space. 
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3.3 Development of the feature space 
The aim of the feature space development is to reduce the available data to a 
smaller subset, which can be used to detect outliers. This subset needs to be 
independent of the technical characteristics of each aircraft or of the geographical 
position of the landing runway. Therefore, the approach phase of the flight needs to 
be described by the feature space in a generic and efficient way. However, the 
feature space must also be specific enough to describe each approach phase with 
adequate precision to judge its outlierness relative to other approaches. 

Since the aim of this work is to detect safety-relevant occurrences in the data, the 
focus of the feature space is on describing the safety-relevant properties of each 
approach. According to the Airbus and Boeing aircraft accident statistical summaries 
(Airbus, 2016; Boeing, 2016), the majority of all accidents fall into just three major 
accident categories: Loss of control in flight (LOC-I), controlled flight into terrain 
(CFIT) and runway excursions (RE).  

CFIT accidents can be understood as an outcome of an unsafe trajectory, where the 
aircraft is either at an inadequate height or an inappropriate geographical position. 
RE, on the other hand, are mostly caused by improper aircraft energy management, 
usually allowing the aircraft to carry too much energy. LOC-I accidents can be 
caused by multiple factors, but are often caused by allowing the airspeed to reduce 
below a minimum threshold and entering a stall. In order to capture these three 
major categories, the feature set should describe the aircraft trajectory and energy 
level during approach. 

3.3.1 Feature space parameter summary 
The measurements used to define the feature space are summarised in Table 1. All 
of these features can be derived from flight data recorded onboard the aircraft. 

Table 1: Feature Space Summary 

Notation Description Measured 

c Lateral distance from 
runway centreline (NM) 

 At time point 

h Height above runway 
threshold (feet) 

 At time point 

s Average airspeed 
(knots) 

 During ten 
seconds around 
time point 

i Angle difference 
between aircraft track 
and runway track 
(degrees) 

 At time point 

f Average flight path  
angle (degrees) 

 During ten 
seconds around 
time point 

a Average flight path  
acceleration (g) 

 During ten 
seconds around 
time point 
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3.3.2 Trajectory description 
To compare approach trajectories towards different runways, a runway-based 
coordinate system is developed.  

This coordinate system uses the threshold as a reference point and the extended 
runway centreline and the runway elevation as frames of reference for the trajectory 
description. The basic layout and a selection of measurements are visualized in 
Figure 3. 

Figure 3: Feature space illustration. Source: Author 

The time points t1, t2, t3, t4 … t10 are defined as the points in time when the aircraft 
has a ground track distance of 1,2,3,4 … 10 nautical miles (NM) remaining until the 
threshold of the runway. The ground track distance is calculated by integrating the 
best available recorded ground speed parameter. The runway threshold is defined 
as the point at which the aircraft is at 50ft radio altitude during the landing. 

At each time point, the orthogonal distance of the aircraft from the extended runway 
centreline (c) is measured (c1, c2, c3, c4 … c10). The calculation of c is provided in 
Appendix c and, combined with the distance to the threshold, it describes the 
position of the aircraft over the ground relative to the runway. 
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The aircraft’s altitude is measured as height (ft) above runway elevation (h) at each 
time point (h1, h2, h3, h4… h10). This allows the comparison of approaches into 
airports with different field elevations. The combination of distance to threshold, 
centreline deviation and height over runway elevation describes the aircraft’s position 
in three-dimensional space.  

To measure the energy level, the aircraft’s airspeed is measured at each time point. 
Any difference in approach speeds between fleets may create different clusters, 
however it should not cause increased outlierness. 

Besides these measurements of position and energy, more measurements are 
created to capture the current trend for each of the previous measurements, i.e. 
whether the deviation is increasing or decreasing. 

The parameter “i” measures the angle between the aircraft’s current track (as 
recorded on board) and the runway orientation at each time point (i1, i2, i3, i4 … i10). If 
the value of this measurement is less than zero, the aircraft is flying on a course 
which points to the left of the approach course, if it is larger, it is flying to the right 
relative to the approach course. Together with the centreline deviation, this 
measurement indicates whether the distance between the aircraft and the extended 
centreline is increasing or decreasing. 

The parameter “f” measures the aircraft’s current flight path angle (as recorded on 
board) at each time point (f1, f2, f3, f4 … f10). This measurement serves as a 
description of the trend of the height above the landing runway. 

The parameter “a” measures the acceleration along the flight path angle at each time 
point (a1, a2, a3, a4 … a10), and represents the trend in airspeed.  

The entire feature space consists of 10 measurements taken across 6 parameters: 

(c1, c2, c3, c4 … c10; h1, h2, h3, h4 … h10; s1, s2, s3, s4 … s10; i1, i2, i3, i4 … i10; f1, f2, f3, f4
… f10; a1, a2, a3, a4 … a10) 

3.3.3 Parameter volatility 
The volatility of the parameters described above affects the measurement at the time 
points. A highly volatile parameter (such as acceleration (a) in turbulent conditions) 
will have a reduced significance if it is only measured at one point in time because its 
value might be significantly different just one second later. For other parameters, 
such as height (h), which is normally monotonically decreasing and dampened by 
inertia, the effect of volatility is far less pronounced. 

Therefore, for the highly volatile parameters speed (s), flight path angle (f) and 
acceleration along the flight path (a), the measurement is defined as the parameter 
rolling mean from five seconds before the relevant time point (t - 5s), to five seconds 
after (t + 5s). 

3.4 Creating and cleaning the dataset 
3.4.1 Defining time points and measurements 
First, the time points were defined using the global parameter (i.e. a parameter 
available from all flights) “Ground Track Distance to Threshold (NM)” and defines the 
time point t1 as the first location in the airborne interval when this distance is not => 
1.  

Once all ten time points were defined, the six measurements for each time point, as 
defined in Table 1 above, could also be defined. 
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3.4.2 Processing the measurements 
The operator’s FDM software was then used to extract the measurements at each 
time point for 1.2 million flights. After successful processing, a random sample was 
manually checked for gross errors or missing data. Several adjustments to the 
precise definitions of the measurements were made in order to create data which 
precisely reflects the feature space as described above. After each adjustment, the 
flight data was reprocessed, taking several days to complete due to the volume of 
data. 

The results were then exported as a single line per flight comma-separated values 
(CSV) of all measurements. Additionally, a unique flight id, flight month and year, 
fleet id, airport and runway were added for each flight. The resulting data file had a 
size of 1.12 GB. 

3.4.3 Further processing of the dataset 
For further processing, the dataset was loaded into RStudio, an integrated 
development environment (IDE) for R (RStudio Team, 2015). Both R and RStudio 
are open-source software and widely used among statisticians and data scientists. R 
allows users to create packages, which expand the abilities of the core R installation. 
Appendix B lists the versions of R and additional packages used. 

The data.table package’s function fread was used to read in the CSV file and convert 
it into an R data frame containing more than 60 million data points. 

3.4.3.1 Flight data errors 
Typical flight data errors are synchronization errors and cycling. A synchronization 
error occurs when some parts of the data are not recorded due to temporary 
recorder failures, electrical transients or other issues. In such cases, the flight data 
will show “jumps”, since the data does not show a steady times series of recordings 
but rather connects the last value before the error with the first value after, leading to 
unrealistic immediate changes in altitudes, speeds etc. An example can be seen in 
Figure 4. 

Figure 4: Synchronization error: The red shaded area at the bottom indicates that software detected a 
synchronization problem, which caused a sudden sharp jump in the recorded airspeed. Source: Author, taken 
from ADI EMS software.  

Cycling occurs when certain parameters are not available, possibly during an entire 
flight or even several flights. Instead of recording “does not exist” (DNE) recorders 
will sometimes record a cycling pattern, in which the parameter is recorded as a 
quick succession of its minimum and maximum value. An example can be seen in 
Figure 5, where the airspeed, ground speed and rotational speed of the low-pressure 
spool (N1) of two engines alternate between 0 and their respective maximum values 
of 512 knots, 1023 knots and 127.88%.  
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Figure 5: Cycling of several recorded flight parameters. Source: Author, taken from ADI EMS software 

These two common errors, as well as others occurring randomly, can remain 
undetected during the regular post-processing and therefore lead to incorrect 
measurements. Since it is highly probable that such erroneous measurements will 
lead to high outlierness, the following data cleaning steps were performed.  

3.4.3.2 Data cleaning 
Data cleaning is generally a trade-off between thoroughness and minimizing the loss 
of valid data. When using strict filtering criteria, the filter will be able to remove most 
of the unwanted data, but at a high risk of eliminating valid data by mistake. A less 
strict filter, on the other hand, will preserve most of the valid data but also miss some 
of the erroneous values. Since this work is about finding outliers, which are 
characterized by unusual flight data values, the filter criteria were intentionally 
defined to contain wide margins. To avoid deleting valid data, the following limits 
were defined: 

1. c (lateral distance from runway centreline): The data points are recorded 
based on the remaining ground track mileage until reaching the landing runway 
threshold. Therefore, the lateral offset from the runway centreline can never exceed 
the remaining distance until threshold. Consequently, each value bigger than the 
remaining mileage is removed.  

2. h (height above runway threshold): An aircraft typically descends at an angle 
of 3 degrees when approaching a landing runway, which equals an altitude loss of 
318 feet per NM, as shown in Equation 1. 

����	��	
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∗ tan 3 = 318 
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(1) 

It can be assumed that an aircraft will not be climbing towards a landing runway. 
Therefore, the lower limit at each mile is set equal to the airport elevation. Lower 
altitudes are rejected as data errors. Steeper approach angles are often observed 
due to various reasons, e.g. mismanaged energy situation during the descent or late 
descent clearances by Air Traffic Control (ATC). An assumption was made that no 
aircraft will be descending for 1 NM at more than five times the normal approach 
angle of 3 degrees, defining a maximum altitude loss corresponding to this 15-
degree limit at 1628 feet/NM as shown in Equation 2. 
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Consequently, the difference between each measured altitude was calculated and 
each flight which exceeded this limit was rejected. 

3. s (average airspeed): The range of airspeeds depends on the aircraft type. 
The highest operating speed of all aircraft in this airline is the never exceed speed 
(VNE) of the Boeing 747 at 365 knots. A 30 knots margin is added and any airspeed 
above 395 knots is considered a data error. The lowest speed is the stall speed, 
which is normally increased by 30% to get the landing reference speed (VREF). The 
lowest VREF is 107 knots of an empty B737-500. Therefore, the lowest possible 
airspeed outside the stall is calculated 82 knots. Any speed below 82 knots is 
considered a flight data error. 

4. i (angle difference between aircraft track and runway track): The angle 
between runway direction and the aircraft track can be of any value if the aircraft is 
still several NM from touchdown. For example, during a circling pattern, the aircraft 
might align with the landing runway at about 2 NM from touchdown, being at a 90° 
intercept at 3 NM and possibly on downwind with a 180° difference in track at 4 NM. 
Therefore, the only value that can be cleaned is the angle at 1 NM. Here, it is 
assumed to be unrealistic when the angular difference is in excess of 90°. 

5. f (average flight path angle): As previously stated the normal descent angle 
during approach is 3 degrees and any value in excess of five times this angle is 
considered unrealistic. Hence, any value lower than -15 degrees should be removed. 
However, at the time of attempted removal and after the height values (h) had been 
cleaned, there were no such values in the dataset. 

6. a (average flight path acceleration): During turbulence and when performing 
dynamic manoeuvres significant accelerations may occur. The dataset contained 
accelerations between -0.52 g and 0.84 g. As both these values were considered 
realistic no further cleaning was performed. 

After performing these cleaning steps the number of flights was reduced by 225, 
resulting in a final number of flights of 1,097,943. 

3.5 Performing the Local Outlier Probability Analysis 
Before the LoOP analysis can be performed, the data has to be transformed into a 
suitable format as follows.  

3.5.1 Standardization 
The absolute values of the different measurements differ by orders of magnitude 
(e.g. airspeed and altitude). In order to avoid an influence of the magnitude of 
absolute values, the data was standardized. For the entirety of each measurement 
(e.g. all ci values) the mean value and standard deviation were calculated. The mean 
was subtracted from each value, thereafter each value was divided by the standard 
deviation, see Equation 3. 

��,������������ =
����̅
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(3) 

After standardization, the data has a mean of 0 and a standard deviation of 1. The 
outlier characteristics of the data are preserved by this method. 

3.5.2 Weighting 
If some measurements are more important than others they can be weighted in order 
to reflect these differences in importance. For example, data closer to the threshold 
could be weighted as being more important by multiplying each measurement with 
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the inverse of the remaining ground track distance. Since the aim of this work is to 
uncover the hidden properties within the data, it was decided not to apply such a 
weighting as it would introduce a further element of human judgement. 

3.5.3 Finding the number of clusters 
The LoOP algorithm needs the number of clusters in the data as an input prior to 
starting its calculations. 

The optimal number of clusters is ambiguous. It depends on the definition of clusters 
and several answers might be equally appropriate. However, each calculation 
requires the input of a single number of clusters. Running several calculations with 
different numbers of clusters was dismissed as being too inefficient. Instead, the 
number was determined by calculating the within cluster sum of squared errors
(WSS) for 1 through 60 k-means clusters. With increasing numbers of clusters, less 
variance will appear within each cluster, but the difference between nearby clusters 
will also be reduced.  The number of clusters was chosen for which a further 
increase of clusters did not significantly affect the reduction of WSS. This method 
was described by Everitt and Hothorn (2010) and the algorithm was adapted from 
Ben (2013). 
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Figure 6: Upper: Within groups sum of squared errors for 1 to 60 clusters. Lower: Change of within groups sum of 
squared errors compared to one cluster less; large values are truncated to illustrate small changes. Source: 
Author 

Figure 6 shows the WSS in the upper plot and the reduction of WSS when 
increasing the number of clusters by one in the lower plot. It can be seen that 
increasing the number of clusters to 17 does not decrease the WSS, so 16 clusters 
were chosen as input parameters for the LoOP algorithm.  

3.5.4 LoOP analysis 
The implementation of the LoOP algorithm used for this analysis is the “Environment 
for Developing KDD-Applications Supported by Index-Structures” (ELKI) java 
package developed at the Ludwig Maximilian University (LMU) in Munich (Schubert 
et al., 2015). Version 0.7.1 was obtained as executable java (JAR) archive from the 
LMU internet domain. ELKI is an open-source software package optimised for ML 
and knowledge discovery in databases (KDD). Its Local Outlier Factor 
implementation outperforms R implementations by factors of up to 280. This level of 
performance was desirable for conducting a LoOP analysis on the 60 million data 
points.  

The most current Java Runtime Environment (JRE) version available at the time 
(JRE 1.8.0_51) was selected. The analysis was started using a submission script via 
the Altair Portable Batch System (PBS) Professional tool. This script allows the user 
to specify the number of Central Processing Units (CPU) for parallel computing. 
Requesting a higher number of CPUs reduces the available working memory per 
CPU. Since the LoOP algorithm has a high memory requirement, only one CPU was 
selected. There is a high chance for significant performance improvement when 
several CPUs are used.  

The command used to run the analysis in ELKI was 

java -jar elki-bundle-0.7.1.jar KDDCLIApplication 

dbc.in "dataset.csv.gz" 

algorithm outlier.lof.LoOP  loop.kcomp 16 

evaluator NoAutomaticEvaluation  resulthandler ResultWriter 

out FullLoOP

The calculation ran for 100 hours 2 minutes and 54 seconds. It returned the Local 
Outlier Probability for each flight and these were read into R in order to evaluate the 
results.  

3.6 Comparing the outlier with the standard exceedance detection events 
The data of each flight in this airline is routinely filtered by a mature exceedance 
detection system (i.e. a typical FDM system). It compares defined parameters with 
pre-determined thresholds. If these thresholds are exceeded, an exceedance event 
is created.  The software automatically labels the events with a severity on the scale 
of “Information Only”, “Medium” and “High”. It is the airline’s standard procedure to 
review only events of “High” severity, hence events of the severity “Information Only” 
and “Medium” are not considered in the following analysis.  

At the time of this work, a total of 134 exceedance event types were available in the 
monitoring software, of which 80 were actually observed at the airline during the 
three years which were analysed. All exceedance events of the severity “High” are 



18

reviewed by a review pilot. The reviewer assesses the safety relevance and rates 
these events according to an adapted version of the Aviation Risk Management 
Solutions (ARMS) methodology (Aviation Risk Management Solutions, 2010). 

The ARMS methodology rates the effectiveness of the remaining barriers between 
the observed event and the most credible accident scenario. The more effective the 
remaining barriers are, the less severe is the observed event. 

The term “severity” is used for two different classifications during the review process 
in this airline. The automatically determined severity with the three levels (high, 
medium and information only) reflects the magnitude or the duration of the 
parameter exceedance. It is solely used to limit the number of exceedance events 
which have to be reviewed and focus on those which are most likely to be of high 
safety relevance. After the review, a severity assessment according to the ARMS 
methodology is conducted by the review pilot. This results in a severity rating based 
on human judgement on a five-level scale: 

a…..f 

where a represents highest severity and f lowest severity. 

This severity rating is far more meaningful than the automatic three-level rating.  

In order to compare the results of the LoOP methodology with the standard 
exceedance detection method, LoOP-based proxy-events called outlier events were 
created for all flights with a Local Outlier Probability of 0.99 or greater. 

The choice of 0.99 was somewhat arbitrary, however the investigation of the top 1% 
seems sensible and it was expected to result in a manageable number of outliers for 
manual review. 

Each proxy-event was reviewed and rated by review pilots of the airline according to 
the same methodology as the conventional exceedance detection events. There are 
ten review pilots, each spending between one third and one half of their duty time 
monitoring and analysing flight data, and the remainder flying. On average they have 
more than fifteen years of experience as active pilots in the operation and more than 
ten years of experience in FDM. 

4 Results and discussion  

For each flight, the Local Outlier Probability was obtained. All values are in the range 
from 0 to 1. In order to determine whether this value is meaningful to measure 
safety-relevant occurrences, the distribution of the score is analysed and compared 
to existing measurements of safety relevance. 

4.1 Analysis of the LoOP scores 
The histogram in Figure 7 shows the distribution of the LoOP scores. The most 
common score was 0, indicating that the algorithm rated these flights as being 
embedded in the centre of clusters. This shows that the expected clustering 
happened and that the feature space created in this work did result in clusters 
containing the majority of the approaches. The mean value is approximately 0.3, and 
only 1% of the flights have a LoOP of greater than or equal to 0.8.  
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From this distribution, it seems reasonable to assume that flights which triggered 
FDM exceedance events would have higher LoOP scores i.e. flights with 
exceedances more likely to be outliers. To investigate this, Figure 7 was reproduced 
using only those flights in which an exceedance had occurred. The resulting 
histogram is shown in Figure 8. 

Figure 7. Histogram of LoOP values. Source: Author 
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Figure 8: LoOP score of reviewed exceedance events. Source: Author 

It can be seen, that the distribution is shifted to the right towards higher scores. This 
shows that the LoOP created through the developed feature space is influenced by 
safety-relevant occurrences (exceedances) during the flight. The mean LoOP score 
is 0.56, higher than the 0.3 mean for all flights and even higher than the third quartile 
of the LoOP score distribution from all flights at 0.43. 

The violin plot in Figure 9 shows this difference in distributions. In this plot, the 
thickness of the coloured area is governed by a kernel density estimation, which 
represents a smoothened relative frequency of the LoOP score within the group. 
Many flights from the “all flights” group have a LoOP score of 0, which leads to a 
very wide lower end of the violin shape, and only very few achieve a score of 1, 
which explains the thin upper end. For the subset of flights with exceedance events 
this is almost reversed. Especially the wide upper end at the maximum LoOP score 
is noteworthy. While only very few flights from the complete population of all flights 
receive the maximum LoOP of 1.0, this score is not uncommon among the flights 
which already triggered an exceedance event. 

Note that due to the relatively small number of flights with exceedances, a plot of 
non-exceedance flights would be completely indistinguishable from the “All flights” 
plot in Figure 9. 
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Figure 9: LoOP scores of all flights vs. LoOP scores of flight with exceedance events. Source: Author 

This indicates a clear correlation between safety-relevant occurrences during a flight 
and the LoOP created by the feature space developed in this work. This is the first 
time that such a connection between safety-relevant occurrences and a ML score 
independent from classic exceedance detection has been shown for more than just a 
few selected example flights. 

4.2 Comparison of outlier events and exceedance events 
Of 22 flights found by the LoOP approach only five were known from the exceedance 
event method. This means that the new method found 17 new cases of safety-
relevant occurrences in a database of flights which was already monitored by a 
mature FDM system. These novel findings are discussed in 4.4. 

4.3 Performance evaluation 
The task of finding safety-relevant flights can be considered as a classification task. 
The classifier is the event creation mechanism for either the exceedance event or 
the outlier event. The classification task is to distinguish between uneventful and 
safety-relevant flights. 

The most common methods for performance evaluation of classifiers are based on 
the confusion matrix. A confusion matrix evaluates how many of the positive and 
negative classification results are correct (true) and incorrect (false). This is usually 
represented in a two-by-two table showing true positives, true negatives, false 
positives and false negatives. The confusion matrix for event detection is shown in 
Table 2. 
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Classified as: Safety-
relevant 

Uneventful 

Truly safety-
relevant 

True positive False negative 

Truly uneventful False positive True negative 

Table 2: Confusion matrix for event-based flight data analysis 

From this basic division of results into four groups, the most common performance 
evaluations such as recall, precision, sensitivity, specificity or the F-score can be 
derived.  

A basic requirement to create the confusion matrix and subsequently the 
measurements of performance described above is a “gold standard” classifier. This 
classification method is understood to uncover the “ground truth”, which in this case 
is the column-wise distinction in Table 2, the differentiation between flights which 
actually had a safety-relevant occurrence and these which did not. The gold 
standard to define true positives and true negatives is the review pilot. Experienced 
reviewers are the best means available to distinguish between the two groups and 
can be assumed to reach the closest approximation to the ground truth. Review 
pilots are not perfect. There has not been any academic research into the inter-rater 
reliability of review pilots, nor is there an industry-wide common understanding of 
what constitutes a safety-relevant occurrence and what does not. However, in the 
airline supporting this research, many events are reviewed by at least two review 
pilots, a so-called “four-eyes principle”, in order to improve the inter-rater reliability. 
The imperfection of this approach can be shown by one occurrence detected by both 
an outlier event and an exceedance event, which was rated with severity b from the 
exceedance event reviewer and severity b-c from the outlier event reviewer. 
Nevertheless, the distinction between true positives and false positives can be 
assumed to be sufficiently close to the ground truth. 

However, it is not realistic to expect review pilots to distinguish between true and 
false negatives. This is an effect of the low prevalence of safety-relevant 
occurrences during airline operations. Similar difficulties have been described in 
network intrusion detection (Mane et al., n.d.) and epidemiology (Joseph et al., 
1995). Out of the 1 million flights considered in this work only a few hundred created 
any event (outlier event or exceedance event) of severity d or higher. Even under a 
very pessimistic assumption that for every detected event there are 10 undetected 
events, the prevalence of safety-relevant occurrences is only in the order of 
magnitude of 0.001 or one in a thousand flights. In order to find a statistically 
significant number of false negatives, a review pilot would have to review tens or 
even hundreds of thousands of flights of which a vast majority would indeed by 
uneventful (true negatives) and find the sparsely distributed false negatives. This 
approach is not only cost prohibitive but would also be prohibitively error-prone. 

Therefore, a comparison between the exceedance event and the outlier event 
methodology is only possible on the basis of true and false positives. The 
measurement “positive predictive value (PPV)” or “precision” uses the proportion of 
true positives among all positives as a performance measure. It is calculated as 
shown in Equation 4. 
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The PPV of the exceedance event system is 0.23. This value is based on 1982 
exceedance events with severities of d and above, and 6654 false positives, which 
consist of 483 exceedance events of lower severities and 6171 exceedance events 
with data errors, undesired event triggering or other technical problems. 

Among the 134 outlier events that were created, there were 112 events which could 
be classified as false positives. This results in a PPV of 0.16, which is significantly 
lower than the PPV of the exceedance event approach. This is not surprising since 
the exceedance event definitions and algorithms in this airline have evolved over the 
last 15 years and were constantly improved in order to minimise the proportion of 
false positives. Nevertheless, the number of false positives resulting from the outlier 
event method is high and therefore the reasons are investigated. 

4.3.1 False positives in outlier events 
The false positives can be divided into two subgroups: data errors and less relevant 
outliers. Even though data cleaning methods were used in order to limit the amount 
of data errors among the outlier events these methods could not eliminate all 
instances of erroneous data. In 27 cases a specific data error which was not 
expected during data cleaning occurred: The recorded aircraft track temporarily 
indicated 0 instead of the actual value. This caused the calculated parameter i 
(Angle Difference between Aircraft Track and Runway Track) to become equal to the 
runway orientation, which can take any value between 0 and 360 degrees, while a 
realistic runway for the close-in time points would normally not exceed ten degrees. 
Figure 10 illustrates how this kind of data error causes an incorrect angular 
difference measurement of approximately 280 degrees.  

Figure 10: Measured Track Angle erroneously indicates 0 for short periods of time. Source: Author, taken from 
ADI EMS software 

Without this group of false positives, which could be filtered out by a rate filter during 
data generation, the PPV would be 0.21, thus similar to the exceedance events 
(0.23). The PPV for exceedance events is acceptable to the supporting airline and 
viewed as practicable, which suggests that the PPV achieved through the methods 
described here would also be acceptable. It is worth noting that the methods 
described in this paper are intended to complement, rather than replace, 
exceedance events.   

The second subgroup of false positives among the outlier events are flights which 
are indeed outliers according to the chosen detection approach, which means that 
there are no data errors or other technical factors causing a too high LoOP, but 
which are not safety-relevant. 

This is a fundamental disadvantage of the outlier approach when it is used solely for 
flight safety purposes. While it is very likely that a safety-relevant flight will be an 
outlier, the opposite is not necessarily true. A flight’s trajectory can be very unusual, 
for example due to unusual but not hazardous weather conditions, ATC 
requirements etc., but not unsafe at all. Finding these flights among the ones with 
high LoOPs is the systemic drawback of being able to find unexpected and novel 
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safety-relevant occurrences. However, even when outliers are irrelevant for safety 
purposes, they might still be of interest to other stakeholders in an airline, such as 
fuel efficiency or training departments.  Both the advantage and disadvantage, result 
from the fact that thresholds for triggering a LoOP are created without any expert 
flight safety knowledge, but solely on the basis of comparison with a large number of 
other flights. 

4.4 Safety knowledge gain beyond single occurrence detection 
The comparison of PPVs alone is of limited value. A high PPV avoids unnecessary 
review effort by the review pilots, but it has no direct positive influence on flight 
safety. The reduction of false negatives, on the other hand, can lead to novel insights 
into the risks of flight operations and thereby contribute to an increase in safety. The 
main benefit of using an outlier event approach is not to outperform the exceedance 
event system in PPV or other performance measures, but to uncover new threats 
which were not previously considered and hence for which no exceedance events 
were developed. 

Out of the 22 occurrences detected by outlier events with a severity of d or higher 
only five were previously known from exceedance events. For the 17 newly detected 
occurrences it is of great interest, whether they can yield truly new insights or 
whether they are just slightly different variants of known occurrence categories which 
could have also been discovered by marginally adjusted exceedance event 
definitions.  

4.4.1 Groupings in the high severity outlier events 
When reviewing the outlier events two groups of unusual manoeuvres were 
identified, for which no specific exceedance events exist. 

Figure 11: Approach trajectory schematic representation from the ADI EMS software of the three 360-degree 
turns on final. Source: Author 

The first group is visualised in Figure 11. It consists of three approaches during 
which a 360-degree turn on final was performed, one of them at very low altitude.  

Because a 360-degree turn is not inherently unsafe the flights were ranked with 
rather low event severities of c for the lowest 360-degree turn, d-e for one at a 
greater height and e for the highest. 

Consequently, two out of three of these flights can be considered false positives 
when focusing on safety-relevant occurrences and only the lowest one is among the 
22 outlier events of safety interest. However, all three show a similar manoeuvre 
which may or may not be safety-relevant but for which no exceedance event exists. 
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And as the manoeuvre at the lowest height shows the occurrence can be of safety 
interest. The lack of a specific exceedance event category for this manoeuvre is 
because neither the airline’s FDM department or FDM software supplier had 
considered such an event before. Understandably so, given the almost infinite 
potential safety deviations from normality, but this highlights the need for methods 
such as ML which do not rely on predefined specific event searches. 

Figure 12: Approach trajectory schematic representation from the ADI EMS software of the three avoidance 
manoeuvres on final. Source: Author 

Similarly, there are three flights which show an avoidance manoeuvre on the final 
approach track. The deviations from the expected straight-in approach are illustrated 
in Figure 12. These approaches were assigned with event severities between c-d
and e, again illustrating that such manoeuvres might be of interest, but no adequate 
exceedance event exists to capture these flights. 

This shows that the concept of using outlierness scores is capable of discovering 
novel and relevant occurrence categories in a mature FDM system, thereby reducing 
the number of undetected safety-relevant occurrences. It is, and will remain, 
impossible to create specific exceedance event types for every relevant occurrence 
which may occur at some point in the future. If, however this novel occurrence is 
significantly different from all or almost all other flights, an outlier detection algorithm 
can find it in the flight data. 

4.4.2 Outlierness as an aggregate measurement of risk across occurrence 
categories 

There are two examples of flights which performed unstable approaches which were 
not detected by the exceedance event system because each single factor 
contributing to the instability of the approach was not enough to trigger the “high” 
criterion on the automatic severity classification.  

The first is an Airbus A320, performing an approach to a major European hub airport, 
which triggered the medium-severity exceedance events “Late Flap Extension” and 
“Late Gear Extension”. 

The second is also an Airbus A320 flying into a Western European coastal airport, 
which triggered five medium-severity exceedance events: 

 “Late Flap Extension”, “Late Gear Extension”, “GPWS: Glideslope”, “Below Desired 
Glide Path on Approach” and “Unstable Approach”  

For none of the above-mentioned exceedance events was the exceedance sufficient 
to trigger a “high severity event” which would have prompted a review of the flight. 
However, the LoOP from the sixty-dimensional feature space consider the overall 
outlierness of the approaches and resulted in values of 0.9945 and 0.9940. When 
the outlier events were created and the flights reviewed, both received a severity 
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rating of b-c, which is the second highest category observed for any approach and 
would have triggered an investigation. 

This shows a fundamental advantage of the outlier event concept: The flight is 
described and ranked as the entirety of all the measurement in the feature space. It 
is not necessary that a single limit is exceeded by a wide margin in order to trigger 
the specific event for a single occurrence category. Instead, what would be called 
risk- or severity-aggregation in classical exceedance event systems is inherently a 
part of the outlierness concept. Each deviation contributes to one overall score, even 
if the measurements in the feature space describe fundamentally different properties 
of the flight. 

4.5 Development 
This work has shown that ML methods can be successfully applied to large flight 
datasets to discover new safety knowledge. An obvious, albeit self-imposed, 
limitation is that only the period of flight from 4NM to touchdown to touchdown is 
used. It would be interesting to see if the same feature set could identify unusual 
occurrences in other flight phases e.g. departures, say take-off to 4NM during the 
initial climb. 

There is no reason why the feature space could not be adapted and tailored to other 
phases of flight. For example, it might be interesting to adapt the feature space and 
examine the descent phase for arrivals at specific airports, or specific 
departure/arrival airport pairings. This may yield more in the way of operational 
efficiencies outliers, such as arrivals with particularly high fuel usage. 

This work made use of a very large dataset of over 1 million flights, showing that the 
methods are practicable in a large airline dealing with a large number of flights. 
However, it would also be interesting to see if the methods could be used effectively 
for smaller airlines with fewer flights. It is the authors’ intention to do this in a future 
paper and at the same time make effectiveness comparisons between different 
feature spaces.   

In more general, the large amounts of data generated through FDM programmes 
would seem to make it a good candidate for exploring other ML methods, such as 
neural networks. This is particularly so, because this domain is not as critical as say, 
medical diagnosis, the mechanism for how new safety knowledge is discovered is of 
fairly limited importance. The methods act as more of a “flag” that there is something 
unusual that an expert should have a look at, as is the case now with exceedance 
based FDM. As long as whatever method is used does not result in high numbers (a 
higher rate than existing methods) of false positives, it should be practicable. 

This research made use of a high-performance computing environment, however 
only a single CPU was used which resulted in a runtime of 100 hours. It is expected 
that the runtime could be significantly reduced by using multiple CPUs, and the 
authors anticipate that it would be feasible to run the ML on less specialised 
hardware in a production environment i.e. the safety department of an airline. 

5 Conclusions  

The origins of flight data monitoring can be traced back to the 1970's with the 
adoption of quick access flight data recorders on Hawker Siddeley Trident aircraft. 
The primary analysis methodologies have changed little since then, with basic 
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exceedance detection and measurements analysis being the common methods used 
today. These current methods rely on aircraft operators to predefine algorithms to 
detect anomalies. The range of these algorithms has grown over the decades in 
response to incidents that were not detected by existing algorithms at the time. 
However it is impossible to foresee, and therefore create new algorithms, for every 
potential future incident, and this limits the capability of FDM to help provide new 
safety knowledge. 

This research has shown that the analysis of existing FDM data can be enhanced 
through the application of the LoOP algorithm. The comparison with the traditional 
FDM showed that this outlier approach can find flights which were missed by the 
traditional system, detecting approach abnormalities for which no exceedance event 
existed. 

This research focussed on the approach phase of flight, however the methods 
described here could be extended to other phases of flight by defining new feature 
spaces. In addition, different time points and measurements could be defined. It is 
envisaged that the methods could be used to help highlight anomalies related to the 
economical operation of aircraft, in addition to safety anomalies described here. 

Furthermore, this method is useful whenever a large number of possibly very 
different flights has to be monitored by a superordinate institution, e.g. a national 
aviation authority or a risk management department of a group of airlines. 

This research achieved its aim of identifying safety-related occurrences that are 
currently undetected by typical FDM systems and shows that the methods used can 
be used to complement existing technologies. However, it is recommended that 
future work compares the performance of other outlier detection approaches.  
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APPENDICES 

Appendix A Abbreviations used 

ABOD Angle-Based Outlier Detection 

APM Automated Parameter Measurement 

ARMS Aviation Risk Management Solutions 

ATC Air Traffic Control 

CFIT Controlled flight into terrain 

CPU Central Processing Unit 

CSV Comma Separated Values 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

DNE Does Not Exist 

ELKI Environment for Developing KDD-Applications Supported by Index 
Structures 

EMS Event Measurement System 

FDM Flight Data Monitoring 

GB Gigabyte 

GUI Graphical User Interface 

HPC High Performance Computing 

IDE Integrated Development Environment 

JAR Java Archive 

JRE Java Runtime Environment 

KDD Knowledge Discovery in Databases 

kNN k-Nearest Neighbors 

LMU Ludwig Maximilian University 

LOC-I Loss Of Control Inflight 

LOF Local Outlier Factor 

LoOP Local Outlier Probability 

ML Machine Learning 

N1 Rotational speed of engine’s low-pressure spool (percent of 
nominal value) 

PBS Portable Batch System 

PPV Positive Predictive Value 

RE Runway Excursions 
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SQL Structured Query Language 

SVM Support Vector Machine 

VNE Never Exceed Speed 

VREF Reference Landing Speed 

WSS Within Cluster Sum of Squares 

Appendix B Table of R packages used 

Name Version Purpose Author 

R (core) 3.2.3 Basic R 
application 

R Core 
Team, 2015 

NISTunits 1.0.0 Unit conversion Gama, 2014 

dplyr 0.5.0 Restructuring 
data 

Wickham 
and 
Francois, 
2016 

tidyr 0.5.1 Restructuring 
data 

Wickham, 
2016 

data.table 1.9.6 Reading in large 
amounts of data 

Dowle et al., 
2015 

ggplot2 2.1.0 Creating graphs Wickham, 
2009 

RColorBrewer 1.1-2 Colouring graphs Neuwirth, 
2014 

cowplot 0.6.2 Arranging graphs Wilke, 2016 

scales 0.4.0 Adjusting graph 
axis 

Wickham, 
2016b 

extrafont 0.17  Adjusting fonts in 
graphs 

Winston 
Chang, 2014 

Table B1: Versions of R and packages used 

Appendix C Orthogonal distance of the aircraft from the extended runway 
centreline (c) 
This distance is calculated at each time point t by first determining the bearing from 
the runway threshold (R) to the aircraft (A), based on the runway threshold 
coordinates and on the recorded aircraft position. The calculation is as follows: 

� = ����2(�,�) (C1) 

where � is the bearing from point R to point A, and X and Y are two quantiles as 
follows: 
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� = �����. ���∆�

� = �����. ����� − 	�����. �����. ���∆�

where �� is the latitude of the aircraft �� is the latitude of the runway threshold and 
∆� is the difference between the longitudes of points R and A (i.e. lon R – lon A). 
(Note that latitudes and longitudes are in radians.) 

The distance cn at time point tn is given by: 

�� = 	 �� sin�� (C2) 

where, 

dn is the distance to the runway threshold at time points tn 

αn is the angle between the aircraft’s bearing to the runway threshold and the runway 
heading, given by 

�� = |� − (������	ℎ������ − �)|	���	2� (C3) 

Runway headings and coordinates can be found in national Aeronautical Information 
Service Publications. 


