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Abstract—This Correspondence proposes a new guidance law
based on integral sliding mode control (ISMC) technique for
maneuvering target interception with impact angle constraint.
A time-varying function weighted line-of-sight (LOS) error dy-
namics, representing the nominal guidance performance, is in-
troduced first. The proposed guidance law is derived by utilizing
ISMC to follow the desired error dynamics. The convergence of
the guidance law developed is supported by Lyapunov stability.
Simulations with extensive comparisons explicitly demonstrate
the effectiveness of the proposed approach.

I. INTRODUCTION

The final approach angle of an interceptor to a target is
known as the impact angle. Constraining this impact angle
is often desirable for increasing the warhead effectiveness as
well as the kill probability since it enables the missile to
attack a vulnerable spot on a target. For this reason, over
the past decades, extensive efforts have been done in the area
of impact angle control for tactical missiles. The two most
well-known categories of impact angle constrained guidance
laws are: optimal guidance law [1]–[6] and biased proportional
navigation guidance (BPNG) law [7]–[9]. Optimal guidance
laws bring in the philosophy of trajectory optimization while
developing guidance laws, thereby optimizing a meaningful
cost function as well as meeting the terminal boundary condi-
tions. In comparison, BPNG laws use a biased term to control
the impact angle while the capturability is guaranteed by the
nominal PNG part in an attempt to nullify the LOS rate. Most
of these guidance laws are derived by admitting linearized
kinematics subject to small angle assumption.

With the development of modern control theory, some ele-
gant solutions were also reported to control the impact angle.
Among them, sliding mode control (SMC) has found wide ac-
ceptance in guidance law design due to its inherent robustness
against matched disturbances [10]–[18]. A guidance law with
a dual linear sliding surface was suggested in [12] to cater
for impact angle constraint against maneuvering targets. The
guidance law switches between two sliding surfaces governed
by the capturability condition, which is determined by the sign
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of the closing velocity. An improved result by terminal SMC
(TSMC) was developed in [13], providing the property of
finite-time convergence of LOS angle errors. To circumvent
the inherent singularity associated with TSMC, nonsingular
TSMC (NTSMC) was employed in [14]–[16] to derive im-
pact angle control guidance laws. In a recent noteworthy
contribution [17], a switching logic between NTSM sliding
surface and general linear sliding surface was exploited in
guidance law design. The additional linear sliding surface was
employed to obtain the one-to-one mapping from impact angle
to LOS angle. This guidance law is applicable for speed-
disadvantaged interceptors and thus extends the application
of NTSM guidance law.

Apart from regular SMC, the concept of ISMC, proposed
in [19], provides engineers an alternative way to design SMC
with guaranteed global sliding manifold, i.e. the reaching
phase is eliminated. Owing to this benefit, the state response
under ISMC is predictable from its nominal part, enabling the
flexibility of designing the equivalent controller. This implies
that the convergence pattern of the tracking errors can be
shaped as desired. This reason leads to the selection of ISMC
in this paper. Note that ISMC was adopted in [20] for guidance
law design to improve the performance of the well-known
PNG law, which was incapable of controlling the impact angle.

Motivated by the above observations, this Correspondence
considers designing guidance laws to intercept maneuvering
targets by utilizing ISMC methodology for impact angle
control. A time-to-go weighted desired LOS error dynamics,
which determines the nominal guidance performance, is in
introduced first. Theoretical analysis shows that both the LOS
angle error and its rate along the desired error dynamics
approach zero simultaneously at the time of impact. Based on
the LOS error dynamics developed, the ISMC methodology is
utilized to design guidance law to force the system trajectory to
follow the desired dynamics. The advantage of the proposed
guidance law lies in that the guidance performance can be
easily predicted by the equivalent control part, guaranteeing
the nominal performance imposed by the weighted LOS error
dynamics.

The remainder of the Correspondence is organized as fol-
lows. The necessary backgrounds and preliminaries are stated
in Sec. II. The proposed error dynamics and its property are
provided in Sec. III. In Sec. IV, the proposed guidance law is
derived in details, followed by the simulation results shown in
Sec. V. Finally, some concluding remarks are offered.
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II. BACKGROUNDS AND PRELIMINARIES

This section first provides some necessary preliminaries
about the missile-target relative kinematics model. Then, the
problem formulation of this paper is stated.

A. Missile-Target Relative Kinematics

This paper considers a two-dimensional planar homing
engagement geometry shown in Fig. 1. As presented in the
geometry, the inertial reference frame is denoted as (X,Y ).
Variables with subscripts of M and T denote those of the
missile and target, respectively. The notations of λ and r are
the LOS angle and the missile-target relative range. γ denotes
the flight path angle defined in the inertial reference frame. The
velocity and lateral acceleration are represented by V and a,
respectively. For simplicity, it is assumed both the missile and
the target are flying with constant velocity.

Fig. 1. Planar engagement geometry.

The corresponding equations describing the missile-target
relative motion kinematics can be formulated as

ṙ = VT cos (γT − λ)− VM cos (γM − λ) (1)

rλ̇ = VT sin (γT − λ)− VM sin (γM − λ) (2)

The complementary equations defining the relationship be-
tween the flight path angle and lateral acceleration are

γ̇M =
aM
VM

(3)

γ̇T =
aT
VT

(4)

Let Vr
∆
= ṙ, Vλ

∆
= rλ̇ be the relative velocities along and

perpendicular to the LOS, respectively. Then, differentiating
Eq. (1) and (2) with respect to time yields

V̇r =
V 2
λ

r
+ aTr − aM sin (λ− γM ) (5)

V̇λ = −VrVλ
r

+ aTλ − aM cos (λ− γM ) (6)

where aTr
∆
= aT sin (λ− γT ), aTλ

∆
= aT cos (λ− γT ) denote

the target acceleration along and normal to the LOS, respec-
tively.

B. Problem Formulation

To ensure target capture, the missile should have to impose
hard constraints on terminal miss distance as well as terminal
impact angle error. The term impact angle, denoted as θimp,
is defined as the angle between the missile velocity vector and
the target velocity vector, i.e. θimp

∆
= γT − γM . Assuming a

perfect interception is achieved, i.e. λ̇ = 0, it follows from
Eq. (2) that

VT sin (γT − λ) = VM sin (γM − λ) (7)

which reveals that, for a pre-designated target with an expected
impact angle, there always exists a corresponding desired
terminal LOS angle. Let λF be the desired LOS angle, solving
Eq. (7) for λF yields

λF = γT − tan−1

(
sin θimp

cos θimp − VT /VM

)
(8)

Assume VT /VM < 1, then Eq. (8) provides an one-to-one
mapping from the impact angle to the LOS angle. This means
that the control of impact angle can be transformed to LOS
angle tracking problem. Also notice that zeroing the LOS
rate λ̇ leads to perfect interception with zero miss distance
[21]. The objective of this paper is therefore to design a LOS
shaping guidance law aM in such a way that the missile can
capture a maneuvering target with desired LOS angle λF .

Remark 1. For speed-disadvantaged missiles, the condition of
one-to-one mapping from the impact angle to the LOS angle
is violated as stated in [17] and one can use the dual sliding
mode method suggested in [17] to solve the multiple solution
problem.

III. LINE-OF-SIGHT ERROR DYNAMICS AND ANALYSIS

This section introduces the proposed error dynamics, de-
termining the nominal guidance performance, and presents its
closed-form solution to analyze the characteristics.

A. Proposed Error Dynamics

To begin with, define e
∆
= λ − λF as the LOS angle

tracking error and consider the following generalized second-
order time-varying error dynamics

ë+
a

tgo
ė+

b

t2go
e = 0 (9)

where a > 0, b > 0 are gains that regulate the convergence
rate of the error dynamics. The time-to-go tgo from Eq. (9) is
approximated using range over range rate as

tgo = −r
ṙ

(10)

By selecting this formulation for the error dynamics (9), the
LOS angular error and LOS angular rate error can be shown
to converge to zero at the final impact time.

Remark 2. Although approximation (10) tends to be smaller
than the real time-to-go during the initial flight period, espe-
cially for impact angle control trajectory [2]–[5], this fact only
affects the convergence rate of the error dynamics and has no
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effect on the final tracking error. Actually, it follows from Eq.
(9) that smaller tgo results in larger gains, leading to faster
convergence rate. The approximated tgo, which is calculated
in every guidance command update step, converges to the real
time-to-go towards the end of the engagement.

B. Characteristics of the Proposed Error Dynamics

To analyze the characteristics of error dynamics (9), we seek
to find its closed-form solution. It can be noted that Eq. (9) is a
second-order Cauchy-Euler differential equation with respect
to tgo. In this paper, we restrict to different real number roots
of the characteristic equation of Eq. (9). To this end, consider

e = ctngo (11)

as a special solution of Eq. (9), where c and n are two nonzero
constants. Taking the first and second order time derivatives
of Eq. (11) gives

ė = −cntn−1
go , ë = cn (n− 1) tn−2

go (12)

Substitution of Eq. (12) in error dynamics (9) and collecting
the same powers of tgo yields

[n (n− 1)− an+ b] tn−2
go = 0 (13)

Solving Eq. (13) results in two roots as

n1 =
a+1+

√
(a+1)2−4b

2 , n2 =
a+1−

√
(a+1)2−4b

2
(14)

Since this paper only considers different real number roots
of the characteristic equation, we have a + 1 > 2

√
b. Define

the parameterization a = k1 + k2, b = (k1 + 1) k2, where k1,
k2 are two design parameters. Then, Eq. (14) can be reduced
to

n1 = k1 + 1, n2 = k2 (15)

Since n1 > n2, one can conclude that k1 + 1 > k2.
Substituting Eq. (15) into Eq. (11) gives the generic solution
of Eq. (9) as

e = c1(tf − t)n1 + c2(tf − t)n2 (16)

where c1, c2 are two constants governed by the initial condi-
tions. Applying the initial boundary conditions on the generic
solution (16) generates

c1 =
n2e (0) + tf ė (0)

n2 − n1
t−n1

f , c2 =
n1e (0) + tf ė (0)

n1 − n2
t−n2

f

(17)
Differentiating Eq. (16) with respect to time yields

ė = −c1n1(tf − t)n1−1 − c2n2(tf − t)n2−1 (18)

It follows from Eqs. (16) and (18) that both the LOS angle
error and LOS rate error converge to zero at the time of
impact if n1 > 1, n2 > 1 or the equivalent form k1 > 0,
k2 > 1. Since k1 + 1 > k2, the required condition reduces
to k2 > 1. The closed-form solution, shown in Eqs. (16) and
(18), reveals that, by choosing different coefficients k1, k2,
different convergence rates of the LOS angle tracking error
can be achieved and therefore the guidance command can be
correspondingly shaped in a desired way.

Remark 3. Different from the error dynamics proposed in
[11], where the coefficients are tuned using offline optimiza-
tion, a and b in error dynamics (9) can be easily chosen to
achieve desired convergence pattern of the LOS errors by using
the closed-form solutions. Also, guidance law proposed in [11]
only apply to non-maneuvering targets while the proposed
algorithm can be applied to maneuvering targets.

IV. GUIDANCE LAW DESIGN AND IMPLEMENTATION

In this section, error dynamics (9) is utilized for impact
angle control guidance law design to intercept maneuvering
targets. It follows from Eq. (8) that λ̇F = γ̇T = aT /VT ,
λ̈F = ȧT /VT . To force the system trajectory onto the desired
error dynamics (9), we propose the following integral sliding
surface

s = ė+ z = λ̇− aT
VT

+ z (19)

where

z =

∫ (
a

tgo
ė+

b

t2go
e

)
dt, z

(
0) = −ė (20)

which guarantees the global sliding manifold, e.g., s(0) = 0.
It is easy to verify that the LOS angle error dynamics reduces
to Eq. (9) when s(0) = 0. This means that the guidance per-
formance can be easily predicted by the closed-form solution
of the proposed error dynamics.

Differentiating Eq. (19) with respect to time and substituting
Eq. (6) into it yields

ṡ = − ȧT
VT
− 2ṙλ̇

r
+
aTr
r
− aM cos (λ− γM )

r
+

a

tgo
ė+

b

t2go
e

(21)
The proposed guidance law is formulated as

aM = aeqM + aaddM

aeqM =
1

cos (λ− γM )

(
−rȧT
VT
− 2ṙλ̇+ aTr −

a

tgo
ėr +

b

t2go
er

)
aaddM =

rM |s|αsgn (s)

cos (λ− γM )
(22)

From Eq. (19), one can note that the sliding surface for
maneuvering targets interception with impact angle constraint
requires the information on target maneuver. This is a typical
requirement for other SMC impact angle guidance laws [12],
[13], [16]. In implementation, the target maneuver information
can be estimated using some well-established approaches, see
second-order sliding mode observer [22], [23] and adaptive
observer [24] for examples. The guidance command (22) also
reveals that the implementation of the proposed guidance law
needs the information on the rate of target maneuver, also
known as target jerk. However, accurate estimation for this
hidden state is difficult to be extracted from the available
measurements. Fortunately, due to the fact that every target
is a mechanical system with physical limits, it is reasonable
to assume that ȧT /VT is a small variable. This assumption
is very natural since fast changing of acceleration is quite
difficult for mechanical systems because of limited actuator
bandwidth, especially for aerodynamically-controlled vehicles.
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Therefore, one can safely remove the term rȧT /VT in Eq. (22)
with ignorable effect on the guidance performance. With this
simple modification, Eq. (22) reduces to

aM =
1

cos (λ− γM )

[
−2ṙλ̇+ aTr −

a

tgo
ėr

+
b

t2go
er +Mrsigα (s)

] (23)

Moreover, due to the existence of the robust term Msigα(s),
the effect of rȧT /VT on guidance precision can be further re-
duced to a relatively low level. To see this, consider V = 0.5s2

as a Lyapunov function candidate. Define ∆
∆
= −ȧT /VT ,

taking the time derivative of the Lyapunov function and
substituting Eqs. (21) and (23) into it yields

V̇ = s

(
− ȧT
VT
− 2ṙλ̇

r
+
aTr
r
− aM cos (λ− γM )

r

+
a

tgo
ė+

b

t2go
e

)
= s

(
− ȧT
VT
−Msigα (s)

)
= s (∆−Msigα (s))

≤ |s| (|∆| −M |s|α)

(24)

which reveals that if |s| ≥ (|∆| /M)
1/α, V̇ ≤ 0. This means

that by removing the jerk term in guidance command (22),
the sliding variable can still be ensured to be in a small region
around zero by |s| < (|∆| /M)

1/α. Since ∆ is a small variable
and 1/α > 1, one can imply that the upper bound of the
compact region is very close to zero and thus the effect of the
jerk term is ignorable.

Remark 4. Note that inequality (24) also provides us the
rule for tuning the guidance gain M : choosing M as an
increasing function with respect to time. Such kind of guidance
gain gradually shrinks the region boundary of the sliding
dynamics when the missile approaches the target, thereby
leading to accurate interception. For instance, one can set the
guidance gain inversely proportional to the relative range as
M (t) = M0/r with M0 being a positive constant and we
utilize this type of guidance gain in our simulation studies.

V. SIMULATION RESULTS

In this section, the performance of the proposed guidance
law is investigated through numerical simulations under vari-
ous conditions. In all simulations, a point-mass missile model
with a lag-free autopilot dynamics is used. The coefficients
of the proposed LOS error dynamics are chosen as a = 6,
b = 12. The guidance gain M0 is set as M0 = 50 and the
smoothing parameter α is selected as α = 0.8 in all scenario
tests without any further tunings. The initial conditions and
different scenarios of the engagement considered here are
summarized in Tables I and II, respectively.

In order to demonstrate the superiority of the proposed
guidance law, the existing NTSM impact angle guidance law

[16] is also performed in simulations for the purpose of
comparison. The NTSM guidance law is defined as

s = (λ− λ∗) + l
(
λ̇− aT

VT

)η
, l > 0, η = p

q , p > q

sgmf (x) = 2
(

1
1+exp−κx

1
2

)
, κ > 0

aM = 1
cos(λ−γM )

[
−2ṙλ̇+ r

ηl

(
λ̇− aT

VT

)(2−η)
]

+ K
sgmf(cos(λ−γM )) sgmf (s)

(25)

where p, q are two positive odd integers satisfy 1 < η < 2,
K > 0 the switching gain. The continuous function sgmf(x)
is used to replace the original discontinuous sign function for
the purpose of chattering mitigation. In order to make fair
comparisons, the design parameters, which are well-tuned to
provide good overall performance in [16], are used here in
simulations.

Fig. 2 compares the missile trajectory of the proposed
guidance law with that of NTSM guidance law for the four
considered scenarios. Fig. 3 shows the impact angle profiles
produced by the guidance laws. These figures show that both
guidance laws successfully intercept the target with desired
impact angles. The recorded miss distances of these two
guidance laws in these scenarios are less than 0.1795 m and the
impact angle errors in these scenarios are less than 0.239 deg.
Fig. 2 clearly shows that NTSM guidance law exhibits more
curved trajectories in some scenarios, vertical interception for
instance. Figs. 4 and 5 show the time history of the LOS
angle tracking error and LOS rate tracking error, respectively.
It follows from these figures that both LOS angle tracking
error and its rate converge to zero at the time of impact under
both guidance laws. Therefore, capturability and impact angle
control are guaranteed. The missile acceleration command of
different guidance laws are displayed in Fig. 6. The control
efforts of all guidance laws are summarized in Table III. From
this table, we observe that the NTSM guidance law requires
more control efforts than the proposed ISMC guidance law in
all scenarios, especially in the vertical interception missions.
The reason of this phenomenon is clear: the proposed ISMC
guidance law removes the reaching phase and thus requires
less control effort.

TABLE I
INITIAL CONDITIONS FOR HOMING ENGAGEMENT.

Parameters Values
Missile-target initial relative range, r(0) 10000m

Initial LOS angle, λ(0) 30◦

Missile velocity, VM 500m/s
Missile initial flight path angle, γM (0) 45◦

Target velocity, VT 250m/s
Target initial flight path angle, γT (0) 108◦

TABLE II
DIFFERENT SCENARIOS FOR HOMING ENGAGEMENT.

Scenario Parameters
Scenario 1 aT = −20m/s2, θimp = 180◦

Scenario 2 aT = −20m/s2, θimp = 90◦

Scenario 3 aT = 20 sin (0.1πt)m/s2, θimp = 180◦

Scenario 4 aT = 20 sin (0.1πt)m/s2, θimp = 90◦
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Fig. 3. Impact angle.

VI. CONCLUSIONS

This Correspondence proposes a new approach for impact
angle control guidance by following the designed LOS error
dynamics using ISMC methodology. The prominent feature of
the proposed LOS error dynamics lies in that both the LOS
angle tracking error and its rate converge to zero at the time of
impact, thus leading to accurate interception. The advantage of
the proposed guidance law lies in that it enables flexibility of
designing the nominal control part by virtue of the proposed
weighted LOS shaping concept. Simulation results with some
comparisons clearly confirm the effectiveness of the proposed
guidance laws.
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