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Abstract 

  This paper aims to develop a new finite-time convergent guidance law for 

intercepting maneuvering targets accounting for second-order autopilot lag. The 

guidance law is applied to guarantee that the line of sight (LOS) angular rate converges 

to zero in finite time and results in a direct interception. The effect of autopilot dynamics 

can be compensated based on finite-time backstepping control method. The time 

derivative of the virtual input is avoided, taking advantage of integral-type Lyapunov 

functions. A finite-time disturbance observer (FTDOB) is used to estimate the lumped 

uncertainties and its high-order derivatives for improving the robustness and accuracy 

of the guidance system. Finite-time stability for the closed-loop guidance system is 

analyzed using Lyapunov function. Simulation results and comparisons are presented 

to illustrate the effectiveness of the guidance strategy. 

Keywords: Finite-time backstepping control, Finite-time disturbance observer, Second-

order autopilot lag, Guidance law, Maneuvering targets 

 

1. Introduction 

Guidance law for tactical missiles plays an important role in the performance of 

intercepting maneuvering targets. The well-known proportional navigation (PN) 

guidance law has been proven to be effective in terms of simplicity, performance and 

ease of implementation [1-3]. Although the classical PN guidance law offers 

satisfactory performance for non-maneuvering or weakly maneuvering targets, it may 

not hold true in engaging highly maneuvering and agile targets, where the performance 

of PN guidance law drastically degrades [34]. To this end, advanced variants of the PN 

guidance law, such as augmented PN guidance law [1] are superior to the PN law. 

Guidance laws based on advanced nonlinear control theories and robust control theories 

can also be found, such as H-infinity guidance law [4], Lyapunov-based nonlinear 

guidance law [5], 𝐿ଶ gain guidance law [6], differential game guidance laws [7, 8], 
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and sliding mode control based guidance laws [9-12]. 

These laws generally require explicit information of target acceleration. Nonetheless, 

the knowledge of the target motion is not usually available from sensors on board. Thus, 

implementation of such guidance laws becomes restrictive. In this regard, target 

acceleration has been frequently regarded as external disturbance and compensated as 

feedforward term. Disturbance observer (DOB) is a well-known approach used to 

estimate disturbance of system and improve the performance of the controller [13-15]. 

In [15], a guidance law is designed based on integral sliding mode control method, and 

a nonlinear DOB is used to eliminate the influence of target maneuvers. A formulation 

of terminal guidance law for missile intercepting maneuvering target is investigated in 

[16]; in this study, a nonlinear DOB is employed to improve the system performance 

and avoid the chattering phenomenon. 

In many realistic scenarios such as defense against incoming high-speed tactical 

ballistic missiles (TBMs), the interception time of the end-game scenario is only several 

seconds. Therefore, the LOS angular rate is required to converge rapidly to zero to 

maintain the collision triangle. Finite-time convergent (FTC) control law is an effective 

feedback control methodology that exhibits high robustness and convergence rate 

against uncertainty. The authors in [17] propose a novel finite-time convergent guidance 

law to prove that LOS angular rate converges to zero or the presence of a small range 

around zero before interception. A nonsingular terminal sliding mode based guidance 

law is developed in [18] to guarantee finite-time stability for maneuvering target 

interception. However, the undesired chattering phenomenon is the main limitation for 

implementing these guidance laws. 

An autopilot lag exists between command and acceleration missile achieved; this lag 

exerts an undesirable effect on the performance of the guidance system. The integrated 

design of missile autopilot and guidance system may improve guidance precision. In 

[19, 20], guidance laws considering first-order autopilot dynamics are designed based 

on backstepping method. However, missile autopilot is always considered a complex 

system, and the properties of autopilot can be well approximated by the second-order 

lag rather than the first-order lag [21-26]. The authors in [25] present a guidance law 

with second-order autopilot dynamics compensation, but only asymptotical stability is 

proven. Accounting for second-order autopilot lag, a finite-time convergent guidance 

law based on standard backstepping control technique is developed in [24]. The 

required analytic differentiations of intermediate controls are obtained using a tracking 

differentiator. 

Motivated the above discussion, this work investigates a new composite finite-time 

convergent guidance law in the presence of second-order autopilot dynamics. The new 

guidance law is a disturbance observer based controller that can faster rejection of 

disturbances and recovery of nominal performances than pure feedback control. Two 

studies [29] and [32] inspired our work. Authors in [29] developed a finite-time 

backstepping method and finite-time feedback controllers for a class of nonlinear 



systems. This control method is used here to compensate autopilot lag. Based on finite-

time controller, our paper introduces a noise insensitivity FTDOB [32] to estimate the 

unknown target acceleration for improving guidance performance. Another attractive 

property compared with traditional backstepping procedure is that the new guidance 

law does not require the analytic derivative of virtual control law in the derivation 

process. A two-step stability analysis of the closed-loop system is established conducted 

using finite-time bounded (FTB) function and Lypunov function. Finally, simulations 

are performed considering various cases of highly maneuvering targets for varying 

missile velocity profiles to demonstrate the effectiveness of the proposed guidance law. 

This paper is organized as follows. Section 2 presents some basic concepts and 

formulations of nonlinear model of engagement. Section 3 focuses on the detailed 

design procedure of the proposed guidance law. Section 4 presents the results of closed-

loop system stability. Section 5 states the simulation results and comparison of the 

proposed law with existing formulations. Finally, Section 6 discusses the conclusions.  

2. Preliminaries and problem formation 

2.1 Some lemmas 

  The following lemmas should be recalled because they play an important role in 

subsequent study of finite-time convergent guidance law. 

Lemma 1: [28] Assume a positive definite, continuously differentiable function ( )V x  

defined on nU R   and real numbers 0c    and 0 1   , such that 

 ( ) ( )V x c V x
   is a negative semi-definite function on nU R  ; an area 0

nU R  

that exists and any ( )V x  starts from 0
nU R  can reach ( ) 0V x   in finite time 

 10( )

(1 )reach

V x
T

c










 

where 0( )V x  is the initial value of ( )V x . 

Lemma 2: [29] If 1 0p   and 20 1p  , then x R  , y R   
2

1 2 1 2 2 1 112
pp p p p p p px y x y    

Lemma 3: [29] Let c  and d  be positive constants. Given any positive number 

0  , the following inequality holds: 

c d c d c dc dc d
x y x y

c d c d
   

 
 

Lemma 4: [29] For any real numbers , 1, ,ix i n   and 0 1b  , the following 

inequality holds: 

 1 1

b b b

n nx x x x       

2.2 Nonlinear engagement of pursuit-evasion motion 



 

Fig. 1. 2D target-missile engagement geometry 

The planar engagement scenario which consists of a missile pursuing a maneuvering 

target is shown in Fig. 1, where symbols M  and T  denote a missile and a target, 

respectively; the flight path angles of the missile and target are represented by M  and 

T , respectively; r  is the relative range between the target and missile; q  is the LOS 

angle; the velocities of the missile and target are represented by MV   and TV  , 

respectively; and the accelerations of the missile and target are represented by Ma  and 

Ta , respectively.  

In practical, end-game scenario has no thrust and aerodynamics serves as control 

input. We assume that the command acceleration of the missile is perpendicular to its 

velocity vector. The missile and the target are assumed to be point masses to simplify 

dynamics of engagement. Furthermore, the magnitudes of velocity of the missile and 

target are assumed constant. 

Under the above-stated assumptions, the corresponding equations of motion that 

depict the engagement scenario are formulated as [27] 

  cos( ) cos( )T T M Mr V q V q        (1) 

  1
sin( ) sin( )T T M Mq V q V q
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  Let rV r   , qV rq   , then, differentiating Eqs. (1)-(2) and rearranging the terms 

yield [31]: 



 
2
q

r Tr Mr

V
V a a
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 r q
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VV
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where, sin( )Tr T Ta a q    , sin( )Mr M Ma a q    , cos( )Tq T Ta a q    , and 

cos( )Mq M Ma a q   . Mra  and Tra  represent the projections of the missile and the 

target acceleration along the LOS, respectively. Mqa  and Tqa  are the projections of 

the missile and the target acceleration orthogonal to LOS, respectively. The target 

acceleration Ta  is usually difficult to measure directly [31]. Therefore Tra  and Tqa  

are considered as unknown disturbances. 

  Normally, the acceleration along missile velocity of most tactical missiles in terminal 

phase cannot be controlled, and a well-known guidance strategy is nullify the LOS 

angular rate q   [17]. Thus, the purpose of guidance system is adjusting lateral 

acceleration Ma  to keep q  in a small range around zero and end up with a successful 

interception. Moreover, to remove the combined effect of nonlinear term and unknown 

target maneuver, a new quantity is defined as follows: 

  cosr q
Tq M M M

VV
h a a q a

r
        (7) 

then Eq. (6) can be rewritten as 

 q MV h a    (8) 

Assumption 1: Consider a positive constant   and a positive integer m , the lumped 

uncertainty h  is piecewise continuous and satisfies 

 
m

m

d h

dt
   (9) 

Remark 1: During the guided flight process, both the missile and target have physical 

limitations, namely, coefficients which compose lumped uncertainty are time-varying 

bounded. Thus, the assumption considered above is not restrictive. 

In practice, the missile autopilot can be well approximated by the second-order 

system as [25]: 

 2 22M a a M a M a Mca a a a          (10) 

where Ma   denotes the achieved missile acceleration, Mca   is the commanded 

acceleration of missile, a  and a  denote the damping ration and natural frequency, 

respectively, of the missile autopilot. However, the performance of missile is adversely 

affected by the autopilot lag between the commanded acceleration and real acceleration 

of missile. Compensation of dynamics is an efficacious way to remove the influence of 

system lag. 



  The objective of this paper is to design a guidance law in the presence of unknown 

target maneuver and autopilot dynamics. Based on derived guidance law, the LOS 

angular rate of the close-loop system is regulated to zero in finite time. 

3. Guidance law design with finite-time convergence 

A finite-time convergent guidance law is presented by using finite-time backstepping 

control technique and FTDOB in this section. The systematic procedure of guidance 

law design and proof of close-loop finite-stability are given by the following. 

3.1 Control algorithm 

  We define state variables 1 qx V , 2 Mx a  , and 3 Mx a   . An integrated 

guidance and control system can be written as follows: 

 
1 2

2 3

2 2
3 3 22 a a a a Mc

x h x

x x

x x x a   

 


   





  (11) 

  An FTDOB [32] is employed here to estimate disturbance and compensate control 

input to suppress the lumped uncertainty h  . A third-order observer can then be 

constructed as follows: 
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where 0 ( 0,1, 2,3)i i     and 0L    are the observer gains to be designed, with 

appropriate values of observer gains, 0z , 1z , 2z , 3z  approaches to qV , h , h , h, 
respectively. According to study of Levant [32], the following Lemma is obtained. 

Lemma 5: Under Assumption 1, the estimation error dynamics of FTDOB (Eq. 12) is 

governed by: 
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  (13) 

where the inclusion [ , ]h L L    is used in the last line, 0 0 1z x    , 1 1z h    , 

2 2z h    , and 3 3z h     are the estimation errors. A time constant exists 0st   

such that =0i  ( 0,1, 2,3i  ) for all st t  because the observer is finite-time stable. 

Remark 2: The principle selection of observer gains 0 ( 0,1, 2,3)i i    and 0L   

can be followed from [32]. The convergent rate will be very fast when the observer gain 

L  is large enough, but a very large value of L  will lead to unexpected overshoot and 

an excessive acceleration command. Hence, L   should be designed under certain 



circumstance. 

Remark 3: The defect of lumped uncertainty, concludes from error dynamics (13) that 

0 1 2 3= = = =0      always holds when the initial states are set as 0 (0) qz V  , 

1(0) 0z  , 2 (0) 0z  , and 3(0) 0z  . Hence, the FTDOB has no influence on closed-

loop system and the performance of nominal system is retained. In addition, the 

uncertainty can be estimated regardless of control input, then the FTDOB and guidance 

law can be designed independently. 

  The integrated system can be expressed as follows 

 
1 1 1 2

2 3

2 2
3 3 2
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2 a a a a Mc
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



  (14) 

1z  will converge to uncertainty h  when st t  . According to Lemma 5, system 

reduces to: 

 
1 2 1
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3 3 22 a a a a Mc

x x z
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
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

  (15) 

  The nonlinear system (15) is in a parametric strict feedback form. The backstepping 

method is an effective way to cancel influence of uncertainty for aforementioned system. 

Similar to traditional backstepping method, a finite-time backstepping control method 

proposed in [29] is used to deduce guidance law step by step as follows. 

Step 1: Let 1 1 2 2 1 3 3 1, ,x x x x z x x z      , system (15) can be rewritten as: 

 

   
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3 3 1 2 1 12 a a a a Mc
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


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 
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  (16) 

Let  / 0 1/ 3p q     and 1 ( 1)kq k     , where p   is an even integer and q  

is an odd integer. We have 1 2 11 0nq q q       , 1 2 1i iq q q    ， and 

1i iq q    . A 1C  , positive definite and proper Lyapunov function is chosen as 

follows: [33] 
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where kx
  represents the virtual control law, defined by 
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with constants 0k  . 



Taking the derivative of 1 1( )V x  along system (16) produces: 

      12 2
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Step 2: In the following proposition, we can obtain a useful property proven in [33].  

Proposition 1: 1( , , )k kW x x  is 1C , 2 kq
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  According to Proposition 1, computing the first-time derivative of 2V  gives: 
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From Lemma 2 and Lemma3, the equation is 
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where  21 2 2c    and  22 22 2c q    are positive constants. 

  We introduce following proposition whose proof are given in the appendix to 

facilitate the construction of finite-time controller and estimate the right-hand side of 

Eq. (20). 

Proposition 2: 21  and 22  are positive constants such that: 

 
2- 2-2

1 21 1 22 2
1

+
W

x
x

    



   (22) 

  Substituting (21) and (22) into (20) gives: 

 
   

 2

2 2

2 1 2 1 21 21 1 22 22 2

2 2
2 2 2 3 3

( , )

q

V x x c c

x x

 



    

  

 

  

     

  


  (23) 

Step 3: According to Proposition 1, evaluating the first-time derivative of 3V  gives: 
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Similar to derivation process in Step 2 we have: 
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where 31 22(2 ) (2 )c q     and 32 32 (2 )c q    are positive constants. 

  The proposition whose proof is given in the appendix follows. 

Proposition 3: 31 , 32  and 33  are positive constants such that 
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Substituting (25) and (26) into (24) gives 
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The proposed acceleration command is obtained as 
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  Finally, according to Lemma 5, 1z  , 2z  , and 3z   will converge to h  , h  , and h 
respectively, in finite time. Definitions of 2x , 3x , and the guidance law (28) can be 

replaced with: 
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  By using integral-type Lyapunov functions, the analytic differentiation of virtual 

control law can be completely avoided in a backstepping-like procedure to induce 

proposed guidance law. 

3.2 Closed-loop stability analysis 

Theorem 1: Consider integrated system (15), the proposed guidance law (29) with 

FDOB (12) will drive the LOS angular rate to zero in finite time. 

Proof:  

  Nonlinear observer-controller structure is not usually suitable for the well-known 

separation principle. Therefore, the proof of Theorem 1 is divided into two main steps. 

First, the boundness of the system states is proven during the convergent phase of 

FTDOB based on FTB function technique. Next, the closed-loop finite-time stability of 

the overall system will be presented with Lyapunov function approach. 

Step 1: The candidate FTB function for system (14) is defined as: 
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2 2i i
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V x z
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     (30) 

The derivative of V along system trajectory (14) yields: 
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  (31) 

With x R  , 0 1  , the inequality 1x x
    holds. Lemma 4 can deduce that: 
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Note that 2ix V , 1, 2,3i  , 2jz V , and 0,1, 2,3i  . Besides, during the 

terminal phase, the closing velocity along and perpendicular to the LOS, as well as the 

missile-target relative distance are bounded in any time interval [0, ]t ; hence, rV , qV , 

and r  all have limited values during any time interval [0, ]t . The existence of positive 

constants 
0v

 , 
0v

L  satisfies the following: 

 
0 00 v vv V L    (33) 

  Likewise, we conclude that 

      0 0

1 1

2/3 2/31/3 1/3
1 2 1 0 1 0 2 2 1 0 2

1/3 1/3 1/3 1/3
2 1 2 2 0 2 1 2 2

sgn( )

2 2 v v

v v

v L z v z v z L z v z

L z z L v L z z L V L

V L

 

    



       

        

 
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where 
1 2 1 2
, , , , ,v v a v v aL L L    are positive constants. 

  Considering the inequality 2 2/ 2 / 2ab a b   , the following equation is easily 

obtained: 
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According to Lemma 1, the estimation error 1  is globally bounded, and substituting 

Eqs. (33) - (36) into Eq. (37) leads to: 

 1 2 1V V V L      (38) 

where 1 2 1, ,L   are three positive constants. 

  We must consider the following two cases to facilitate the proving the theorem: 

Case 1. 1V  . We have V V , consequently, Eq. (38) becomes: 

 1 2 1( )V V L      (39) 

Case 2. 0 1V  . In such case, 1V V  , then, Eq. (38) becomes: 

 1 2 2 1( )V V L        (40) 



Combining the preceding two cases implies that: 

 v vV V L    (41) 

where ,v vL  are two positive constants. The solution of inequality (41) in the time 

interval [0, ]t  is obtained as: 
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  (42) 

where (0)V  is the initial value of V . Eq. (42) shows that the states of system will be 

bounded in a finite time during the convergent phase of FTDOB. 

Step 2: System (14) reduces to system (15) and guidance law (28) to (29) when rt t
because the error dynamics of FTDOB is finite-time stable and close-loop guidance 

system will not escape to infinite. Substituting Eq. (29) into (27) yields: 
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Let  1 1 21 21 31c        0  ,  2 2 22 31 22 32c c         0  , 

 3 3 32 33c      0  yields: 
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with  1 2 3min , ,    . According to Lemma 2 and similar process in [33], we obtain 

for 1, 2,3i   

  2 21 1 1( ) 2
i

i
i i i

i

x
qq q q

i i

x

s x ds 


     (45) 

  This implies that: 
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where 31 2 11 1max(2 ,2 ,2 )qq q    is a constant. Together with Lemma 4 yields: 

 
2 2 2 2 (2 )/2 2 (2 )/2 2 (2 )/2 (2 )/2 (2 )/2

1 2 3 1 2 3 3( ) ( ) ( ) V
                             (47) 

Hence, 
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According to Lemma 1, if 1  , the closed-loop guidance system is finite-time stable. 

Therefore, the LOS angular rate will converge to zero in finite time and control 

objective is achieved by invoking the definition of i . 

4. Numerical simulations 

Simulations with varying missile velocity 

In this section, numerical simulations are performed to demonstrate the efficacy of 

the proposed guidance law for various kinds of target maneuvers. Suppose the missile 



is equipped with an active radar seeker, providing LOS angle, LOS angular rate, range, 

and range rate information. 

Although the engagement model is constructed with consideration that both the 

missile and the target velocities are constant, guidance law (29) also performs well with 

varying speeds. For simplicity, only varying missile velocity considered here. Under 

this condition, Eq. (6) can be rewritten as: 

 sin( )r q
q Tq Mq M M

VV
V a a V q

r
         (49) 

  Define sin( )r q
Tq Mq M M M

VV
h a a a V q

r
        as the new lumped uncertainty; 

substituting into Eq. (49) yields: 

 q MV h a    (50) 

which has the same structure as shown in Eq. (8). Therefore, guidance law (29) still 

works well if lumped uncertainty h  is estimated accurately. 

A more realistic intercept model [34] is presented by considering effects of thrust and 

aerodynamics. Missile acceleration is normal in missile velocity, and the dynamics of 

missile velocity can be given in body frame as: 

 M

T D
V

M


   (51) 

where T  is the thrust, D  is the drag force, and M  is its mass. The thrust profile is 

given by: 

 0 ,

0,
b

b

T t t
T

t t


  

  (52) 

The mass of the missile changes when propulsion system is being on, and it can be 

approximated as: 

 p
i

b

m
M m t

t
    (53) 

where im , pm  is the initial mass of missile and mass of propellant, respectively. The 

term p bm t  represents fuel mass flow rate, where bt  is the burn time. 

The profile of drag force is governed by: 

 21

2 M DD V C A   (54) 

where   is the atmosphere air density, A  denotes the reference area and DC  is the 

drag force coefficient. DC  is given by a parabolic model as 2
0D D LC C kC  ; 0DC  

and LC  denote zero lift drag coefficient and lift force coefficient, respectively, and k  



is the parameter of induced drag. As the lift force acting on the missile is given as 
20.5 M LL V C  and lateral acceleration is /ca L M , the resulting lift coefficient is 

expressed in 22 / ( )L M MC a M V A . 

The initial engagement condition and related data required in closed system (11) are 

selected as: 1) initial missile-target relative distance: 14142 m; 2) initial LOS angle: 

/ 4  rad; 3) initial flight path angle of missile: / 4  rad; 4) initial flight path angle 

of target:   rad; 5) initial missile velocity: 800 m/s; 6) initial target velocity: 500 m/s; 

7) autopilot parameters: 0.8a   , 10a   rad/s; 8) max acceleration of missile 

achieved: 200 m/s2; 9) parameters of thruster: 165im  kg, 15pm  kg, 5bt  s, and

0 17640T   N; and 10) parameters of aerodynamic force: 0 0.74DC   , 0.03k   , 

0.0324A   m2, and 0.909   kg/m3. Three different target maneuver profiles are 

given below for simulations. 

Case 1: Constant target maneuvers 80Ta   m/s2. 

Case 2: Sudden evasive target maneuvers 0Ta  m/s2 for 2t  s, 100Ta   m/s2 

for 2 4t  s, and 100Ta  m/s2 for 4t  s. 

Case 3: Periodic target maneuvers 100sin(2 )Ta t  m/s2. 

The design parameters for implementing proposed guidance law (29) are set as 

1 5k  , 2 20k  , 3 40k  , and 2 / 39  . The selection of observer gains of FTDOB 

is given as: 0 1.1  , 1 1.5  , 2 5  , and 3 10  . 

For making a better showcase, the adaptive sliding mode guidance law (ASMG) [11] 

and finite time convergent guidance law (FTCG) [17] are also considered in the 

simulation for comparison. 

The ASMG law is defined as: 

 / ( )Mc a ra N V q Cq q         (55) 

where the effective navigation ratio aN   is usually 3 - 5, and 0C    is a design 

parameter. The parameters are selected as, 4aN   and 100C  . The FTCG law is 

defined as: 

 1 2sgn( ) sgn( )Mc f ra N V q q q q
          (56) 

where 2fN   , 1 2, 0    , and 0 1    are design parameters and selected as 

4fN  , 1 100  , 2 30  , and 0.5  . However, the undesired violent chattering 

phenomenon will result from the property of discontinuous terms 1 sgn( )q   . A 

saturation function ( )sat x   is used to replace the sign function to avoid this 

phenomenon, where: 

 
sgn( ),

( )
/ ,

x x
sat x

x x


 

   
  (57) 

where   is a small positive constant and is set as 0.005 in simulations. 
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Fig. 2. Results of comparison under three guidance laws for case 1: (a) interception trajectories; 

(b) LOS angular rates; (c) acceleration of missile achieved; and (d) uncertainty estimations. 

The simulations are carried out for three different target acceleration profiles and the 

results of comparison are presented in the following figures: Fig. 2 is for Case 1; Fig. 3 

is for Case 2; and Fig. 4 is for Case 3. The figures contain profiles of interception 

trajectories, LOS angular rates, acceleration of missile achieved, and uncertainty 

estimations. The proposed guidance law has offered better performance in all cases 

compared with other guidance laws. The LOS angular rate is regulated to zero rapidly 

in finite time under proposed guidance law, whereas ASMG only keeps the LOS rate 

boundness and becomes divergence as close to target. As a result of initial error in 

estimation, the required acceleration of missile for proposed law is higher initially. 

However, acceleration profile is maintained more practically acceptable than other laws 

in most of flight time. 
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Fig. 3. Results of comparison under three guidance laws for case 2: (a) interception trajectories; 

(b) LOS angular rates; (c) acceleration of missile achieved; and (d) uncertainty estimations. 
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Fig. 4. Results of comparison under three guidance laws for case 3: (a) interception trajectories; 

(b) LOS angular rates; (c) acceleration of missile achieved; and (d) uncertainty estimations. 

Additionally, FTCG law can drive LOS angular rate around zero in finite time, 

whereas the LOS rate cannot converge to a small region. The reason is that the 

chattering problem is addressed when FTCG law has adopted boundary layer technique. 

Thus, only motion around the sliding surface can be maintained. The chattering 

behavior of LOS angular rate under ASMG and FTCG laws are more apparent than 

proposed law in Case 3, which is not desirable for seeker system, because of the 

existence of missile autopilot lag. In contrast, with effective autopilot lag compensation, 

the proposed guidance law displays better transient performance and attains steady state 

earlier. The miss distances and interception time obtained by these considered guidance 

laws under target acceleration cases are as given in Table I. From the table it can be 

noted that the interception time spent by ASMG, FTCG and proposed laws is similar 

for all target situations. However, the miss distances achieved by proposed law are 

much more less than other laws, the reason is that the proposed law can keep the LOS 

angular rate to zero during most of the flight time. 

Table I. Miss Distances and interception time 

Guidance 

Laws 

Case 1 Case 2 Case 3 

Miss Distance 

(m) 
ft (s) Miss Distance 

(m) 
ft (s) Miss Distance 

(m) 
ft (s) 

ASMG 0.0781 11.028 0.0519 11.824 0.8095 13.337 

FTCG 0.0019 11.008 0.0018 11.852 0.0438 13.390 

Proposed 69 10  10.947 67 10  11.861 44 10  13.407 

Simulations with measurement noise 

Table II. Measurement noise 

Parameter 
Standard 

deviation 

q (rad/s) 55 10  

r (m) 30.48 



The information of sensors is always affected by the noise in realistic scenario, which 

leads to degrade the performance of closed-loop guidance system [35], especially for 

the FTDOB. Simulations are carried out to test the performance of proposed guidance 

law by considering corrupted measurements of LOS angular rate and range. 

Measurement noises are assumed to be normally distributed with zero mean and 

corresponding standard deviations are given by Table II [36]. 
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Fig. 5. Performance of proposed guidance law in noise-corrupted environment for case 3: (a) 

interception trajectories; (b) LOS angular rates; (c) acceleration of missile achieved; and (d) 

uncertainty estimations. 

Table III. Miss Distances and interception time 

Guidance Laws 

Case 3 

Miss Distance 

(m) 
ft (s) 

Proposed 1000L   0.2926 13.4130 

Proposed 2000L   0.1559 13.4097 

 

The simulation results in noisy environment for Case 3 are presented in Fig. 5. From 

Fig. 5(d), it can be observed that the lumped uncertainty can be well estimated through 

FTDOB and estimation error remains bounded, even if there exist measurement noises. 



The performance of FTDOB can improve slightly, when the gain of FTDOB L  is set 

as twice as the original one. Moreover, the LOS angular rate also regulated to a small 

region around zero and missile engages target accurately notwithstanding target 

maneuver. Table III shows the corresponding mean miss distances and interception 

time of 100 runs Monte-Carlo simulations. The noise insensitive property may make 

the proposed guidance law suitable for practice use. 

5. Conclusion 

In this work, a nonlinear finite time guidance law considering second-order autopilot 

lag is presented for maneuvering targets. Based on finite-time backstepping control 

technique and FTDOB method, the guidance law can guarantee that LOS angular rate 

converges to zero in finite time. In the design, the guidance law is derived by finite-

time backstepping method and lumped uncertainty can be estimated incorporating with 

FTDOB. The time derivatives of virtual controls are avoided by applying integral-type 

Lyapunov functions. Simulations and comparisons of various engagement scenarios 

demonstrate the excellent interception provided by proposed guidance law with 

autopilot dynamics. 
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Appendix. Proof for key propositions 

Proof of Proposition 2:  

The following equation can be concluded from Proposition 1: 

  
2

2

1
12 2

1 2 2 2 2 1
1 1

( )
2

q
qW x

x q x x x
x x




 
  

 
    (58) 

By using Lemma 2 and derivation in [33], we have following inequality: 

 2 kq

k k kx x     (59) 

Then, substituting (59) into (58) gives: 
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where 2 22 (2 )a q    is a positive constant. 

From the definition of 2
2 1 1

qx     , 11
1 1 1

qx x   , we have: 
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and inequality  2 2

2 2 1 1

q q
x      according to Lemma 4. Combining Eq. (61) and 

Lemma 3, we have: 
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  (62) 

where 21 0   and 22 0   are positive constants. This completes the proof. 

Proof of Proposition 3:  

  The following equation can be obtained from Proposition 1 and Lemma 2: 
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With similar process in proof of Proposition 2, we have: 
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where 3 32 (2 )a q    is a positive constant. 

Note that 3
3 2 2

qx      and 2 21 1/
2 2 2( )q qx x   , showing that: 

 
3 2

3 3

1 11 1/
3 2 2

1 2 1 2 2
1 1 1

( ) ( )q q
q qx x

x x x
x x x

 
   

 
  

    (65) 

 
3 32 2

3 3
2

2

1
1 11 1/ 1

3 2 2 2
2 2 2 2 3 2 3

2 2 2

( ) ( )q qq q
q q q

x x
x x x x x

x x x q

  
   

  
  

    (66) 

From Eq. (61) and inequalities  2 2
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3 3 2 2
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x      , we 

have the following: 
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where the last inequality is obtained using Lemma 3 and 4, 1 0   and 2 0   are 

positive constants. 

Considering Eq. (67), (68), and Lemma 3, we have the following: 
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where 31 0  , 32 0  , and 33 0   are positive constants. This completes the proof. 
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