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Abstract. The universe approximate theorem states that a shadow neural net-
work (one hidden layer) can represent any non-linear function. In this paper, we
aim at examining how good a shadow neural network is for solving non-linear
decision making problems. We proposed a performance driven incremental ap-
proach to searching the best shadow neural network for decision making, given a
data set. The experimental results on the two benchmark data sets, Breast Cancer
in Wisconsin and SMS Spams, demonstrate the correction of universe approxi-
mate theorem, and show that the number of hidden neurons, taking about the half
of input number, is good enough to represent the function from data. It is shown
that the performance driven BP learning is faster than the error-driven BP learn-
ing, and that the performance of the SNN obtained by the former is not worse than
that of the SNN obtained by the latter. This indicates that when learning a neural
network with the BP algorithm, the performance reaches a certain value quickly,
but the error may still keep reducing. The performance of the SNNs for the two
databases is comparable to or better than that of the optimal linguistic attribute
hierarchy, obtained by a genetic algorithm in wrapper or in terms of semantics
manually, which is much time-consuming.
keywords: Artificial Neural Networks, Shadow Neural Network, Universe Ap-
proximate Theorem, BP algorithm, Performance Driven, Incremental approach,
Non-linear problems, Decision Making.

1 Introduction

An artificial neuron network (ANN) is a computational model, mimicking the structure
and functions of biological neural networks. It provides an easy approach to creating the
relations between input attributes and the output based on a limit set of data, in stead of
an exact mathematic function, which we may not be able to create. The ability to learn
by examples makes ANNs very flexible and powerful. Although there exists bias to the
real relation between inputs and outputs, ANN is still a good approach to solving many
non-linear mapping problems.

Deep neural networks (DNNs) have been successfully applied in two main areas:
image processing and speech recognition. Especially, deep convolutional nets (Con-
vNets) have brought about breakthroughs in video [1,2], image processing [3], object
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detection [4], as well as audio [5] and speech recognition [6]. The properties of com-
positional hierarchies of images, speech and text promote the capacities of deep neu-
ral networks. However, we cannot always see the semantics of higher-level features in
many real-world cases as in image and acoustic modelling.

The universal approximation theorem, first with sigmoid activation function proved
by Cybenkot in 1989 [7], states that a shallow neural network (with one hidden layer,
containing a finite number of neurons) with a non-polynomial activation function can
approximate any function, i.e. can in principle learn anything [8,9]. This indicates that
we do not always need to use DNNs. A shallow neural network could be enough to
solve non-linear approximate problems.

The back-propagation (BP) algorithm is a classic training algorithm of ANNs. Blum
and Rivest [10] proved that training a 2-layer, 3 nodes and n inputs neural network with
the BP algorithm is NP-Complete. Obviously, the big barrier of blocking the applica-
tions of deep neural networks is the computing complexity, although it shows great
attractive on solving complex non-linear problems. With the strong capability of GPU,
deep learning for 2-20 depth networks is successful (e.g. Google AlphaGo). Also, the
success of deep learning in image and acoustic modelling benefits from GPU comput-
ing. However, in many cases, we may not need to use GPU, or even we do not have GPU
to support the calculation, for example, in an application of embedded intelligence.

Improving learning performance for all ANN applications is necessary. Basically,
there are four kinds of approaches to improving the performance of ANNs: (1) improv-
ing data, which is important for training an ANN; (2) improving training algorithm,
for which many notable algorithms have been developed in addition to the BP algo-
rithm; (3) algorithm tuning, for which, some evolutionary algorithms were developed
to optimise the parameters and neural network structures; (4) using ensembles.

Recently, Zhang et al. [11] proposed a dynamic neighborhood learning-based grav-
itational search algorithm. This approach can improve search performance in conver-
gence and diversity of an evolutionary optimisation. A shadow neural network (SNN)
is a feed-forward neural network (FNN) with only one fully connected hidden layer. If
we use an evolutionary optimisation to find the best SNN with a specified number of
hidden neurons as individuals, then there will be much redundant computing, as SNNs
with the same number of hidden neurons but different distribution in the permutation
of the individuals in the evolutionary optimisation have the same performance. There
was also some research on incremental approach. For example, Bu et al. [12] proposed
an incremental back-propagation model for training neural networks by adapting the
parameters and the neural structure, and used the Singular Value Decomposition on the
weight matrix to reduce some redundant links. The final neural network is not a fully
connected FNN. He et al. [13] used the incremental approach based on information gain
to select features for SVM spam detector.

In this research, we examine how good a shadow neural network is for solving
non-linear decision making problems, and propose a new performance-driven incre-
mental approach to finding the suitable number of hidden neurons in a shadow neural
network. This approach overcomes not only the shortages of a population searching
in evolutionary algorithm, which is much expensive in computing complexity, but also
the shortages in both the randomness and computing complexity of ensembles. We use
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two case studies on the two benchmark databases, Breast Cancer in Wisconsin [14] and
SMS spams [15], from UCI machine learning repository [16] to validate the correction
of the universal approximation theorem.

2 Methodology

2.1 A Multi-layer FNN

A multiple layer FNN is a computational graph whose nodes are computing units and
whose directed edges transmit numerical information from low layer nodes to upper
layer nodes. One neuron represents a linear classifier, the simplest neural network, using
an activation function (e.g. sigmoid function in Eq. (2)) to produce the result. A neuron
can be described with the following function:

vj =

k∑
i=0

wijxi, (1)

y = f(v) =
1

1 + e−α(v−b)
, (2)

where, j represents a neuron, to which the outputs of all neurons (i=1...k) in lower layer
are input; b is the bias. The sigmoid’s output y ∈ [0, 1]. We use n1−n2...− 1 to denote
the structure of a neural network, where nk is the number of neurons at the kth hidden
layer, the last figure 1 represents one output neuron, and input neuron number is the
number of input attributes by default.

2.2 The classic BP algorithm

Neural network learning is to find the optimal weights so that the network function ϕ
approximates the function f representing the given data as closely as possible. Namely,
given a training set (x− 1, t1), ..., (xn, tn), it is to minimise the error function of the
network, defined as

E =
1

2

n∑
i=1

‖oi − ti‖2, (3)

where, oi is the output of the FNN for input sample xi, ti is the target output. The
basic idea of BP algorithm is to use error back propagation to update weights in a fixed
structure of ANN. The process is: (1) initialise the weights of the network randomly,
(2) perform feed-forward computation to get the output of the network, and calculate
the error between the output of the network and the target value (Eq. (3)), (3) calculate
the gradient of the error function for all lower layers, and update the weight in terms
of the back-propagated error, and repeat the steps of (2) and (3) until the average error
(ε = E/n) is reduced to a specified small value.
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Performance calculation A true estimation is the result, when the estimated probabil-
ity p(y|x) that the state of a decision variable y with measurement vector x is ’+’ or ’-’
is larger than a threshold (e.g. 05.). Classic performance measurements include confu-
sion matrices, accuracy (A), and F1 score, ROC curve, and the area under ROC curve
(AUC). Assume P positive samples and N negative samples in the tested data set. The
confusion matrices include the four parameters: true positive rate or recall (TPR=TP/P ),
true negative rate(TNR=TN/N ), false positive rate(FPR=FP/N ), and false negative rate
(FNR=FN/P ). The accuracy is the ratio of the number of true estimations for both states
to the number of testing samples. The F1 score is the harmonic average of the preci-
sion (TP/(TP+FP)) and recall. A ROC curve is a graphical plot of the true positive rate
against the false positive rate at various threshold settings, and the area under the ROC
curve has been formalized in [17].

The updated BP algorithm In the general BP algorithm, the stop criteria depends
on the average error. The question is how small the average error is sufficient. If the
average error is too small, then the number of learning iterations could be large. Usually,
a maximum number of iterations is set, in case the average error cannot converge to the
specified value. Moreover, the neural network system may produce over fitting problem.
To avoid over fitting, usually a small data set is used to validate the performance during
the training process. Once the error of the FNN on the validation data is increasing,
while the error of the FNN on training data is still decreasing, the training process will
be stopped. This increases the complexity of training.

In fact, for a decision making problem, the goal of neural network training is to gain
high accuracy. The primary experimental results show that when average error arrives
a certain value, the performance for decision making could not be improved further.
Therefore, the stop criteria can be set to evaluate the neural network performance, such
as Accuracy (A), F1-score (F1), true positive rate (TPR). Namely, the learning process
will be stopped until the performance of the network has not been improved for a certain
number (T ) of iterations (called convergence tolerance) (Algorithm 1). When the aver-
age error is used as the stop criteria p, the line 10 in Algorithm 1 should be p < bestp.

2.3 Incremental Construction of FNN

Recently, David and Greental [18] proposed using a GA to optimise Deep Neural Net-
works, but they didn’t implement it. As we argued in the introduction, the success of
deep neural network benefited from the GPU computing. Assume the complexity of
deep neural networks is χ, the number of evolutionary generations is G, and the popu-
lation size P , and assume we have P processors to parallelises the GA, the complexity
of the optimisation process of deep neural network is O(Gχ) otherwise, it is O(GχP),
which may be intolerant. Hence, we propose an incremental approach to finding the
best structure of FNN, by starting from one neuron in one hidden layer, increasing a
neuron in the hidden layer each step, and then increasing one hidden layer until the
performance does not change.
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Algorithm 1 UpdatedBP(D(X,Y),Net, T )
1: Initialise(Net);
2: I = 0, k = 0;
3: p = 0;
4: while (I<MAX_IT) do
5: Ŷ=feedforward(X);
6: backpropagation (Y, Ŷ);
7: Net = updateWeight(Net);
8: best_p = p;
9: p = calPerformance(Y, Ŷ);

10: if (p>best_p) then
11: k = 0;
12: best_p=p;
13: else
14: k = k+1;
15: if (k>T) then
16: break;
17: end if
18: end if
19: end while

3 Experiments and Evaluation

The test platform is a laptop with Windows 10 and Intel (R) Core (TM)2 Duo CPU
T7300 @2GHZ 2GB memory. A software tool embedded with the algorithm is imple-
mented in VC++. The FNNs will be evaluated with the accuracy A, F1 score, TPR
and AUC. For each database, five experiments are conducted: (1) Error-driven FNN;(2)
A-driven FNN;(3) F1-driven FNN; (4) TPR-driven FNN, and (5) a ten folder crossing
validation. The convergence tolerance T is set to 200. The best performance will be
recorded for each experiment.

First, we apply the incremental approach to changing the structure of FNN on the
whole data set, and observe how the performance changes when structure is changed;
secondly, examine the training processes of the best structure of neural network, and
observe the effect of different termination criteria on the training process and the per-
formance; finally, perform ten folder crossing validation, 10% of data as test set, and the
rest 90% of data as training set. Also we compare the performance of the best structural
neural networks with ten-folder crossing validation to the performance in literature.

3.1 Case study on the database of the Wisconsin Breast Cancer

The Wisconsin Breast Cancer (WBC) database was created by Wolberg [14], containing
699 samples, in which 458 samples are benign, and 241 samples are malignant. There
are nine basic attributes x0, x1, ..., x8, with integer range [1,10]. The missing value of
an attribute in an instance of the database is replaced with the mean value of the attribute
on the corresponding goal class.

Performance of different structures of FNN The experiment is conducted by incre-
mentally changing the structure of the neural network, and the training process of each
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structure of neural network will be stopped when the minimal average error has not
be improved up to 200 epoches. Fig. 1 (a) shows the performance evolution when the
FNN structure changes. Obviously, one hidden neuron can not well represent the func-
tion, but the FNN with more than one hidden neurons can well represent the function,
although the performances of different structures of FNNs are slightly different. The
structure 4-1 of FNN achieves the best performance in all performance measurements
of A, F1, TPR and AUC. The structure 4-3-1 of FNN obtains almost same AUC and
TPR as the structure 4-1 of FNN does, but the performance of F1 and A are slightly
lower than that obtained by the structure 4-1 of FNN. Namely, a shadow neural network
is enough to represent the function given the data.
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Fig. 1. Performance and Training Process

The evolution process during the 4-1 SNN training Fig. 1 (b) shows the error evolu-
tion during the training process for the 4-1 FNN. It can be seen that the error (the solid
black line in Fig. 1 (b) is gradually decreasing during the training process. However,
the false negative rate has a large vibration after about 10 iterations, while false positive
rate has a decreasing trend although there are many fluctuations. After 20 iterations,
the FPR (dashed line) and FNR (dashdotted line) seems having an opposite behaviour.
Namely, while FPN is increasing, FNR is decreasing.

Performance of the 4-1 SNN for different termination criteria For a critical decision
making problem, we do not want to make a wrong decision on any positive instances,
namely we expect the TPR is 100%. In this section, we observe the end-loop and per-
formances when the criteria of error (ε), A, F1 and TPR have not be improved for up
to 200 iterations, respectively. Table 1 provides the performances of the 4-1 SNN and
the iteration index (best iteration) and the training time (best time) after which the ob-
served performance has not been improved. For the four stop criteria, the performances
of the 4-1 SNN are almost same, but the end-loops are very different, and error-driven
BP learning has the largest end-loop. It means that the performance, arriving a certain
value, is not improved further while the average error is still decreasing.

Ten-folder Crossing Validation Now we validate the performance of the 4-1 SNN for
different termination criteria, using ten-folders crossing validation. Table 2 shows the
results. Obviously, the performance with ten-folder crossing validation is lower than
that in Table 1. This indicates how robust the trained SNN is when it works on unseen
data. From Table 2, it can be seen that the performances of A, F1 and TPR for the
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Table 1. Performance parameters of 4-1 FNN for different stop criteria

Criteria A F1 TPR AUC bestIN bestTT (ms)
ε 0.9828 0.9757 1 0.9970 527 1015
A 0.9828 0.9755 0.9917 0.9938 154 250
F1 0.9857 0.9797 1 0.9963 461 750
TPR 0.9814 0.9737 1 0.9960 202 328

termination criteria of ε, A and F1 are very close. The performance of the 4-1 SNN for
the termination criterium TPR is lower than that for other criteria. The average end-loop
for error-driven BP learning keeps the largest.

The average accuracy and standard deviation for the ten runs of ten folder crossing
validation is presented in the form of (a±b), where a is average accuracy, and b is the
standard deviation, and it is (0.955±0.006), of which, the average is slightly lower that
of the accuracy (0.967± 0.02) obtained by the optimal linguistic attribute hierarchy
(LAH) [17], which was obtained by a GA wrapper. Also an SNN obtains more stable
accuracies than the LAH, and the accuracies of the SNN fall in the accuracy range of
LAH.

Table 2. Performance parameters of the 4-1 FNN on different stop criteria

Criteria A F1 TPR end-loop
ε 0.9551 0.9380 0.9643 1372
A 0.9507 0.9249 0.9351 173
F1 0.9536 0.9349 0.9347 162
TPR 0.9101 0.8475 0.8634 76

3.2 Case study on the SMSSpamCollection database

The SMSSpamCollection database [15], has 5574 raw messages, including 747 spams.
He et al. [13] extracted 20 features from the database, and the number of features was
reduced to 14 by combining some features with similar meanings [19]. We use the 14
attribute database for the experiments.

Performance of different structures of FNN Similar to the experiments on WBC, we
apply error-driven BP training on the whole data set. Fig. 2 (a) shows the performance
evolution when the FNN structure changes. It can be seen that the 1-1 FNN can well
represent the function from the SMS spams data, and the TPR of the 3-1 FNN is lower
than that of the 1-1 FNN. The performances of different structures of FNNs are slightly
different. But the performances,A, F1 and TPR are clearly separated. The F1 score keep
around 0.88, the TPR is waved in [0.8, 0.84], and the accuracy keeps above 0.96. The
6-1 FNN achieves the best performance in F1 and TPR, but slightly lower performance
in A than the 7-1 FNN, and more importantly, the end-loop for training the 6-1 FNN
reaches to the preset maximum iteration 20000, while the end-loop for training the 7-1
FNN is only 923. Therefore, the second hidden layer is constructed with the 7 neurons
in the first hidden layer. Similar to the WBC experiments, the experimental results show
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that an SNN is enough to represent the function of the specific data. At the same time,
we can conclude that the feature extraction still need to be improved, or additional
information is needed for improving the true positive rate of neural networks.
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Fig. 2. Performance and Training Process

The evolution process during the 7-1 SNN training Fig. 2 (b) shows the error evolu-
tion during the training process for the 7-1 SNN. The end-loop of the training process
is 923. To clearly show the trend of error evolution, we take the first 100 iterations of
the training process for plotting Fig. 2 (b). It can be seen that the error (the solid black
line) slightly decreases, and the FNR (the red dashed dot line) drops from above 0.35 to
0.15, but the FNR slightly increases at the second iteration. After the second iteration,
the average error, FPR and FNR almost do not change.

Performance of the 7-1 SNN for different termination criteria Similar to the experi-
ments on WBC, we observe the end-loop and performances of SNNs on the SMSSpams
data when the criteria of average error (ε), A, F1 and TPR have not be improved for
up to 200 iterations, respectively. Table 3 provides the performances of the trained 7-1
SNN and the iteration index and the training time at the best epoch. It can be seen that
the performances in A, F1 and TPR for the four termination criteria are very close. Es-
pecially, for the termination criteria A and F1, the training stops at the same end-loop.
Therefore, the SNNs obtain completely same performances in A, F1 and TPR. The
training process for the termination criterium of average error is the longest, while the
termination criterium of TPR produced the shortest training process. The F1 score and
accuracy A do not change after 71 iterations. The TPR does not change after iteration
3, and the SNN at iteration 3 obtains the highest TPR, and the performance A and F1

are similar to that at iteration 71, and even at iteration 923. This indicates that the per-
formance of the SNN keeps stable, although the average error continues being slightly
improved.

Ten-folder Crossing Validation Now we validate the performance of the 7-1 SNN for
different termination criteria, using ten-folders crossing validation. Table 4 shows the
results. The performance with ten-folder crossing validation is similar to that in Table 3.
This indicates the trained SNN is robust when it works on unseen data. From Table 3, it
can be seen that the performances ofA, F1 and TPR for the four termination criteria are
very close, even the SNN trained with the termination criterium of TPR obtains the best
performance. The performance of the 7-1 SNN with ten-folder crossing validation is
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Table 3. Performance parameters of 7-1 FNN for different termination criteria

Criteria A F1 TPR AUC bestIN bestTT (ms)
ε 0.9699 0.8798 0.8233 0.9669 923 27406
A 0.9711 0.8851 0.8300 0.9652 71 1906
F1 0.9711 0.8851 0.8300 0.9652 71 2094
TPR 0.9686 0.8774 0.8380 0.9623 3 109

much better than that of the linguistic attribute hierarchy in [19], of which, the accuracy
on the SMS Spam 0.9458, and the TPR 0.7323. The end-loop for error-driven BP on
SMS Spams is much larger than that for performance-driven BP.

Table 4. Performance parameters of the 7-1 FNN for different termination criteria

Criteria A F1 TPR end-loop
ε 0.9621 0.8615 0.8257 10062
A 0.9627 0.8619 0.8351 97
F1 0.9645 0.8726 0.8230 53
TPR 0.9670 0.8818 0.8527 54

4 Conclusions

The contribution of the research are summarised as follows: (1) Validating the universe
approximate theorem using experiments: a shadow neural network can well represent
the function from data, and the number of hidden neurons, taking the half of input
number, is good enough. (2) Providing an simple incremental approach to finding the
best shadow neural network. This approach overcomes not only the shortages of a pop-
ulation searching in evolutionary algorithm, which is much expensive in computing
complexity, but also the shortages in both the randomness and computing complexity
of ensembles; (3) Updating the classic BP algorithm with different termination crite-
ria. Performance-driven BP learning could help reduce the training time and avoid over
fitting; (4) Having the comparable or better performance of the trained neural network
on the two benchmark data bases, compared to the optimal linguist attribute hierarchy.
The research results show that a shadow neural network seems matching the property
of the human brain: when an individual gets the first impression to a thing, without new
information, the individual cannot change the impression. Partial linked neural network
will be investigated in future.
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