
An Integrated Decision-making
Framework of a Heterogeneous Aerial
Robotic Swarm for Cooperative Tasks
with Minimum Requirements

Journal Title

XX(X):1–??
c©The Author(s) 2018

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

Inmo Jang1, Hyo-Sang Shin1, Antonios Tsourdos1, Junho Jeong2, Seungkeun Kim2, and
Jinyoung Suk2

Abstract

Given a cooperative mission consisting of multiple tasks spatially distributed, an aerial robotic swarm’s decision-

making issues of include team formation, team-to-task assignment, agent-to-work-position assignment, and trajectory

optimisation with collision avoidance. The problem becomes even more complicated when involving heterogeneous

agents, tasks’ minimum requirements, and fair allocation. This paper formulates all the combined issues as an

optimisation problem and then proposes an integrated framework that addresses the problem in a decentralised fashion.

We approximate and decouple the complex original problem into three subproblems (i.e., coalition formation, position

allocation, and path planning), which are sequentially addressed by three different proposed modules. The coalition

formation module based on game theories deals with a max-min problem, the objective of which is to partition the

agents into disjoint task-specific teams in a way that balances the agents’ work resources in proportion to the task’s

minimum workload requirements. For agents assigned to the same task, given reasonable assumptions, the position

allocation subproblem can be efficiently addressed in terms of computational complexity. For the trajectory optimisation,

we utilise an MPC-SCP (Model Predictive Control and Sequential Convex Programming) algorithm, which reduces the

size of the problem so that the agents can generate collision-free trajectories in a real-time basis. As a proof of concept,

we implement the framework into a UAV swarm’s cooperative stand-in jamming mission scenario and show its feasibility,

fault tolerance, and near-optimality based on numerical experiment.

Keywords

Unmanned aerial vehicles, Swarm robotics, Mission planning, Task allocation, Coalition formation, Path planning.

1 Introduction

A networked system of a large number of aerial
robots, called (aerial) robotic swarm or UAV swarm, has
been attracting many researchers’ interest because of its
promising advantages such as its versatility, robustness,
and adaptiveness1–3. To name a few, possible applications
of UAV swarms include environmental monitoring4, ad-
hoc network relay5, disaster management6, and cooperative
military missions7. However, there still exist various
technical challenges to realise a robotic swarm into real-life
applications, for examples in view of autonomous decision-
making domain, multi-robot task allocation problem8–10 and
trajectory optimisation including collision avoidance11,12.

Cooperation is essential for a robotic swarm: robots (or
agents) with cheaper components can be realised through

mass production in lower cost, but each of them eventually
has limited capability to complete a single task alone13.
Given multiple tasks spatially distributed, the robots have
to partition themselves into disjoint task-specific robot
teams (or coalitions). This decision-making issue is referred
to as coalition formation problem14 or ST-MR multi-

robot task allocation problem8. Even though the robotic
swarm was identically manufactured, the agents may be

1Centre for Autonomous and Cyber-Physical Systems, Cranfield
University, UK
2Chungnam National University, Republic of Korea

Corresponding author:
Hyo-Sang Shin, Centre for Autonomous and Cyber-Physical Systems,
Cranfield University, Cranfield, Bedford, MK43 0TH, UK.

Email: h.shin@cranfield.ac.uk

li2106
Text Box
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Volume 233, Issue 6, 2018, pp. 2101-2118. DOI: 10.1177/0954410018772622

li2106
Text Box
Published by SAGE. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0). The final published version (version of record) is available online at DOI:10.1177/0954410018772622. Please refer to any applicable publisher terms of use.

2 Journal Title XX(X)

heterogeneous in terms of the currently-available work
resources because, for examples, it is probably not possible
to charge every robot’s battery fully before a mission due to
the large cardinality. Such heterogeneity makes the coalition
formation problem more complicated. Moreover, the tasks
may have their minimum workload requirements, which
have to be cooperatively fulfilled by the agents’ resources.
Having extra resources, in some cases, it is desirable to
equitably distribute them in proportion to the minimum
requirements to improve the system’s fault tolerance.

Each task-specific team of robots also have to make
decisions regarding which (spatial) work positions to go
specifically, called position allocation problem. Besides, the
agents’ trajectories towards the assigned positions should be
optimised, guaranteeing that any collision with other agents
or obstacles will not happen during the mission. What makes
the entire problem more involved is that the trajectories affect
the expected working resources of the agents when they
arrive at and execute their assigned tasks. Therefore, such
effects should also be considered in the coalition formation
and position allocation problems, and thereby the combined
decision-making problem becomes much more complicated
than either of individual problems.

Over the last few years, some researchers have begun
to address problems of simultaneously finding robot-
task assignments and trajectories. One typical strategy
is to regard such a complex decision-making issue as
a single optimisation problem (e.g., minimising the sum
of distance travelled by all the agents towards their
assigned positions) and solve it either in a centralised15 or
decentralised manner16. In particular, Turpin et al.16 show
that assuming homogeneous robots the optimal assignment
minimising velocity-squared trajectories without considering
collision avoidance can be actually collision-free and that
a suboptimal outcome can be obtained in a decentralised
manner. However, one drawback of this work is that a
robot’s trajectory is assumed as a straight line, which
may fail to deal with obstacle avoidance. Alternatively,
there have also been decoupling strategies, where tasks are
first assigned and then trajectories are planned17–19. This
type of approaches is advantageous in the sense that each
subproblem can be substituted as required depending on
practical applications considered. The existing works18,19

utilise for task allocation a stochastic-policy-based method
and an auction-based method, respectively, and exploit an
MPC-SCP (Model Predictive Control and Sequential Convex
Programming) algorithm for path planning20, which was
experimentally shown to be implementable for a multi-robot
system on a real-time basis as well as has the potential to

consider obstacle avoidance. However, all of the existing
studies reviewed consider neither heterogeneous robots nor
fair allocation concerning task requirements, which will be
addressed in this paper.

We first formulate all the prescribed decision-making
issues of a heterogeneous robotic swarm as a combined
optimisation problem, and then propose an integrated frame-
work that addresses the problem in a decentralised fashion.
Our approach approximates and decouples the problem into
three subproblems, i.e., coalition formation, position alloca-
tion, and path planning, which are sequentially addressed
by three different subroutine algorithms. Due to the large
cardinality of a robotic swarm system, directly obtaining
robot-to-position assignment can be restrictive regarding
computational complexity. To avoid this hinderance, the
proposed approach firstly partitions the robots into disjoint
task-specific coalitions, followed by the position allocation
subproblem for the robots assigned to the same task. For
the coalition formation subproblem, we propose a game-
theoretical method in which each agent unilaterally selects
a task-specific coalition with consideration of fair allocation
regarding the given tasks’ requirements. We show that, given
reasonable assumptions, the position allocation subproblem
can be efficiently addressed in terms of computational com-
plexity even using a simple sorting algorithm. For the
trajectory optimisation, we utilise an MPC-SCP algorithm
because of its advantages (e.g., real-time implementability).
As a proof of concept, we implement the framework into
a cooperative stand-in jamming mission scenario using a
swarm of micro UAVs and show its feasibility, fault toler-
ance, and near-optimality based on numerical experiment.

This paper is organised as follows. Section 2 defines the
original complex problem, which is decoupled into the three
subproblems in Section 3. Then, Sections 4, 5, and 6 propose
the subroutines for the coalition formation, the position
allocation, and the path planning subproblems, respectively.
In Section 7, we propose the integrated framework consisting
of the three subroutines and discuss its properties. Section
8 shows the results of numerical experiments using the
framework on a UAV swarm’s cooperative stand-in jamming
mission.

2 Problem statement: the original problem

We have a set of agents A = {a1, a2, ..., ana
}, and a

set of a fewer number of spatially distributed tasks

T = {t1, t2, ..., tnt}, where nt < na, to be collaboratively
executed by the agents. Each task tj has a set of
(spatial) work positions Pj = {pm1 , pm2 , ...}, where every

Prepared using sagej.cls

Jang et al. 3

Table 1. Nomenclature

Symbol Description

T A set of nt tasks {t1, t2, ..., tnt};
A A set of na agents {a1, a2, ..., ana};
Sj The task-specific coalition of agents for task tj ;

Π The set of coalitions Π = {S1,S2, ...,Snt ,S0};
O A set of no obstacles {o1, o2, ..., ono};
Pj A set of working positions {pm1 , pm2 , ...} where

agents can execute task tj ;

P The set of the entire working positions i.e., P :=
∪∀tj∈T Pj ;

wim Agent ai’s (expected) work resource at position
pm;

cim The cost if agent ai works at position pm;

w̄ij Agent ai’s abstracted (expected) work resource
for task tj ;

c̄ij The abstracted cost of agent ai for task tj ;

wi,0 Agent ai’s initial work resource;

pj,0 task tj ’s central position;

Rj The minimum requirement for task tj to be
completed;

αj RSI (Requirement Satisfaction Index) for task tj
(Eqn. (3));

xi The position and velocity vector of agent ai;

To which task with whom?
Specifically, to which working position?

How to go there without collision?

:"Task"with"its"minimum""requirement"" :"Working"posi5on""

:"Obstacle":"Agent"with"its"resource"

?"
?"

?"

?"

Figure 1. A brief illustration of the decision-making issues
considered in this paper

pm ∈ Rnd×1 is an nd-dimensional Euclidean-space position
vector at which an agent can execute the task. Each
work position is only associated with a single task, i.e.,
Pj1 ∩ Pj2 = ∅ for ∀j1 6= j2. Without loss of generality,
let P1 = {p1, ..., p|P1|}, P2 = {p|P1|+1, ..., p|P1|+|P2|},...,
Pnt = {p|Pnt−1|+1, ..., p|Pnt−1|+|Pnt |}. We denote the set of
the entire work positions by P := ∪∀tj∈T Pj . Furthermore,
we have a set of (static) obstacles O = {o1, o2, ..., ono}
the agents have to avoid during the mission, where each
oq ∈ Rnd×1 indicates the central position vector of the q-th
obstacle.

Each agent ai has its (expected available) work resource

(or work capacity) wim, which varies depending on work
position pm ∈ P . For examples, given the agent’s initial
work resource (denoted by wi,0), the cost to transition to
work position pm (denoted by cim) may result in a different
level of expected work capacity at last. This is also the
case if the work position affects the agent’s work efficiency
(e.g., in the cooperative jamming mission7, a position closer
to a target radar provides higher jamming effectiveness).
Considering this, work capacity wim can be defined as

wim := ηm(wi,0 − cim), (1)

where ηm ∈ [0, 1] is the work efficiency ratio associated with
position pm.

For each task tj to be completed, its minimum (workload)

requirement Rj should be met by its (task-specific) coalition

of the agents, denoted by Sj ⊆ A (note that Sj1 ∩ Sj2 =

∅ if j1 6= j2). We regard that the task is completed if
the aggregated work capacities of the coalition exceed the
minimum requirement. Having extra agents besides those for
satisfying all the tasks’ minimum requirements, it would be
desirable to equitably distribute them as proportional to the
requirements as possible to improve the system robustness.

Furthermore, there is a particular final time tf by when all
the agents should reach appropriate work positions without
any collisions. Such a deadline may be an important factor
for success in urgent missions, for instances, those in military
applications or those in the search and rescue domain.

In such a prescribed mission environment, the robotic
swarm’s main decision-making issues may include:

1. To form task-specific coalitions and choose work
positions in a way that (a) satisfies every task’s
minimum requirement at least and (b) maximises
the agents’ work capacities by reducing travelling
costs as well as exploiting positions with higher work
efficiency;

2. To equitably distribute the agents’ work capacities in
proportional to the tasks’ requirements as possible;
and

3. To generate shortest trajectories towards the selected
positions, while avoiding any collisions with other
agents or obstacles.

This problem as a whole is briefly illustrated in Figure 1 and
can be formally defined as follows:

Problem 1. (Original problem).

max
{yim}

(
min
∀tj∈T

αj
)
, (2)

Prepared using sagej.cls

4 Journal Title XX(X)

where

αj :=

∑
∀ai∈Sj

∑
∀pm∈Pj

wimyim

Rj
, (3)

subject to
αj ≥ 1, ∀tj ∈ T , (4)∑

∀pm∈P

yim ≤ 1, ∀ai ∈ A, (5)

yim ∈ {0, 1}, ∀ai ∈ A,∀pm ∈ P. (6)

Here, αj is the requirement satisfaction index (RSI) for task
tj , which should be equal to or greater than one to comply
with the task’s requirement (i.e., Equation (4)). yim is a
binary variable that is one if agent ai is assigned to position
pm or zero otherwise. Equation (5) indicates that, because
every agent has limited work resource, it can not execute
more than two tasks in a mission and thus can be assigned
to one working position at most. For fair allocation, the
objective of this problem is to find an assignment set {yim}
maximising the minimum value of αj . Work capacity wim is
defined by Equation (1), where cim is set by agent ai’s cost-
to-go function f ic(dim), which is an increasing function with
regard to the corresponding travelling distance dim, i.e.,

cim := f ic(dim). (7)

The agent regards dim as the length of the shortest collision-
free trajectory towards position pm as follows:

dim := min
ui

∫ tf

t0

||Gẋi(t)|| dt, (8)

subject to

ẋi(t) = f(xi(t)) +Bui(t), ∀t ∈ [t0, tf], (9)

xi(t0) = xi,0, (10)

xi(tf) = [pm;0nd×1], (11)

||G(xi(t)− xl(t))|| ≥ rcol, ∀t ∈ [t0, tf],∀al ∈ A \ {ai},
(12)

||Gxi(t)− oq|| ≥ robs,q, ∀t ∈ [t0, tf],∀oq ∈ O, (13)

||ui(t)|| ≤ Umax, ∀t ∈ [t0, tf], (14)

||Hxi(t)|| ≤ Vmax, ∀t ∈ [t0, tf], (15)

where xi(t) = [pi(t); ṗi(t)]; pi(t) ∈ Rnd×1 and ui(t) ∈
Rnd×1 are the agent’s position vector and control vector at
time t, respectively; f(.) represents its motion dynamics;
and xi,0 is the given initial state at the initial time t0.
Here, G = [Ind×nd

0nd×nd
], H = [0nd×nd

Ind×nd
], B =

[0nd×nd
Ind×nd

]>. Each agent needs to keep the collision-
avoidance distance rcol from other agents and robs,q from
obstacle oq while moving to the assigned position (i.e.,
Equations (12)–(13)). Moreover, the collision-free trajectory
should be feasible in terms of the agent’s dynamics and
physical constraints such as its available maximum control
power Umax and velocity Vmax (i.e., Equations (14)–
(15)).

Assumption 1. (The number of agents). Given an instance
of Problem 1, the number of the agents na is large enough
such that there is at least a feasible agent-position assignment
that satisfies every task’s minimum workload requirement,
i.e., αj ≥ 1 for ∀tj ∈ T . Otherwise, there is no solution for
the instance.

Assumption 2. (Obstacle modelling). Each obstacle is
enclosed with a circle (or sphere) with a radius of rops.
Note that a complex-shaped obstacle can be addressed by
introducing multiple circle-shaped obstacle avoidance areas.

Assumption 3. (Robot capability). Each robot can know its
position and follow the trajectory obtained from the proposed
framework. The robot is also capable of hovering such as
quadrotors.

3 Decoupling to subproblems: coalition
formation, position allocation, and path
planning

Our idea is to split the original problem into three
subproblems, i.e., coalition formation, position allocation,
and path planning problems, and to make the agents
address the subproblems sequentially and repeatedly along
with a finite time-horizon, as illustrated in Figure 2, in a
decentralised manner. In the first phase, the agents partition
themselves into disjoint task-specific coalitions. Once an
agreed set of coalitions {Sj} are determined, every agent
in Sj selects a working position amongst all the available
positions for task tj , i.e., pm ∈ Pj . After that, all the agents
generate and follow collision-free trajectories towards the
selected working positions. The entire process is executed
again before reaching the end of the time-horizon. In this
section, we will show how the original problem can be
decoupled into the three subproblems.

3.1 Coalition formation problem

Firstly, we introduce a decision variable xij ∈ {0, 1}, which
equals to one if agent ai joins coalition Sj and zero
otherwise. It is implied from xij = 1 that the agent will be

Prepared using sagej.cls

Jang et al. 5

Path following & Situational Awareness

Coalition Formation Position Allocation Path Planning

Figure 2. The proposed framework consists of three phases:
coalition formation (Problem 2), position allocation (Problem 3),
and path planning (Problem 4).

allocated to one of the positions for the task (i.e., ∀pm ∈ Pj).
From this, it turns out that

∑
∀pm∈Pj

yim = 1. Accordingly,
it can be said that

xij =
∑
∀pm∈Pj

yim. (16)

We also introduce abstracted cost of agent ai for task
tj , denoted by c̄ij , which abstracts all the costs towards
the task’s working positions, i.e., c̄ij ≈ cim for ∀pm ∈ Pj .
The abstracted cost is defined by c̄ij := f ic(d̄ij), where d̄ij
is the shortest travelling distance of agent ai towards task
tj’s central position (denoted by pj,0) without consideration
of the inter-agent collision avoidance constraints in (12).
For clear explanation, Figure 3 illustrates the notations
introduced.

Since the effectiveness of working positions will not be
considered in this subproblem, for the moment we let ηm =

1. As we did for the cost, we also abstract the agent work
resource in Equation (1) as abstracted work resource w̄ij ≈
wim for ∀pm ∈ Pj . Thus, the equation can be rewritten as

w̄ij = wi,0 − c̄ij . (17)

Under the aforementioned abstractions, αj in (3) becomes
equivalent to ᾱj :=

∑
∀ai∈A w̄ijxij/Rj , which can be

derived by substituting wim with w̄ij and using Equation
(16). Eventually, the original problem is reduced to a
coalition formation problem defined as follows:

Problem 2. (Coalition formation for fair resource alloca-
tion).

max
{xij}

(
min
∀tj∈T

ᾱj
)
, (18)

where

ᾱj :=

∑
∀ai∈A w̄ijxij

Rj
, (19)

subject to
ᾱj ≥ 1, ∀tj ∈ T , (20)∑

∀tj∈T

xij ≤ 1, ∀ai ∈ A, (21)

p m1

p m2

pj,0

Agent ai

c im1

c im2

p m3

c ij
_

For$original$
For$coali+on$forma+on$
For$posi+on$alloca+on$

Task*tj

c
im2

~

c
im1

~

Figure 3. An illustration of cim, c̄ij , and c̃im. They are used for
the original problem, the coalition formation subproblem, and
the position allocation subproblem, respectively.

xij ∈ {0, 1}, ∀ai ∈ A,∀tj ∈ T . (22)

3.2 Position allocation problem

After forming coalitions, agents in each coalition Sj have to
decide working positions amongstPj to execute the assigned
task tj . In this phase, we consider the work efficiency of
working positions ηm, which was not considered in the
coalition formation problem. This agent-position allocation
problem, which is the one-to-one assignment of independent
single-position-required agents to independent single-agent-
required positions, can be formulated by a linear assignment
problem from the combinatorial optimisation literature21:

Problem 3. (Position allocation). Given coalition Sj and
a set of positions Pj , the objective is to find an assignment
such that

max
{yim}

∑
∀ai∈Sj

∑
∀pm∈Pj

w̃imyim subject to (23)

∑
∀pm∈Pj

yim = 1, ∀ai ∈ Sj , (24)

∑
∀ai∈Sj

yim ≤ 1, ∀pm ∈ Pj , (25)

yim ∈ {0, 1}, ∀ai ∈ Sj ,∀pm ∈ Pj . (26)

Here, w̃im is the expected available work resource of agent
ai when it arrives at position pm ∈ Pj via the corresponding
task’s central position pj,0, defined by

w̃im := ηm(w̄ij − c̃im), (27)

where c̃im := f ic(||pm − pj,0||).

3.3 Path planning problem

In the last phase, given the position resulted by solving
Problem 3, denoted by p∗i for agent ai, the agent needs

Prepared using sagej.cls

6 Journal Title XX(X)

to generate a collision-free trajectory that minimises its
travelling distance, as follows:

Problem 4. (Path planning with collision avoidance). For
each agent ai ∈ A,

min
ui

∫ tf

t0

||Gẋi(t)|| dt, (28)

subject to (9), (10), (12)–(15), and

xi(tf) = [p∗i ;0nd×1]. (29)

3.4 Assumptions

The followings are assumptions considered in this study.

Assumption 4. (Agents’ network). The communication
network of the agents is at least strongly connected as well
as satisfies the property in Assumption 10, which will be
described in Section 6. Given the network at time t, Ni(t)

denotes a set of neighbours nearby agent ai, i.e., Ni(t) =

{al ∈ A | ||G(xi(t)− xl(t))|| ≤ Rcomm}, where Rcomm is
the agent’s communication radius.

Assumption 5. (Accessible information). Every agent
ai can sense every neighbour agent al ∈ Ni(t), and
obtain its local information such as c̄lj , w̄lj , xl within a
reasonably short time. The agent also knows the mission
scenario information regarding tasks, working positions and
obstacles, e.g., Rj , P , ηm, O.

4 Coalition Formation

4.1 Algorithm

By letting ᾱmin := min∀tj∈T ᾱj (called the minimum RSI),
it can be said that the objective of Problem 2 is to find
the maximised ᾱmin, denoted by ᾱmax min. Supposing that
we already know the value, the corresponding optimal
assignment {xij} complies with the following conditions:

Condition 1. All the given agents join to any coalition (i.e.,∑
∀tj∈T xij = 1, ∀ai ∈ A).

Condition 2. Given ᾱmax min, it holds that

ᾱj ≥ ᾱmax min ∀tj ∈ T .

Condition 3. Within constraints (21)–(22) and Condi-
tion 2, the total work capacities of the agents (i.e.,∑
∀ai∈A

∑
∀tj∈T w̄ijxij) are nearly maximised. Equiva-

lently, from the definition of w̄ij in (17), it can be also said
that the total cost of the agents (i.e.,

∑
∀ai∈A

∑
∀tj∈T c̄ijxij)

is almost minimised. Note that the optimal assignment {xij}
for the max-min optimisation is not necessarily optimal for
maximisation of the total work capacities. However, the
extent of the degradation is expected to be not significant due
to Condition 2 and the supposition that ᾱmax min was already
maximised.

Our fundamental approach towards Problem 2 is to
search the maximised value ᾱmax min and its corresponding
assignment set that meets all the conditions. Assuming that
a certain value of ᾱmax min ≥ 1 is given as the nominal
value, we will firstly find an assignment that satisfies
Condition 2 while minimising the total cost of the agents
(i.e., Conditions 3). This subproblem, called MinGAP-MR

(Minimisation version of General Assignment Problem with

Minimum Requirements)22, can be rewritten as Problem 5.

Problem 5. (Minimisation version of Generalised
Assignment Problem with Minimum Requirements
(MinGAP-MR)). Given a nominal value of ᾱmax min,

min
{xij}

∑
∀ai∈A

∑
∀tj∈T

c̄ijxij (30)

subject to (21), (22), and for ∀tj ∈ T∑
∀ai∈A

w̄ijxij ≥ ᾱmax minRj . (31)

Note that Condition 2 can be transformed to Equation (31)
by the definition of ᾱj , i.e., Equation (19). If the resultant
assignment also conforms with Condition 1, the nominal
value is a suboptimal objective function value of Problem
2. If either of Conditions 1 or 2 fails, the nominal value
ᾱmax min needs to be changed, and this process is iteratively
executed until both conditions are fulfilled.

Of importance is how to search ᾱmax min properly and
quickly. To this end, we adopt the concept of binary search23.
Firstly, we set the nominal value of ᾱmax min as its possible
maximum value JLHR, which is defined in the following
proposition.

Proposition 1. The optimal objective function value of

Problem 2 is upper bounded by its Linear-and-Homogeneous
Relaxation (LHR) objective function value, which is defined

Prepared using sagej.cls

Jang et al. 7

by

JLHR :=

∑
∀ai∈A(max∀tj∈T w̄ij)∑

∀tj∈T Rj
. (32)

Proof. Assume that the binary constraint (22) is relaxed
so that an agent’s resource can be assigned fraction-
ally (i.e. Linear relaxation, xij ∈ [0, 1]). The optimal
solution in the relaxed problem is such that the max-
imised value of

∑
∀ai∈A

∑
∀tj∈T w̄ijxij is shared to

the given tasks in exactly proportion to their min-
imum requirements. This shared value always upper
bounds the optimal objective function of Problem 2. The
maximised value of

∑
∀ai∈A

∑
∀tj∈T w̄ijxij is at most∑

∀ai∈A(max∀tj∈T w̄ij), where each agent is assumed to
have its maximum resource regardless of the tasks (i.e.,
(Maximum) Homogeneous relaxation). Combining the two
relaxations gives us the value as shown in Equation (32),
which also upper bounds the optimal objective function of
Problem 2.

Algorithm 1 Coalition formation with fair allocation

1: ᾱmax min := the value of Equation (32)
2: β := ᾱmax min

3: repeat
4: β ← β/2
5: {xij} := the solution for Problem 5 (by Algorithm 2)
6: Modify ᾱmax min according to Table 2
7: until Conditions 1 and 2 are met as well as β ≤ εCF
8: return {xij}

The proposed coalition formation process is described in
Algorithm 1. After setting the nominal value ᾱmax min =

JLHR intially, we try to find a solution assignment for
Problem 5 by Algorithm 2, which will be shown in the
following section. Depending on the solution’s fulfillness
with regard to Conditions 1 and 2, the nominal value is
modified as shown in Table 2. In the table, β is the amount of
variation to adjust the previous nominal value. β is initially
set by the half of JLHR, and is reduced to one half at every
search.

Table 2. How to adjust the nominal value of ᾱmaxmin in
Algorithm 1

Given {xij} C2 fulfilled C2 failed

C1 fulfiled Increase ᾱmaxmin Decrease ᾱmaxmin

C1 failed Increase ᾱmaxmin Not applicable

·When increasing: ᾱmaxmin ← ᾱmaxmin + β

·When decreasing: ᾱmaxmin ← ᾱmaxmin − β

Failure of Condition 2 means that there exists no solution
for Problem 5 with the given nominal value ᾱmax min.
Therefore, the value needs to be reduced. Failure of

Condition 1 implies that there must be another assignment
that yields a higher value of ᾱmax min exploiting all the given
agents. This may be the case even if both conditions are
fulfilled, and hence, we try to increase the nominal value.
This iterative search is executed until the time not only when
Conditions 1 and 2 are simultaneously satisfied but also when
β is less than a certain bound εCF . Note that the subroutine
algorithm for Problem 5 (i.e., Algorithm 2) does not provide
the case where both conditions fail, the details of which will
be described in Remark 1 in the following section.

4.2 The subroutine for MinGAP-MR

This section addresses Problem 5 by using the distributed
game-theoretical algorithm proposed in our previous
study22, where the problem is modelled as a non-cooperative
coalition formation game of selfish agents who have different
preferences regarding task-specific coalitions. We introduce
some necessary definitions and notations for the algorithm.
We define a partition as a set Π = {S1, ..., Snt , S0} that
disjointly partitions the agent set A. Here, S0 is the coalition
of agents who do “not work any task” in T . Given the
partition, Π(i) indicates the index of the coalition to which
agent ai joins. Let eij denote the expense for agent ai with
regard to coalition Sj (or equivalently task tj). Under this
algorithm, every agent tends to select the coalition requiring
the lowest expense.

The objective of the algorithm is to find a Nash stable

partition, where no agent will deviate, which is defined as
follows:

Definition 1. (Nash-stable partition). A partition Π is said
to be Nash-stable if it holds that, for every agent ai ∈ A,
eiΠ(i) ≤ eij , ∀Sj ∈ Π.

Given Π, the expense eij is defined as follows:

eij :=

c̄ij+ if ai ∈ Ŝj ,

∞ otherwise,
(33)

where c̄ij+ is the learnt cost of agent ai for task tj (for
now, we set c̄ij+ to c̄ij); and Ŝj is the set of agents eligible
to join the coalition for task tj . Agent ai can ascertain its
eligibility by an algorithm for MinKP (Minimum Knapsack
Problem): Ŝj := MINKP(Sj ∪ {ai}, ᾱmax minRj ,Wj , Cj)∗,
where Sj ∈ Π, Wj = {w̄kj |∀k : ak ∈ Sj ∪ {ai}} and Cj =

{c̄kj |∀k : ak ∈ Sj} ∪ {c̄ij+}.

∗Please refer to Definition 2 in Appendix for more details. This study uses
MinGreedy algorithm 24 as MINKP.

Prepared using sagej.cls

8 Journal Title XX(X)

Since there may exist any possible divergence from a
Nash-stable partition, we let each agent ai update its learnt
costs as follows:

c̄ij+ ← c̄ij+ + λ · c̄ij , (34)

where λ > 0 is the learning rate, and initially c̄ij+ = c̄ij .
Whenever agent ai changes its decision from coalition Sj
to another one, the agent learns that the previously chosen
one was not suitable for itself and penalises it gradually by
the learning rate as Equation (34). This can be called as
tabu learning25. This iterative decision-making and learning
process guarantees that a Nash-stable partition always can be
determined22.

Its detailed procedure is described in Algorithm 2. For
every agent ai, given the current locally-known partition
information Πi, if the agent does not satisfy with the partition
(Line 4), then it investigates every coalition Sj ∈ Πi and
computes the corresponding expense eij (Lines 5–9). If
there is a more preferred coalition than the existing one,
the agent amends Πi to reflect its new decision, updates
the learnt cost for the previously-chosen one, increases ri,
which is the number of evolutions of the partition, and
generates a new random time stamp si (Line 10–16). Then,
the agent constructs a message M i := {ri, si,Πi, satisfiedi}
and sends it to other neighbour agents, and vice versa (Line
19). Using the distributed mutex algorithm26 in Appendix
(i.e., Algorithm 5), denoted by D-MUTEX, a single partition
information can be distributedly chosen by any agent at
last (Line 21). The distributed mutex algorithm enables
Algorithm 2 to be executed asynchronously and distributedly
as long as the network of the given agents is at least strongly-
connected. Experimentally, the complexity of this algorithm
is shown to be O(nant)

22.

Remark 1. The simultaneous failure of Conditions 1 and 2
does not happen when Algorithm 2 is used. This is thanks to
the definition of expense eij in Equation (33). If there exists
any task tj not satisfying the constraint (31) (i.e., Condition
2), there must be no agent who wants to join S0. This means
that all the agents join to any task-specific coalitions. Thus,
Condition 1 must be fulfilled.

Remark 2. (How to reduce unnecessary process in
Algorithm 2). We set that if agent ai find the index of
its most preferred coalition as j∗ = 0 (Line 8), the agent
broadcasts a notification signal to other agents so that they
notice Condition 1 failed. This setting enables the agents

Algorithm 2 MinGAP-MR algorithm for each agent ai
// Note: αmax min is given from Algorithm 1
// Initialisation

1: satisfiedi ← 0na×1; ri ← 0; si ← 0
2: Πi := the current partition Π

// Decision-making process begins
3: while satisfiedi 6= 1na×1 do

// Make a new decision if necessary
4: if satisfiedi[i] = 0 then
5: Compute eij using (33) ∀Sj ∈ Πi

6: j∗ = argmin∀jeij ; e
∗ = min∀jeij

7: if e∗ =∞ then // No coalition is preferred
8: j∗ := 0
9: end if

10: if j∗ 6= Π(i) then
11: Join Sj∗ and update Πi

12: c̄i,Πi(i)+ = c̄i,Πi(i)+ + λ · c̄i,Πi(i)

13: ri ← ri + 1
14: si ∈ unif[0, 1]
15: satisfiedi ← 0na×1

16: end if
17: satisfiedi[i] = 1
18: end if

// Broadcast the local information to neighbour agents
19: Broadcast M i = {ri, si,Πi, satisfiedi} and

receive M l from its neighbours ∀al ∈ Ni
// Select the valid partition from all the received
messages

20: Collect all the messagesMi
rcv = {M i,∀M l}

21: {ri, si,Πi, satisfiedi} := D-MUTEX(Mi
rcv)

22: end while
23: return {xij} corresponding to Πi

to early close Algorithm 2 and change the nominal value
of ᾱmax min according to Algorithm 1, and thus reduces
possible unnecessary computation.

4.3 Analysis

We now discuss the properties of the proposed coalition
formation algorithm.

Proposition 2. (Convergence of Algorithm 1). Algorithm 1

terminates in a finite number of iterations.

Proof. For the coalition formation algorithm to terminate,
Line 7 in Algorithm 1 should be met. Since β is gradually
reduced by one half, it is obvious that β ≤ εCF within a
finite number of iterations. Now let us investigate if there
will always be a moment when Conditions 1 and 2 are
simultaneously fulfilled. Considering the properties of both
conditions, it can be said that (1) Condition 1 is met if
the nominal value of ᾱmax min is within [ᾱc1 ,∞], where
ᾱc1 <∞; (2) Condition 2 is satisfied if the nominal value
of ᾱmax min is within [0, ᾱc2], where ᾱc2 > 0. From this, if

Prepared using sagej.cls

Jang et al. 9

ᾱc2 < ᾱc1 , then Algorithm 1 cannot terminate. However, as
described in Remark 1, there is no such case, and hence
[ᾱc1 , ᾱc2] is the range when both conditions are fulfilled.
It is clear that the modification procedure of the nominal
value ᾱmax min shown in Table 2 eventually makes the value
converge to the range. The subroutine in Line 5 terminates
within a finite time22, so does Algorithm 1. This completes
the proof.

Proposition 3. (The number of iterations in Algorithm 1).
Suppose that, after κ iterations of the main loop of Algorithm

1 (i.e., Lines 3–7), the nominal value ᾱmax min remains the

range where Conditions 1 and 2 are both fulfilled. Then, the

maximum number of iterations happened is upper bounded

by max{κ, dlog2 (JLHR/εCF)e}.

Proof. As β reduces to its half after each iteration, it can
be said that β = JLHR · (1

2)n, where n is the number of
iterations happened. Until the time when β ≤ εCF , the
required number of iterations is dlog2 (JLHR/εCF)e. For
Algorithm 1 to finish, Conditions 1 and 2 additionally need
to be satisfied. Hence, the maximum number of iterations is
upper bounded by max{κ, dlog2 (JLHR/εCF)e}.

5 Position Allocation

After the coalition formation process, agents in each
coalition Sj have to choose working positions amongst
∀pm ∈ Pj to execute the assigned task tj (i.e., Problem 3).
Since this problem can fall into ST-SR case in multi-robot
task allocation categories8, it could be optimally solved by
a linear programming (e.g., Kuhn’s Hungarian method27)
in O(|Sj ||Pj |2) time. Note that any imbalance regarding
the number of agents and positions can be addressed by
including dummy agents or positions as required9. Please
refer to the review papers8,9 for more details.

This paper addresses Problem 3 in a more computationally
efficient manner under the following assumptions:

Assumption 6. (Initial positions of agents from tasks).
When a position allocation process begins, the distance from
agent ai ∈ Sj to task tj’s central position pj,0 is much larger
than the spatial difference from any position pm ∈ Pj to pj,0.
Hence, the costs of the agent to transition to any positions in
Pj are approximately the same as that to pj,0, i.e., cim ≈ c̄ij ,
∀pm ∈ Pj . In other words, the difference between pj,0 and
each pm ∈ Pj can be negligible, and thereby it follows that

c̃jm ≈ 0 in Equation (27). Hence, it can be approximated as

w̃im := ηm(w̄ij − c̃im) ≈ ηmw̄ij (35)

Assumption 7. (Work efficiency depending on proximity).
Given any two positions pm1

, pm2
∈ Pj , if pm1

is closer
to task tj than pm2

, then an agent at pm1
works more

efficiently than one at pm2
, i.e., ηm1

> ηm2
. Likewise,

ηm1
= ηm2

if pm1
and pm2

are identically distant from
the task. This assumption can be considered reasonable
because, for examples, in cooperative jamming mission7 or
in vision surveillence mission, an agent’s proximity brings
stronger work efficiency (e.g., jamming effectiveness or
sensing capability).

Proposition 4. Under Assumptions 6 and 7, the optimal

solution for Problem 3 is the allocation resulted by assigning

higher work-capacity agents into higher work-efficiency

positions.

Proof. Since Problem 3 is only related to each task tj , we
firstly let w̄i := w̄ij for simplicity. Without loss of generality,
it can be said that there are a set of agents Sj such that
w̄1 ≥ w̄2 ≥ ... ≥ w̄|Sj |, and |Sj | of working positions such
that η1 ≥ η2 ≥ ... ≥ η|Sj |.

For any two numbers m,n ∈ {1, 2, ..., |Sj |} such that
m ≤ n,

ηmw̄m + ηnw̄n ≥ ηmw̄n + ηnw̄m. (36)

This is because, considering that δ := ηm − ηn ≥ 0, the left-
hand side in (36) becomes (ηn + δ)w̄m + (ηm − δ)w̄n =

ηnw̄m + ηmw̄n + δ(w̄m − w̄n), and hence, this is always
greater than or equal to the right-hand side in (36).

From this, it is obvious that, given any two agents in
Sj , it is always better to assign the higher work-resource
agent to the higher work-efficiency position. According to
Assumption 7, such a position is the one closer to task tj .
This also holds for multiple agents more than two. Hence,
by assigning higher work-capacity agents into higher work-
efficiency positions, we can find the optimal assignment for
Problem 3 under Assumption 6 (i.e., Equation (35)) and
Assumption 7.

Owing to Proposition 4, a simple sorting algorithm can
be utilised to find the optimal solution for the approximated
Problem 3. There exist various types of sorting algorithms
such as Quicksort, Mergesort, and Heapsort, and their
complexities are averagely known as O(n log n), where n
is the number of the given items to be sorted28. Since such

Prepared using sagej.cls

10 Journal Title XX(X)

a sorting algorithm is too simple, in this position allocation
process, every agent executes the algorithm in parallel.

6 Path Planning with Collision Avoidance

After the position allocation process in the previous section,
the agents need to generate collision-free trajectories in a
way that minimises their travelling distances, i.e., Problem 4.
This paper exploits the MPC-SCP path planning algorithm20,
which consists of a MPC loop and a SCP loop. Given
a non-convex trajectory optimisation problem along with
a nominal trajectory, the SCP loop recursively solves its
approximated problem, which is convexified by the nominal
trajectory as explained in the following paragraph (i.e.,
Problem 6), until the approximated solution is very close to
the nominal one. In order to reduce the problem size, each
agent considers inter-agent collision avoidance only for a
time horizon from the current moment. While the myopic
collision-free trajectory is being used for the time horizon,
the next one is calculated before reaching the end of the
horizon, which is the MPC loop. It is worth noting that
the MPC-SCP algorithm can consider not only inter-agent
collision avoidance but also obstacle avoidance, and that
its real-time implementability was experimentally validated
by using multiple quadrotors19. In this section, we briefly
introduce how to utilise the MPC-SCP to Problem 4, then
show the main difference of the proposed algorithm from the
existing MPC-SCP.

Given the nominal trajectory of agent ai (denoted by x̄i),
we firstly linearise and discretise the problem as described
in Appendix. In addition, the collision-avoidance constraints
in (54) and (55) should be convex-approximated into the
following affine constraints for a time horizon TH : for every
agent ai ∈ A,

(x̄i[k]− x̄l[k])>G>G(xi[k]− x̄l[k])

≥ rcol||G(x̄i[k]− x̄l[k])||,

k = k0, ...,min{T, k0 + TH},∀al ∈ Ni[k0] ∩ Ii,

(37)

(Gx̄i[k]− oq)>(Gxi[k]− oq)

≥ robs,q||Gx̄i[k]− oq||,

k = k0, ...,min{T, k0 + TH},∀oq ∈ O,

(38)

where Ni[k] is the discretised-version notation of Ni(tk),
and Ii ⊆ A is the set of agents who are more important than
agent ai meaning that agent ai should avoid them (the formal
definition of Ii will be shown later in Assumption 8). The
convexified constraints (37) and (38) are sufficient conditions
for the original collision-avoidance constraints (54) and (55)

to hold20. Hence, Problem 4 can be reduced to the following
convex-approximated problem:

Problem 6. (Convex program for path planning). For
each agent ai ∈ A, given nominal trajectories x̄l for ∀al ∈
(Ni[k0] ∩ Ii) ∪ {ai} at the current discretised time step k0,

min
xi

T−1∑
k=k0

||G(xi[k + 1]− xi[k])|| (39)

subject to (51),(29),(56),(57),(37),(38).

Assumption 8. (Importances of agents19). Let each agent
ai has its importance index ρi such that ρi 6= ρl for ∀l 6= i.
For the convergence of Algorithm 3, it should be that

Ii = {al ∈ A | ρl < ρi}.

Algorithm 3 Collision-free path planning for each agent ai
1: x̄i[k] := the solution to Problem 6 without (37), ∀k
2: Communicate x̄i to all neighbour agents al ∈ Ni[k0]
3: Ki := Ni[k0] ∪ {ai}
4: while Ki 6= ∅ do
5: if ai ∈ Ki then
6: xi[k] := the solution to Problem 6, ∀k
7: if xi[k] is feasible then
8: x̄i,prev[k] := x̄i[k], ∀k
9: x̄i[k] := xi[k], ∀k

10: else
11: x̄i,prev[k] := x̄i[k] + εSCP · 12nd×1, ∀k
12: end if
13: end if
14: Communicate x̄i to all neighbours al ∈ Ni[k0]
15: if ||x̄i[k]− x̄i,prev[k]|| < εSCP and
16: ||G(x̄i[k]− x̄l[k])|| > rcol ∀al ∈ Ni[k0] ∩ (Kc

i ∪ Ii)
17: and ||Gx̄i[k]− oq|| > robs,q ∀oq ∈ O, ∀k, then
18: Remove ai from Ki
19: end if
20: Communicate Ki to all neighbours al ∈ Ni[k0]
21: Ki := Ki ∩ (∪∀l∈Ni[k0]Kl)
22: end while
23: x̄i is the approximate solution to Problem 4

The SCP loop for path planning is described in Algorithm
3. Firstly, each agent ai sets its nominal trajectory x̄i from
the solution for Problem 6 without consideration of the inter-
agent coalition avoidance constraint (Line 1). The agent
shares the information with all the neighbours (Line 2). Let
Ki denote a local variable indicating neighbour agents who
have not found coalition-free trajectories yet. If this is the
case for agent ai, it tries to obtain the solution for Problem
6 (Line 6). If it is feasible, then the nominal trajectory is
updated. Otherwise, the previous nominal trajectory x̄i,prev

Prepared using sagej.cls

Jang et al. 11

is set to any trajectory such that ||x̄i[k]− x̄i,prev[k]|| 6<
εSCP,∀k (Lines 7–12). After sharing the information with
all the neighbours (Line 14), agent ai checks if the new
trajectory is close enough to the previous nominal trajectory
and collision-free (Lines 15-19), and updates Ki (Lines 20-
21).

Remark 3. (How to avoid infeasible solutions in Line 6).
Although Problem 6 is a convex programming, there might
be no feasible solution if the nominal trajectory x̄i is not
proper. The convexified constraints (37) and (38) based on
the nominal trajectory occasionally induce the event that
some agents can not generate feasible trajectories using the
given maximum velocity and control powers. In this case,
it is a remedy to solve Problem 6 with temporarily-reduced
rcol or robs,q and then gradually increase them and solve
the problem again. Alternatively, making the initial velocity
profiles of the nominal trajectory become slowly also often
works.

The main difference of Algorithm 3 from the existing
work20 is Lines 7–12: agents who are eventually not
able to find feasible solutions for Problem 6 keep their
previous trajectories, whereas other agents use new ones.
When implementing the existing algorithm in the way it
is (i.e., without the lines), agents who already obtained
feasible trajectories have to wait to receive their neighbours’
trajectories before proceeding Line 15. Although infeasible
solutions can be avoided by Remark 3, this additional process
might induce unnecessary waiting times for other agents in
a synchronous process. Therefore, Algorithm 3 is designed
such that some agents may temporarily skip their trajectory
computations. We now show that, despite so, the proposed
algorithm can converge to collision-free trajectories.

Proposition 5. (Convergence of the path planning algo-
rithm). Even if some agents are temporarily not able to find

feasible solutions to Problem 6, Algorithm 3 can terminate

within a finite time and provide conflict-free trajectories for

all the agents.

Proof. Lines 7-12 in Algorithm 3 imply that if agent ai
can not temporarily find a feasible solution to Problem 6,
its neighbour agents maintain x̄i as they knew before. For
any agent amongst those neighbours, if there is a feasible
solution to Problem 6, the solution is conflict-free with
regard to x̄i. This situation is more favourable for the agent
to comply with the condition in Line 16, compared with the
circumstance where all the agents find feasible solutions in

Line 6. This is because each feasible solution xi considers
the corresponding neighbours’ previous trajectories as the
nominal values (as shown in Equation (37)), and thus
the simultaneous update of every xi ∀ai probably causes
additional iterations. However, despite the fact, Morgan et
al.19 shows that all the agents can converge to collision-free
trajectories within a finite time. Therefore, it can be said
that the occurrence of temporary infeasible solutions in Line
6 does not hinder the convergence of Algorithm 3 towards
conflict-free trajectories for all the agents.

Moreover, we experimentally observed that this asyn-
chronous process results in a faster agreement of the agents
than a synchronous process, as pointed out in the work29.

7 The Proposed Integrated Framework

This section presents our integrated framework, as shown
in Algorithm 4, that includes all the algorithm introduced
previously. At the current time k0, each agent firstly executes
the coalition formation process after obtaining its abstracted
costs (Lines 3–6). Note that d̄ij can be geometrically
obtained under Assumption 2. Then, the agent proceeds
the position allocation process (Lines 7–11), and the path
planning algorithm (Line 12) over the time horizon TH .

Algorithm 4 Integrated decision-making framework

1: k0 = 0;
2: while k0 ≤ T − TH do

// Coalition Formation
3: for all ai ∈ A (in parallel) do
4: Compute d̄ij and c̄ij = f ic(d̄ij) for ∀tj ∈ T
5: end for
6: {Sj} := the partition resulted by Algorithm 1

// Position Allocation
7: for all ai ∈ Sj , ∀tj ∈ T (in parallel) do
8: Compute w̃im using (35) for ∀pm ∈ Pj
9: {yim} := solution to Problem 3

10: p∗i = pm such that yim = 1
11: end for

// Path planning
12: xi[k] := the trajectories by Algorithm 3, ∀ai ∈ A

for ∀k ∈ {k0, ..., k0 + TH}
// Path following

13: Follow xi[k] for ∀k ∈ {k0, ..., k0 + TH}, ∀ai ∈ A
14: Update k0 and xi,k0 to current time, ∀ai ∈ A
15: end while

Since inter-agent collision avoidance is considered during
the time horizon only, we need the following assumptions:

Assumption 9. (Computational feasibility). Every agent’s
computational and communicational capability is such that
the running time of each loop of Algorithm 4 (Lines 3–12) is

Prepared using sagej.cls

12 Journal Title XX(X)

less than TH∆t. This guarantees that there will be no inter-
agent collision during the entire mission period.

Assumption 10. (Detectable collisions20). To guarantee
that there is no unexpected collision with other neighbour
agents during the time horizon TH ,Rcomm and Vmax should
be such that

Rcomm ≥ 2VmaxTH∆t + rcol and ∆tVmax < rcol.

We conjecture that the integrated framework can be
executed even by asynchronous behaviours of the agents
to some extent. Amongst the subroutines comprising the
framework, the path planning subroutine (i.e., Algorithm
3) needs a relatively more ideal environment: it requires
Local-Information Consistency Assumption (LICA)30 over
neighbour agents under a communication network holding
Assumptions 4 and 10. Meanwhile, our previous work22

implies that the coalition formation algorithm just requires
LICA under a simple strongly-connected communication
network, and communication is even not necessary
for the position allocation process. As long as local-
information consistency required for the path planning
process is guaranteed, the integrated framework can work
asynchronously. Therefore, considering the fact that the
path planning process is dominant, the experimental
validation of the MPC-SCP19 also suggests the real-time
implementability of the proposed framework. More rigorous
analysis regarding detrimental effects of asynchronous
agents will be subject to in our future study.

For now, let us discuss about the suboptimality of the
proposed integrated framework.

Proposition 6. (Suboptimality of the integrated framework).
Let rPj denote the maximum radius from the central position

of task tj (i.e., pj,0) to any working positions for the task

(i.e., ∀pm ∈ Pj). For an instance of Problem 2 with setting

c̄ij := fc(d̄ij − rPj), called the dummy problem, suppose

that we have its LHR objective function value, denoted by

J?LHR. Then, the suboptimality of an outcome from the

integrated framework (i.e., Algorithm 4) is lower bounded

by JA/J?LHR, where JA is the outcome’s objective function

value.

Proof. Let JOPT and J?OPT denote the optimal objective
function value of Problem 1 and that of the dummy
problem, respectively. We will firstly show that J?OPT ≥
JOPT . Work capacity w̄ij in the dummy problem is w̄ij =

wi,0 − f ic(d̄ij − rPj), which is always greater than or equals
to wim = ηm(wi,0 − f ic(dim)) in the original problem for
∀pm ∈ Pj . This is because: (a) for every agent ai and task

tj ,
d̄ij − rPj ≤ dim, ∀pm ∈ Pj ;

(b) the dummy problem has work efficiency ratio ηm = 1.
Hence, given the optimal objective function values for both
problems, it is clear that J?OPT ≥ JOPT .

For the dummy problem, its LHR objective function value
J?LHR can be found by Equation (32). This value upper
bounds J?OPT according to Proposition 1. From this, it turns
out that

J?LHR ≥ J?OPT ≥ JOPT .

Therefore, the suboptimality of the outcome from the
integrated framework (i.e., JA/JOPT) is lower bounded by
JA/J

?
LHR.

Considering the inherent urgency of a given mission, it
is also possible to make the coalition formation/position
allocation modules have longer cycles than the path planning
module. Since this paper will apply the framework to a
military mission in Section 8, we set all the modules to be
executed with the same frequency.

8 Numerical Experiment in a Cooperative
Jamming Scenario

8.1 Mission

We implement the proposed framework into a cooperative

stand-in jamming mission7. This mission can be categorised
as “escort jamming”, in which multiple aerial robots with
ECM (electro counter measure) transmitters are to neutralise
given target radars to protect their allies being far behind. The
strategy for stand-in jamming differs from that for typical
stand-off jamming in that the aerial robots penetrate into
enemy territory and jam the targets while being located
nearby. This comparison can be illustrated as in Figure 4.
A swarm of small-sized UAVs is suitable to carry out this
mission because of their small RCS (Radar Cross Section),
i.e., lower observability, and fault tolerance as a multi-
agent system. Despite their limited jamming resources, they
can cooperatively provide enough jamming effectiveness by
superimposing their signal strengths.

The cooperative jamming effectiveness by a set of n agents
towards the j-th radar is a function of the Jamming to Signal

ratio as follows31:

(J/S)j =

∑n
i=1 Ji,j
Sj

. (40)

Prepared using sagej.cls

Jang et al. 13

Here, Sj is the backscattered signal strength to the j-th radar
from one of the protected allies with the largest RCS:

Sj = kRj · σ(θa,j)/d4
a,j , (41)

where kRj is the radar-dependent coefficient; da,j is the
distance from the j-th radar to where the ally can be close
to the radar while being protected; σ is the RCS of the ally,
which depends on its attitude with respect to the j-th radar
(denoted by θa,j). The individual jamming signal strength of
the i-th agent towards the j-th radar is defined by

Ji,j = kAi · GRi,j/d2
i,j , (42)

where kAi is the agent-dependent coefficient; di,j is the
distance between the i-th agent and the j-th radar when
the agent performs jamming; and GRi,j is the radar antenna
gain, which relies on the agent’s position with respect to the
radar’s main-lobe. The cooperative jamming is sucessful if
(J/S)j exceeds the radar’s burn-through value (J/S)burnj ,
which is determined by the radar’s characteristics and signal
processing method.

8.2 Implementation and Settings

In this experiment, we have na = 50 of UAVs, nt = 3 of
tasks (i.e., target radars). For the radar and jamming-agent
relevant coefficients mentioned in the previous section, the
realistic values shown in Table 3 are used. Note that kA of
micro-sized UAV is assumed from consideration of other
UAV types’ values. We uniform randomly generate kAi ∈
[0.025, 0.050] for the agents, and set that {kR1 , kR2 , kR3 } =

{2 · 109, 1.5 · 109, 1 · 109} for the radars.

RADAR

STAND-OFF
JAMMER AIRCRAFT

FIGHTER

RADAR

STAND-IN
JAMMER UAVs

FIGHTER

Figure 4. Cooperative Stand-off Jamming vs. Cooperative
Stand-in Jamming

Table 3. Parameters of Jamming UAVs and Radars 31

UAV size kA Radar type kR

micro 0.05 short-range 2 · 107

small 0.25 med.-range 2 · 108

large 1 long-range 2 · 109

(J/S)burn GR main-lobe GR side-lobe

1 1 0.001
1 1 0.001
1 1 0.001

pj,0
d"min"

Δd"m1"

Δd"m2"

Δd"m3"

p m1

p m2

p m3

Figure 5. Definitions of dmin and ∆dm

We set that the agents can approach to the tasks as close
to 60 m as possible, denoted by dmin, and they may not be
located in the radars’ main lobes: from (42), each agent ai’s
initially-available work resource is set by

wi,0 = kAi · GRside/d2
min, (43)

where the corresponding radar antenna gain, denoted by
GRside, is set to 0.001. Then, work efficiency ratio ηm for
position pm ∈ Pj is set by

ηm =
d2

min

(dmin + ∆dm)2
, (44)

where ∆dm is the shortest distance from the working
position pm to the circle surrounding the j-th radar with the
radius of dmin, as illustrated in Figure 5. We set that as an
agent uses its resource to transition its given kA is reduced:
the decreasing rate is 0.005 per km. From this, we can define
each agent’s cost function f ic(d).

We assume that the allies to protect are F-16 fighter, whose
RCS is known as 5 m2, and they should be protected until
reaching 20 km before the radars. Each radar’s (J/S)burnj

is set to 1. Thus, each task tj’s minimum requirement is
computed by

Rj = Sj · (J/S)burnj . (45)

In addition, we have no = 2 of obstacles. The inter-
agent collision-avoidance radius is rcol = 15 m. For every
obstacle, its radius is robs,q = 60 m.

Prepared using sagej.cls

14 Journal Title XX(X)

For each agent ai, we consider 2-dimensional space and
the point-mass kinematics model:

ẋi(t) = Axi(t) +Bui(t), (46)

where

A = [02×2 I2×2; 02×2 02×2],

B = [02×2 I2×2]>,

ui(t) = [u1(t) u2(t)]>.

The maximum speed and acceleration of every agent is
Vmax = 10 m/s and Umax = 3 m/s2, respectively.

We set that the agents generate collision-free trajectories
over the time-horizon TH = 30 seconds, but update them at
every 20 seconds. For the time-horizon, the discretised time
gap is set to ∆t = 1 sec. In order to reduce computation
time, we use ∆t = 10 sec for the time range outside TH .
It is assumed that before t = 0 the agents already finished
Algorithm 4 for the first time-horizon, in which they compute
for the next time-horizon, and so forth. The mission final
time is tf = 180 sec. We set that εCF = 0.05, εSCP = 2.5

and λ = 0.5.

In order to see how adaptively the agents using the
proposed framework change their behaviours, we consider
a dynamic environment in which some of the agents are
lost in the middle of the mission: a half of agents assigned
to task t1 are randomly failed at t = 35 sec; even so, the
communication network of the remaining alive agents still
holds Assumption 4; and every agent can notice the failure
using the network shortly.

8.3 Results

Figure 6 show sequential snapshots of the resulted
behaviours of the agents using the proposed framework.
Each subfigure shows the locations of the agents, the tasks,
the working positions and the obstacles at a certain time
of the mission. The tasks are represented as blue, red, and
green circles in the right, and the obstacles as black circles in
the middle. The grey small circles around each task are the
corresponding working positions. The size of the solid circle
for each task indicates its minimum workload requirement,
and that of the dashed balck circle represents the minimum
radius the agents can be as close to the task as possible,
i.e., dmin. Each agent and its collision-avoidance radius
are illustrated as a coloured dot and the circle surrounding
it, respectively. Here, the circle is coloured by the colour
of the agent’s assigned task. The size of each dot indicates
the agent’s currently-available work resource, and it shrinks

as the resource is consumed by transitioning towards its
assigned working position. The dotted trail behind each agent
is the agent’s previous trajectory.

As presented in Figure 6(a)–(b), the agents followed the
trajectories towards their assigned positions from t = 0 to
t = 20. At t = 35, the half of the agent assigned to task
t1 were somehow failed (Figure 6(c)). Note that the lost
agents and their trajectories are represented as black-dotted
circles and lines, respectively. Due to the update interval
for new trajectories, the remaining alive agents managed
to reallocate the positions and generate new trajectories
for the next time horizon by t = 60 (Figure 6(c)). Here,
some of agents previously assigned to tasks t2 and t3 are
assigned to t1. After that, the alive agents followed the
new collision-free trajectories until the mission final time, as
presented in Figure 6(e)–(f). Figure 6(f) shows that the agents
were sensibly allocated with consideration of their working
resources and the tasks’ requirements.

Figure 7 shows each agent’s minimum distance from its
closest neighbour during the entire mission. Each line is
coloured corresponding to the agent colour of Figure 6.
This result indicates that all the agents using the proposed
framework comply with the inter-agent collision avoidance
constraints.

Table 4 presents the computation time spent to obtain the
decision-making result. Because the framework sequentially
solves an optimisation problem over the time horizon, the
computation time shown in the table is the average over
every optimisation. Note that the computation times spent
for the coalition formation and position allocation are only
significant when the agents planned over the time periods
t ∈ {[0, 20], [60, 80]}, thus we only used the corresponding
computation times to obtain the average value. All the
simulations were performed using MATLAB R2016b on
a computer (Mac mini Late 2014) with Intel Core i5 2.8
GHz, 16GB Memory and OS X Yosemite v.10.10.5. To solve
convex optimisations (i.e., Problem 6) in Algorithm 3, CVX
ver. 2.132 was utilised. The table shows that approximately
6 seconds are required for each time horizon. Since the
agents in the experiment updated their trajectories at every 20
seconds, there still remain approximately 14 seconds extra.

In addition, Table 4 shows the suboptimality of the
outcome from the proposed framework. We exploited
Proposition 6 to obtain the suboptimality lower bound, which
indicates that the outcome is near-optimal.

Prepared using sagej.cls

Jang et al. 15

-200 0 200 400 600 800

-400

-300

-200

-100

0

100

200

300

400

t1

t2

t3

(a) t = 0
-200 0 200 400 600 800

-400

-300

-200

-100

0

100

200

300

400

t1

t2

t3

(b) t = 20

-200 0 200 400 600 800

-400

-300

-200

-100

0

100

200

300

400

t1

t2

t3

(c) t = 35
-200 0 200 400 600 800

-400

-300

-200

-100

0

100

200

300

400

t1

t2

t3

(d) t = 60

-200 0 200 400 600 800

-400

-300

-200

-100

0

100

200

300

400

t1

t2

t3

(e) t = 120
-200 0 200 400 600 800

-400

-300

-200

-100

0

100

200

300

400

t1

t2

t3

(f) t = 180

Figure 6. The resulted behaviours of the agents using the proposed framework (na = 50, nt = 3, and no = 2).

9 Conclusion

This study addressed a swarm of heterogeneous robots’
decision-making issues including team formation, team-to-
task assignment, agent-to-working-position selection, fair

resource allocation considering tasks’ minimum require-
ments, and trajectory optimisation with collision avoidance.
The proposed framework decouples the complex original
problem into three subproblems (i.e., coalition formation,

Prepared using sagej.cls

16 Journal Title XX(X)

Figure 7. Each agent’s minimum distance from its closest
neighbour agent during the mission time (rcol = 15m).

Table 4. Computation times and suboptimality of the proposed
framework (na = 50, nt = 3, no = 2)

Subroutine Computation time (sec)

Coalition formation (Algorithm 1) 0.101

Position allocation 0.045

Path planning (Algorithm 3) 5.088

Suboptimality of Algorithm 4 (%)

Lower bound 97.42

position allocation, and path planning) and deals with them
sequentially by three different subroutine algorithms in a
decentralised manner. For the coalition formation subprob-
lem, we introduced the game-theoretical method that recur-
sively sets the minimum RSI and minimises given agents’
unnecessary costs (equivalently maximises their work capac-
ities). We showed that the position allocation subproblem can
be solved by a simple sorting algorithm under reasonable
assumptions. For the trajectory optimisation, we utilised
the MPC-SCP algorithm by which the agents can generate
collision-free trajectories over a time horizon. By introduc-
ing the LHR solution concept, we proposed a methodology
to analyse suboptimality of the proposed framework. As
a proof of concept, we implemented the proposed inte-
grated framework into a UAV swarm’s cooperative stand-
in jamming mission scenario. It was suggested from the
numerical experiment results that the framework could be
computationally feasible, fault tolerance, and provide a near-
optimal outcome.

A natural progression of this study is to validate this
framework in a real-robot experiment. Furthermore, a formal
analysis regarding the algorithmic complexity must be a
significant contribution.

10 Appendix

10.1 Linearisation and Discretisation

In order to address Problem 4, we firstly linearise the
dynamics in (9) about the nominal trajectory x̄i, which is
assumed to be given.

ẋi = A(x̄i)xi +Bui + z(x̄i) (47)

where A(x̄i) = δf
δxi
|x̄i and z(x̄i) = f(x̄i)− δf

δxi
|x̄i x̄i.

Then, we transform the problem to the discrete-time version.
Regarding Equation (28), it follows from ||Gẋi(t)|| dt =

||dpi(t)/dt|| dt that∫ tf

t0

||Gẋi(t)|| dt =

∫ tf

t0

||dpi(t)/dt|| dt

≈
∫ tf−∆t

t0

||pi(t + ∆t)− pi(t)

∆t
|| dt,

(48)

where ∆t is the time difference for the discretisation. We set
that, for k = 0, 1, ..., T ,

xi[k] := xi(tk), pi[k] := pi(tk), ui[k] := ui(tk),

(49)

where T := (tf − t0)/∆t is the number of discrete time
steps; tT := tf ; tk0 := t0; and tk+1 := tk + ∆t for all k.
Then, Equation (48) becomes

∑T−1
k=k0

||pj [k + 1]− pj [k]||.
Finally, the right term in Equation (28) becomes

min
ui

T−1∑
k=k0

||G(xi[k + 1]− xi[k])||. (50)

Likewise, Equation (47) can be reduced to

xi[k + 1] = Ai[k]xi[k] +Bi[k]ui[k] + zi[k],

k = k0, ..., T − 1
(51)

where

Ai[k] = eA(x̄i(tk))∆t, Bi[k] =

∫ ∆t

0

eA(x̄i(tk))τBdτ,

zi[k] =

∫ ∆t

0

eA(x̄i(tk))τz(x̄i(tk))dτ.

Equations (10), (29), (12)–(15) can be also written in
discretised form as follows:

xi[k0] = xi,0 (52)

xi[T] = [p∗;0nd×1], (53)

||G(xi[k]− xl[k])|| ≥ rcol k = k0, ..., T,∀al ∈ A, al 6= ai

(54)

Prepared using sagej.cls

Jang et al. 17

||Gxi[k]− oq|| ≥ robs,q k = k0, ..., T,∀oq ∈ O (55)

||ui[k]||2 ≤ Umax k = k0, ..., T (56)

||Hxi[k]||2 ≤ Vmax k = k0, ..., T (57)

10.2 Minimisation Knapsack Problem (MinKP)

Our proposed approach use an algorithm for the 0/1

minimisation knapsack problem (MinKP, for short)24 as its
subroutine. MinKP is defined as:

Definition 2. the 0/1 minimisation knapsack problem.
Suppose that there are a knapsack with its minimum
requirement R and a set of n items Z = {z1, ..., zn}, where
each item zi has its value vi and cost ci. The objective is to
pack the knapsack with the items so that the total value of
all inserted items exceeds the minimum requirement while
minimising the resultant total cost:

min
{xi∈{0,1}}

n∑
i=1

cixi s.t.
n∑
i=1

vixi ≥ R

where xi = 1 if item zi is inserted in the knapsack. Let
MINKP(Z,R,V, C) denote an algorithm for MinKP, where
V = {vi} and C = {ci} are sets of the items’ values and
costs, respectively. The output of this algorithm is the set of
selected item for the knapsack.

10.3 Distributed Mutex Subroutine

Algorithm 5 Distributed Mutex Subroutine26

1: function D-MUTEX(Mi
rcv)

2: for each message Mk ∈Mi
rcv do

3: if (ri < rk) or (ri = ri & si < sk) then
4: ri ← rk

5: si ← sk

6: Πi ← Πk

7: satisfiedi ← satisfiedk

8: end if
9: end for

10: return {ri, si,Πi, satisfiedi}
11: end function

For Algorithm 2, we use the distributed mutex algorithm
proposed in our previous work26, the detail of which is
described in Algorithm 5. The algorithm makes sure that
there is only one (local) partition that dominates (or will
finally dominate depending on the communication network)
any other partitions. In other words, multiple partitions
locally evolve and some of them only eventually can survive
at every main loop of Algorithm 2 even under asynchronous
behaviours of agents as long as their communication network
is at least strongly-connected. Even if we may encounter

multiple Nash stable partitions at last, one of them can be
distributedly selected by the agents.

Funding

This work was supported by International Joint Research

Programme with Chungnam National University (No. EFA3004Z).

Acknowledgements

Thanks to Yoonsoo Kim for constructive comments.

References

1. Sahin E. Swarm Robotics: From Sources of Inspiration to

Domains of Application. In Swarm Robotics. Berlin: Springer,

2005. pp. 10–20.

2. Navarro I and Matı́a F. An Introduction to Swarm Robotics.

ISRN Robotics 2013; 2013: 1–10.

3. Brambilla M, Ferrante E, Birattari M and Dorigo M. Swarm

Robotics: a Review from the Swarm Engineering Perspective.

Swarm Intelligence 2013; 7(1): 1–41.

4. Barton K and Kingston D. Systematic Surveillance for UAVs:

A Feedforward Iterative Learning Control Approach. In

American Control Conference. Washington, DC, USA, 2013,

pp. 5917–5922.

5. Bekmezci I, Sahingoz OK and Temel S. Flying Ad-Hoc

Networks (FANETs): A Survey. Ad Hoc Networks 2013; 11(3):

1254–1270.

6. Erdelj M, Natalizio E, Chowdhury KR and Akyildiz IF. Help

from the Sky: Leveraging UAVs for Disaster Management.

IEEE Pervasive Computing 2017; 16(1): 24–32.

7. Jang I, Jeong J, Shin HS, Kim S, Tsourdos A and Suk

J. Cooperative Control for a Flight Array of UAVs and an

Application in Radar Jamming. IFAC-PapersOnLine 2017;

50(1): 8011–8018.

8. Gerkey BP and Matarić MJ. A Formal Analysis and Taxonomy

of Task Allocation in Multi-robot Systems. International

Journal of Robotics Research 2004; 23(9): 939–954.

9. Korsah GA, Stentz A and Dias MB. A Comprehensive

Taxonomy for Multi-robot Task Allocation. The International

Journal of Robotics Research 2013; 32(12): 1495–1512.

10. Shin HS and Segui-Gasco P. UAV Swarms: Decision-Making

Paradigms. In Encyclopedia of Aerospace Engineering. John

Wiley & Sons, 2014. pp. 1–13.

11. Hoy M, Matveev AS and Savkin AV. Algorithms for

collision-free navigation of mobile robots in complex cluttered

environments: a survey. Robotica 2015; 33(03): 463–497.

12. Saicharan B, Tiwari R and Roberts N. Multi Objective

optimization based Path Planning in robotics using nature

Prepared using sagej.cls

18 Journal Title XX(X)

inspired algorithms: A survey. In IEEE 1st International

Conference on Power Electronics, Intelligent Control and

Energy Systems (ICPEICES). 2016, pp. 1–6.

13. Rubenstein M, Cornejo A and Nagpal R. Programmable

Self-assembly in a Thousand-robot Swarm. Science 2014;

345(6198): 795–799.

14. Shehory O and Kraus S. Methods for Task Allocation via

Agent Coalition Formation. Artificial Intelligence 1998; 101(1-

2): 165–200.

15. Alonso-Mora J, Breitenmoser A, Rufli M, Siegwart R and

Beardsley P. Image and animation display with multiple mobile

robots. International Journal of Robotics Research 2012;

31(6): 753–773.

16. Turpin M, Michael N and Kumar V. CAPT: Concurrent

assignment and planning of trajectories for multiple robots.

International Journal of Robotics Research 2014; 33(1): 98–

112.

17. Turpin M, Mohta K, Michael N and Kumar V. Goal assignment

and trajectory planning for large teams of interchangeable

robots. Autonomous Robots 2014; 37(4): 401–415.

18. Morgan D, Subramanian GP, Bandyopadhyay S, Chung SJ

and Hadaegh FY. Probabilistic Guidance of Distributed

Systems using Sequential Convex Programming. In IEEE/RSJ

International Conference on Intelligent Robots and Systems.

Chicago, IL, USA, 2014, pp. 3850–3857.

19. Morgan D, Subramanian GP, Chung SJ and Hadaegh FY.

Swarm assignment and trajectory optimization using variable-

swarm, distributed auction assignment and sequential convex

programming. The International Journal of Robotics Research

2016; 35(10): 1261–1285.

20. Morgan D, Chung SJ and Hadaegh FY. Model Predictive

Control of Swarms of Spacecraft Using Sequential Convex

Programming. Journal of Guidance, Control, and Dynamics

2014; 37(6): 1725–1740.

21. DF Votaw J and Orden A. The Personnel Assignment Problem.

In Symposium on Linear Inequalities and Programming.

Washington, DC: Planning Research Division, Comptroller,

Headquarters US Air Force, 1952, pp. 155–163.

22. Jang I, Shin HS and Tsourdos A. A Game-theoretical Approach

to Heterogeneous Multi-robot Task Assignment Problem with

Minimum Workload Requirements. In 2017 Workshop on

Research, Education and Development of Unmanned Aerial

Systems (RED-UAS). 2017, pp. 156–161.

23. Cormen TH, Leiserson CE, Rivest RL and Stein C.

Introduction to Algorithm. 3rd ed. Cambridge, Massachusetts,

USA: The MIT Press, 2009.

24. Güntzer MM and Jungnickel D. Approximate Minimization

Algorithms for the 0/1 Knapsack and Subset-Sum Problem.

Operations Research Letters 2000; 26(2): 55–66.

25. Beyer D and Ogier R. Tabu Learning: A Neural

Network Search Method for Solving Nonconvex Optimization

Problems. In Preceedings of 1999 IEEE International Joint

Conference on Neural Networks. 1991, pp. 953–961.

26. Jang I, Shin HS and Tsourdos A. Anonymous Hedonic Game

for Task Allocation in a Large-scale Multiple Agent System.

arXiv:171106871 [csMA] 2017; .

27. Khun HW. The Hungarian Method for the Assignment

Problem. Naval Reserach Logistic Quarterly 1955; 2: 83–97.

28. Mehlhorn K and Sanders P. Algorithms and Data Structures.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

29. Qin Y, Cao M and Anderson BDO. Asynchronous Agreement

through Distributed Coordination Algorithms Associated with

Periodic Matrices. In Proceedings of the IFAC World Congress.

Toulouse, France, 2017, pp. 1778–1783.

30. Johnson LB, Choi HL and How JP. The Role of Information

Assumptions in Decentralized Task Allocation: A Tutorial.

IEEE Control Systems 2016; 36(4): 45–58.

31. Kim J and Hespanha P. Cooperative radar jamming for groups

of unmanned air vehicles. In IEEE Conference on Decision

and Control. Atlantis, Bahamas, 2004, pp. 632–637.

32. Grant M and Boyd S. CVX: Matlab software for disciplined

convex programming, ver 2.1, 2017.

Prepared using sagej.cls

	1 Introduction
	2 Problem statement: the original problem
	3 Decoupling to subproblems: coalition formation, position allocation, and path planning
	3.1 Coalition formation problem
	3.2 Position allocation problem
	3.3 Path planning problem
	3.4 Assumptions

	4 Coalition Formation
	4.1 Algorithm
	4.2 The subroutine for MinGAP-MR
	4.3 Analysis

	5 Position Allocation
	6 Path Planning with Collision Avoidance
	7 The Proposed Integrated Framework
	8 Numerical Experiment in a Cooperative Jamming Scenario
	8.1 Mission
	8.2 Implementation and Settings
	8.3 Results

	9 Conclusion
	10 Appendix
	10.1 Linearisation and Discretisation
	10.2 Minimisation Knapsack Problem (MinKP)
	10.3 Distributed Mutex Subroutine

