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ABSTRACT

Utilizing meta-heuristic global optimization algorithms in gas turbine aero-engines
modelling and control problems is proposed over the past two decades as a
methodological approach. The purpose of the review is to establish evident
shortcomings of these approaches and to identify the remaining research challenges.
These challenges need to be addressed to enable the novel, cost-effective techniques
to be adopted by aero-engine designers. First, the benefits of global optimization
algorithms are stated in terms of philosophy and the nature of different types of these
methods. Then, a historical coverage is given for the applications of different
optimization techniques applied in different aspects of gas turbine modelling, controller
design, and tuning fields. The main challenges for the application of meta-heuristic
global optimization algorithms in new advanced engine designs are presented. To deal
with these challenges, two efficient optimization algorithms, Competent Genetic
Algorithm in single objective feature and aggregative gradient-based algorithm in
multi-objective feature are proposed and applied in a turbojet engine controller gain-
tuning problem as a case study. A comparison with the publicly available results show
that optimization time and convergence indices will be enhanced noticeably. Based on
this comparison and analysis, the potential solutions for the remaining research
challenges for application to aerospace engineering problems in the future include the
implementation of enhanced and modified optimization algorithms and hybrid
optimization algorithms in order to achieve optimal results for the advanced engine
modelling and controller design procedure with affordable computational effort.

Keywords: Meta-heuristic, Global Optimization algorithm, Gas Turbine Modelling and
Control, New Engine Designs, Competent Genetic Algorithm, Aggregative gradient-
based.

Nomenclature

BBs: Building Blocks

CDP: Compressor Discharge Pressure

CGA: Competent Genetic Algorithm

COM: Control Oriented Model

CPR: Compressor Pressure Ratio

CSD: Control Structure Design
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EA: Evolutionary Algorithms

EPR: Engine Pressure Ratio

GO: Global optimization

GTE: Gas Turbine Engine

HPS: High Pressure Shaft

IFPC: Integrated Flight/Propulsion Control

LPS: Low Pressure Shaft

LP: Linear Programming

MEA: More Electric Aircraft

MGO: Meta-heuristics Global Optimization

MILP: Mixed-integer Linear Programming Problems

MINLP: Mixed-integer Non-linear Programming Problems�̇� fuel flowrate to the combustion chamber
{�̇�}��� Maximum allowable fuel flowrate to the combustion chamber
NEA: New Efficient Aircraft

NGDF: Novel Generalized Describing Function

NLP: Non-linear Programming Problems

PLA: Pilot Lever Angle�� Penalty functions
SO: Stochastic optimization���_���� Simulation time;���������� Time step;� Time index;
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����, ���� Acceleration and deceleration times;
UAV: Unmanned Aerial Vehicle

��Weighting coefficients for penalty functions��Weighting coefficients for objective function
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1. Introduction

Global optimization (GO) algorithms are effective means to improve modelling and

analysis procedure in a very diverse range of real-world engineering applications with

respect to their flexibility and model independent nature. Over the past decades, the

application of global optimization algorithms in aircraft engines modelling and control

has been widely used in a systematic approach. However, with recent advances in

aircraft and engines, we are currently facing much more complex problems with many

more parameters to design and tune. The new aircraft engines are increasingly

complex with respect to the high demanding designs of New Efficient Aircraft (NEA)

and More Electric Aircraft (MEA) in terms of new configurations, structures, and

electric components. So, the current global optimization algorithms should be revisited

from efficiency and computational affordability points of view to deal with these new

challenges.

This paper reviews and analyses the proposed global optimization algorithms

application for aircraft engines modelling and control from a historical viewpoint and

then discusses the research challenges to summarize the reasons of considering

new/modified GO algorithms in design, tuning, and optimization problems. The paper

also investigates the application of two newly established optimization algorithms,

Competent Genetic Algorithm (CGA) and aggregative gradient-based method, applied

in a turbojet engine controller gain-tuning as a case study and compares the results

with those of other global optimization approaches to address the remaining research

challenges associated with the field; which if solved, will hopefully remove the major

obstacles for implementation of these methods in the future engines design as well.
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The underlying principle behind all GO algorithms is to focus on finding the maximum

or minimum of a function over all input values, as opposed to finding local minima or

maxima. This is in contrast to analytical optimization algorithms, which find the

optimum of functions using pure analytical approaches to select the best element (with

regard to some criteria) from some set of available alternatives. Application of global

optimization techniques in gas turbine engine problems have been reported in [1] and

[2], and more recently in [3]. Analytical methods are however reaching their limits for

efficient modelling parameters set, controller structure design and controller gain

tuning, especially for the new-established advanced high-quality controllers with

numerous variables. These limitations give an impulse to the exploration for alternative

cost-effective and efficient optimization methods. Recognizing the challenges, global

optimization algorithms have the potential to overcome these limitations as they have

certain benefits.

To categorise the main benefits, it is clear that in a Gas Turbine Engine (GTE)

modelling and control system, there are huge number of parameters that should be

designed and regulated simultaneously. This should be done in order to achieve an

optimized performance for the engine. As an example, the fuel controller design for a

single spool turbojet engine is a 14-Dimensions problem [3]. The dimension of the

problem increases to 20 for a simple integrated flight/propulsion control (IFPC) for an

Unmanned Aerial Vehicle (UAV) [4]. Obviously, many more parameters should be

designed and tuned for more complex engine architectures, e.g. turbofans and turbo-

shafts. Moreover, it is clear that the analytical optimization and gain tuning tools have

all easily become stuck in the local optimums and their implementations are not

affordable for huge problems especially from computational efforts point of view.

However, the global optimization algorithms are the right choices for this kind of
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problems because of their technically proved relative merits. These algorithms can

easily deal with both linear and nonlinear problems, their application is simple and

straightforward, they are useful in problems in the presence of noise, and they are

robust with respect to growth of dimension [5].

Over the past 20 years, i.e. from the earliest evidence of using non-analytic

optimization algorithms in GTE modelling and performance optimization, three

different fields have been considered:

• GO algorithms in GTE modelling problems

• GO algorithms in GTE controller structure design problems

• GO algorithms in GTE controller gain tuning problems

To cover all the above-mentioned fields in this paper, the mathematical principles and

benefits of GO algorithms are firstly discussed in section two. A history of gas turbine

aero-engine modelling and control using GO algorithms is then covered in section

three in which all claims and conclusions are confirmed with references, simulations,

or experimental data. Based on the presented history, the challenges of using meta-

heuristic GO algorithms for new advanced GTE designs are identified in section four.

Moreover, the potential solutions for identified challenges are introduced and the

effectiveness of the proposed solutions are confirmed by simulation results. After that,

the future of GO in GTE design and performance optimization is discussed in detail.

2. Mathematical principles and benefits of global optimization algorithms

Global optimization is a branch of applied mathematics dealing with globally

minimization/maximization of a set of functions regarding some criteria, bounds and

constraints. In other words, global optimization is illustrious from customary
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optimization because it focuses on finding the optimum over all input values, as

opposed to finding local minima or maxima.

Generally, the global optimization algorithms could be categorised into three main

categories: deterministic global methods, stochastic methods, and metaheuristics.

Deterministic global optimization would guarantee that the developed solution is

indeed the global one within some predefined tolerance [5]. The term deterministic

global optimization typically refers to complete (the method reaches a global minimum

with certainty, assuming exact computations and indefinitely long run time) or rigorous

optimization (the method reaches a global minimum with certainty and within given

tolerances even in the presence of rounding errors). Consequently, the problem with

deterministic global optimization methods is that they cannot give a rigorous result

when working with black-box or incomplete models (codes without any knowledge of

its internal workings). Linear Programming (LP) [6], Mixed-integer linear programming

problems (MILP) [7], Non-linear programming problems (NLP) [8], and Mixed-integer

non-linear programming problems (MINLP) [9] are different classes of deterministic

global optimization techniques.

Stochastic optimization (SO) methods are coping with random variables, random

objective functions, and random constraints [10]. These algorithms are suitable for the

problems in the areas of real-time estimation and control, simulation-based

optimization where Monte Carlo simulations are run as estimates of an actual system,

[11, 12] and problems where there is experimental (random) error in the

measurements of the criterion. The SO classes are stochastic approximation (SA) [13],

stochastic gradient descent, finite-difference SA [14], simultaneous perturbation SA

[15], and scenario optimization. The problem with these algorithms is that even when

the data set consists of precise measurements, some methods introduce randomness



9

into the search-process to accelerate progress. Such randomness can also make the

method less sensitive to modelling errors.

Metaheuristic optimization methods are high-level procedures to find a global

solution for an optimization problem with incomplete/imperfect information using

partial search algorithms (heuristics) [16]. Therefore, these approaches are usable for

a wide variety of problems in real-world applications [17]. Although metaheuristic

optimization methods do not guarantee finding a global optimal solution on some class

of problems [18], they usually find a good solution with less computational effort than

those of other global optimization methods by searching over a large set of feasible

solutions [17,18]. Consequently, the metaheuristic optimization approaches are more

useful in practical problems than other approaches [17-21].

Table 1 summarizes the main advantages and disadvantages of the global

optimization algorithms. With respect to their efficiency and practicality, meta-

heuristics global optimization (MGO) algorithms are more effective in real-world

engineering problems. Hence, the rest of the paper will focus on this type of

optimization algorithms. A comprehensive review of the application of these methods

in gas turbine aero-engine modelling and control problems is presented in the next

section.
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Table 1 – Comparison between different categories of global optimization algorithms

GO Method Advantages Disadvantages

1 Deterministic

Optimization

Guarantee finding the exact

solution (global optimal) with

a given tolerance

• Not working with

incomplete/imperfect

models

• Assuming exact

computations and

indefinitely long run time

2 Stochastic

Optimization

Capability of working with

random variables, objective

functions, and constraints

• Introduce randomness to

search process to

accelerate progress

• Less sensitive to system

errors and noises

3 Metaheuristic

Optimization

Deal with all types of

problems especially real-

world engineering problems

even with

incomplete/imperfect

information

Do not guarantee finding global

optimal solutions in some class

of problems

3. A history of gas turbine aero-engine modelling and control using meta-

heuristic global optimization algorithms

A GTE is the heart of any airplane that provides the propulsive force, thrust, (by pulling

air through an inlet, compressing it, combusting it with fuel, and allowing the exhaust

to expand through a turbine) for flight in response to the pilot command. What the pilot
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usually wants to achieve while moving the thrust lever is to let the engine deliver a

certain percentage of the thrust that is available at the current flight condition [22].

Since thrust itself is not measurable in flight, the relative thrust command given by the

Pilot Lever Angle (PLA) setting must be translated into a command change of a

measured variable. Therefore, the engine controller should be able to translate the

pilot command to other measurable parameters using their sensors and actuators (or

based on a control-oriented model (COM)). In order to design and regulate such a

controller, a simple, fast, and precise COM is required at the first step. Both modelling

and control procedures involve several parameters, gains, and structures that should

be designed and regulated simultaneously. Taking into account the nonlinearity and

switching nature of modelling and controller design approaches, the global

optimization algorithms can be used in the following stages:

� GTE model parameters tuning

� GTE control structure design (CSD)

� GTE controller gain tuning

A historical review of application of MGO algorithms in the above-mentioned fields is

presented in this section.

3.1. Metaheuristic global optimization algorithms in control oriented

model design of gas turbine engines

The emergence of simple models for control reason was in 1952 when Gold and

Rosenzweig estimated the relationship between the engine fuel flow and rotational

speed as a first order transfer function [23]. Then, Powell and Lowrence modified the

previous work in 1957 based on the fact that the response of the turbine torque is

faster than that of the compressor in the case of the sudden increase in the engine
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fuel flow [24]. They also showed that the defined time constant in the transfer functions

is a function of GTE rotational speed [25, 26]. Next step was the research studies of

Fitchie in the UK National Gas Turbine Establishment on the Olympus101 engine. He

showed that the dynamic behaviour of a two-spool GTE can be estimated with two

separate transfer functions, each of them having one zero and two poles [27] where

the poles were the same for both Low Pressure Shaft (LPS) and High Pressure Shaft

(HPS). He also estimated the time constants as a function of partial differential of shaft

torques, fuel flow rate and rotational speed and showed that a pole-zero cancellation

occurred in the LPS transfer function. His conclusion was confirmed later by Staff as

well [28, 29]. In general, subsequent studies were accomplished based on the Fitchie

conclusion [30].

In 2003, Kullikov reviewed the application of block-structure models for the gas turbine

engine modelling procedure [31]. These models consist of a linear dynamic part to

simulate all engine lags and a nonlinear static part to simulate the relationship between

the different engine parameters. The model parameters are usually tuned by the

experimental results. There are four architectures for block-structure models, including

Hammerstein, Wiener, Wiener-Hammerstein, and Hammerstein- Wiener models [32]:

• A Hammerstein model is an approximate expression for systems where

nonlinearity only resulted from the change of direct-current gain with input

amplitude; so, this model cannot depict the aircraft engine operating process

because the engine dynamics distinctly varied with the input amplitude.

• The Wiener model on the other hand shows variations of dynamic behaviour

for different input amplitudes. The Wiener model has a simpler structure than

the Wiener-Hammerstein model, and it requires fewer model parameters to be

computed. Hence, the Wiener model is used to depict engine dynamic
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behaviour varying with operating conditions and is recommended for engine

identification.

• Wiener-Hammerstein and Hammerstein- Wiener models have a relatively large

number of variables and the required data to determine the model parameters

of the superimposed model are hard to produce [33].

Consequently, the Wiener model is the best choice for GTE block-structure modelling.

The schematic of these models is presented in figure 1.

(a)

(b)

(c)

(d)

Figure 1. Block structure model schematics (a) Hammerstein (b) Wiener (c)

Hammerstein- Wiener (d) Wiener-Hammerstein

Lichtsinder and Levy proposed another precise method called Novel Generalized

Describing Function (NGDF) for gas turbine COM development [34]. As shown in

figure 2, the NGDF is based on the error minimization concept and the difference

Nonlinear
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Linear Model

Linear Model
Nonlinear
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Nonlinear
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between the NGDF model and the models proposed by other researchers is that in

NGDF the transfer functions between different inputs and outputs has an incremental

form to enhance the accuracy of the model.

In order to show that this method has the highest accuracy between the different block-

structures modelling approaches, a single spool turbojet engine is modelled in this

paper using different modelling approaches, transfer function described in [29],Wiener

block structure described in [31], and NGDF described in [34]. The engine specification

is shown in figure 3. The results are compared with experimental data obtained from

a ground test to confirm the effectiveness of the NGDF method in GTE modelling for

control purpose.

As shown in figure 4, the NGDF tracks the engine parameters with a very high

accuracy in both steady state and transient operations. More details about the engine

modelling procedure and used equations could be found in [31-35]. In addition,

Andoga et al. did a comprehensive literature survey on the reduced order model

generation procedure for the gas turbine aero-engines in 2008 and with several

simulations showed that the effect of the second order term of the LPS is not negligible

in high bypass turbofan engines [36].

Figure 2. The schematic of NGDF for modelling jet engines [34]
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Figure 3. The schematic and characteristics of the modelled turbojet engine (images

from [37])

(a)
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General characteristics

• Type: Single Spool Turbojet

• Length: 851 mm

• Diameter: 348 mm

• Dry weight: 61.2 kg

Components

• Compressor: 4 stage axial

• Combustors: Annular

• Turbine: Single Stage

Performance

• Maximum thrust: 5.33 kN

• Overall pressure ratio: 6.3:1

• Air mass flow: 8.14 kg/s

• Specific fuel consumption: 1.1 kg/(daN h)

• Thrust-to-weight ratio: 8.9:1
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(b)

Figure 4. Modelling a turbojet engine with different reduced order approaches (a)

Normalized Compressor Pressure Ratio (CPR) tracking (b) Normalized Rotor speed

tracking

All the above-mentioned approaches suffer from the complexity of the parameters

tuning procedure. Trial and error methods, geometrical methods, empirical methods,

and other analytical approaches, were used in this regard. However, none of them

were able to deliver acceptable results from the level of accuracy and running time

point of view.

It was in 1997 that Rodriguez et al. used MGO algorithms for simplification of the

parameters identification procedure in gas turbine aero-engines [38]. They proposed

a Genetic Programming-NARMAX approach firstly to identify a non-linear model for a

GTE. Then, they extended their method to a multi-objective form with the aim of

simultaneously optimizing different measures of the system model [39]. Later on,

Fleming modified the basic Genetic Algorithm (GA) and presented the studGA (in

which a crossover pool was added to genetic algorithm to enhance its convergence

speed) [40-41]. He applied his proposed method in the optimization of a GTE
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performance and showed that his method could practically enhance the efficiency of

the genetic algorithm. Ashlock presented a comprehensive study on evolutionary

computation for modelling and optimization in 2004 [42]. In simple words, he defined

the application of the Evolutionary Algorithms (EA) for modelling real-world systems

as the pseudo code of figure 5.

Generate a population of structures

Repeat

Test the structures for quality

Select structures to reproduce

Produce new variations of selected structures

Replace old structures with new ones

Until Satisfied

End

Figure 5. The fundamental structure of an evolutionary algorithms [42]

In 2007, Cranfield University introduced a Techno-economic and Environmental Risk

Assessment (TERA) model as a multi-disciplinary module for modelling gas turbine

and aircraft performance, which is integrated with a commercial optimizer and provides

a means for cycle studies. The results of the report confirmed that the TERA potential

for aircraft and engine performance modelling and management is bright [43].

In 2012, Tsoutsanis et al. used genetic algorithm for an off-design performance

adaptation approach in the gas turbine performance simulation. They applied their

method to a GE LM2500+ aero-derivative gas turbine operating in Manx Electricity

Authority’s combined cycle power plant on the Isle of Man to confirm its advantages in
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comparison with other adaptation approaches. This is achieved by employing a

compressor map generation method, which introduces coefficients to control the

shape of the maps. The coefficients from the map generation procedure are optimized

by GA in order to match as accurately as possible the targeted measurements of an

engine working at part load conditions [44]. The flowchart of the approach taken by

Tsoutsanis et al. is presented in figure 6.

Figure 6. Flowchart of gas turbine performance adaptation method used in [44]

Celis et al. reported the last progress of the TERA in Cranfield University in 2015. In

their study, the TERA was utilised in conjunction with an in-house optimiser to carry

out aircraft engine cycle optimisation processes to confirm the future potential for

optimising the preliminary design of GTEs and determining optimum as well as

greener aircraft engine cycles [45].

In general, the flowchart of utilizing global optimization algorithms for gas turbine

engine modelling reasons could be summarized as follows:
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I. Select the model structure based on the required level of accuracy, simplicity,

and run time (Block-structure model, Transfer function model, NGDF model,

Thermodynamic model, etc.)

II. Define the objective function to be minimized/maximized as a function of model

parameters (e.g. error (model parameters) = |Simulation results(engine model

parameters)-Experimental/ verified results | )

III. Use the appropriate MGO algorithm to find the optimized/ set of optimized

parameters

IV. Set the optimization algorithm parameters and run the optimization procedure

(e.g. figure 5)

V. Run a decision making procedure to select the best parameters for the model

3.2. Metaheuristic global optimization algorithms in control structure design

of gas turbine engines

As mentioned earlier, since thrust is not measurable directly, the controller should be

able to translate this parameter into other measureable ones based on the position of

the PLA set by the pilot at any instantaneous time. Different parameters are used in

the literature and industrial reports for this purpose. General Electric (GE) used the

first industrial control algorithm for the gas turbine engine by the engine rotational

speed sensor and a gain scheduling strategy as shown in figure 7 [46]. Since there is

a nonlinear relationship between the rotational speed and the engine thrust, the

performance curves of the engine are used for tuning of the controller and for

converting the pilot demanded thrust to the engine rotational speed in different

operating conditions. In the strategy proposed by GE, the compressor discharge
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pressure (CDP) was used as limiting factor to satisfy the physical limitation control

modes [47].

Figure 7. Schematic of gas turbine control algorithm used by GE based on engine

rotational speed [46]

The other control strategy used by Rolls Royce and also Pratt and Whitney (P & W)

was using the Engine Pressure Ratio (EPR) to calculate the appropriate fuel flow for

the engine at different PLA positions [46]. The structure of the algorithm is shown in

figure 8. The engine rotational speed was used as limiting factor to satisfy the physical

limitation control modes in this approach. The relationship between the EPR and the

thrust is less nonlinear than those of rotational speed. But on the other hand, the

pressure sensor responses are usually noisy. The pros and cons of these algorithms

as well as a comprehensive history of different control strategies for gas turbine aero-

engines are discussed in [48-50].
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Figure 8. Schematic of gas turbine control algorithm based on engine pressure ratio

[46]

The above-mentioned industrial algorithms were easy to implement and

straightforward. However, their main issue was to deal with physical limitation control

modes. In other words, using such simple control algorithms could not guarantee the

satisfaction of all engine control models (steady state control mode, transient control

mode, and physical limitations control mode) simultaneously. Consequently, the idea

of Min-Max control algorithms was proposed and widely used by the industry. The

main idea of Min-Max controller is to have separate control loops; a steady-state

control loop, a transient-control loop, and some physical limitation control loops (e.g.

to limit the maximum acceleration, deceleration, turbine inlet temperature, engine

shafts rotational speeds, etc.). At any instantaneous time, a pre-defined Min-Max

control strategy selects the appropriate active control loop (the winner loop) for the

engine. This guarantees satisfying all engine control modes simultaneously. This

method is widely used by well-known manufacturers (e.g. Rolls-Royce, MTU Aero

Engines, Volvo Aero Corporation, Fiat Avio,Techspace Aero S.A, Lufthansa Technik

AG, Aerospatiale, Chalmers University of Technology AB, National Technical

University of Athens, Technische Universität München, Universität Stuttgart,

Université Catholique de Louvain [49, 51]). The schematic of a simple Min-Max control

structure for a turbojet engine is shown in figure 9. It contains a steady state control

loop which normally is a gain-scheduling controller to provide the minimum required

fuel flow to keep the engine in the current steady state condition. There is also a

transient control loop which is the winner of the Min-Max strategy between the pilot

command and the physical limitations of the engine to satisfy all engine control modes
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simultaneously. For instance, for the Min-Max controller of figure 9, this strategy could

be defined as follow:

f-Transient f-dec f-PLA f-acc f-Nmax

f-Total f-Steady f-Transient

W =Min (Min (Max (W , W ), W ), W )

W W W= +
(1)

Where W is the value of the fuel flow of different loops shown in the figure 9.

More control loops could be added to the min-max control structure and strategy for

different purpose like control of the second spool and fan speed in turbofan engines

etc. The main advantage of the Min-Max control algorithms is that they are able to

consider all engine control modes simultaneously. However, by increasing the number

of control loops, the design and tuning procedure will be more and more complex and

time consuming.

Figure 9. Min-Max control strategy for a single spool turbojet engine

The studies on the design and control structure development for gas turbines are still

ongoing in academia and industry. Finding the optimum control structure is a

challenging, high level, demanding issue with many parameters to set. This field has

a high potential for MGO algorithms application because of its nonlinear and switching
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nature and having the mixture of discrete and continuous parameters. However, there

are not a significant number of studies addressing the MGO application in gas turbines

CSD. This is attributed to the complicated nature of the objective function formulation

in the optimization tool. In one of these studies, Thompson et al. discussed the

implementation benefits and penalties of multi-objective optimisation approach

application to a military gas turbine engine control system architecture design [52].

They applied multidisciplinary multi-objective optimization to the design of a distributed

gas turbine engine controller architecture for an Advanced Short Take Off/Vertical

Landing (ASTOVL) aircraft by introducing the idea of relative ranking of architectures

into “good' or “bad' categories. They also concluded that this could be considered as

fundamental to architecture evaluation and can also be used to highlight good design

characteristics which are to be encouraged and also bad design characteristics which

are to be discouraged. Moreover, they proposed for the next steps:

• To address addition of further objectives within the optimisation process;

• To do sensitivity analysis;

• To enhance visualisation techniques to extract good and bad design practices.

In addition, Fleming and Purshouse reviewed the EAs applications in control systems

in 2002 [53] and concluded that:

• The continued progress in computer technology will permit further realisation of

the EA methodology's potential.

• The combination of an EA search and optimisation method with complementary

techniques to create hybrid algorithms is seen as vital in order to create a fully

effective tool.

A comprehensive discussion on the obstacles of using MGO in real-world engineering

problems from engineering optimization point of view is addressed in [54].
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Other implementation issues like:

• The capability of the optimization tool in dealing with both discrete and

continuous spaces simultaneously

• The convergence guarantee in the presence of different spaces

• The smart definition of the objective function to cover all criteria

are discussed recently by Famularo et al. [55].

However, taking the current ongoing projects dealing with development of GO

approaches for mixed-Integer problems (Imperial College [56], ETH [57], etc. [58, 59])

into account, it is envisaged that application of these methods in gas turbine CSD

would be a wide field of study in the near future.

3.3. Meta-heuristic global optimization algorithms in control gain tuning of gas

turbine engines

The most challenging issue in controller design for a GTE, is to tune the gains of

control loops simultaneously in order to get an optimal performance for the designed

controller and the GTE as well. The GTE models as well as their control strategies are

nonlinear, switching systems with huge number of parameters. Consequently, tuning

the parameters is not affordable using analytical methods because of the

computational load and trapping in local optimum issues. Therefore, the application of

non-analytical optimization algorithms in a GTE gain tuning procedure is an attractive

topic for the researchers in the field.

The first applications were reported by Fleming and his research group in the

University of Sheffield in 1996 [60] in which a multi-objective genetic algorithm was

used to extract a Pareto front set of solution for multivariable control of a gas turbine

engine. Later on, they published two other research studies on tuning of decentralised
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PI/PID controllers for gas turbine engine control purposes [61-62] where they showed

the ability and effectiveness of the global optimization approaches in industrial control

applications.

During the last two decades several interesting studies on application of MGO for gas

turbine engine controller gain tuning were done by the researchers in different ways.

Decoupling the control loops [63] multivariable control [64] mean square error (MSE)

objective function [65] safety considerations [66], Multi Criteria Decision Making

(MCDM) [67], and centralized and decentralized control loops gain tuning [68, 4] are

some of the most important approaches taken by the researchers in this regard.

Generally, the implemented procedure in all of them could be described as follows:

I. Creation of the engine model (as discussed in chapter 3.1). This model usually

is a reduced-order model in order to be fast and also precise enough to be used

in iterative optimization procedures

II. Control structure design (as discussed in chapter 3.2). This structure is

designed based on the control modes that needs to be satisfied simultaneously

III. Definition of the gain tuning procedure as an engineering optimization problem.

The pre-defined objective function can focus on different aspects (e.g. response

time, fuel consumption, manoeuvrability, safety consideration, etc.)

a. The objective function could be a combination of different criteria as well.

It could be defined in the form of single objective with weighted indices

or in the form of a vector with different elements for multi-objective

optimization purpose. Table 2 shows a sample of a single-objective (2)

and a multi-objective (3) function for a turbojet engine controller gain

tuning problem
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IV. Adding other constraints and limitations as penalty functions (�� in equations 1
and 2) or new indices to the objective function

V. Choosing the optimization algorithm to deal with the defined problem and

setting the algorithm parameters

VI. Running optimization and getting the results (set or sets of optimized gains)

The flowchart of global optimization application in gas turbine engine controller gains

tuning is shown in figure 10. This research area is still interesting and many

researchers are discussing different aspects of this topic.

Table 2 – Objective function samples for controller gain tuning

[67-68] Objective Functions

Single-

Objective
�(���������� �����) = 1�� + ����� ����� + ����������� � + ��� �̇���̇����� × ������������������������� ��� +����� (2)

Multi-

Objective �(����������	�����) =
⎣⎢⎢
⎢⎢⎡

���� + �����������
� �̇���̇����� × ������������������������� ��⎦⎥⎥

⎥⎥⎤+ ����������		(3)

The above table shows a sample of a single-objective and a multi-objective function

used for turbojet engine controller tuning problem in [59] and [60]. Where:

• �̇� The instantaneous total fuel flow to the combustion chamber;
• {�̇�}��� Maximum allowable fuel flow in any time step;
• ���_���� Simulation time;
• ���������� Time step;
• � Time index;
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• ����, ���� Acceleration and deceleration times;
• ��Weighting coefficients (set by the designer respect to the importance
of objective function indices. It is obvious that ∑�� = 1);

• ��Weighting coefficients for penalty functions (set by the designer

respect to the importance of penalty functions. It is obvious that ∑�� =
1);

• �� Penalty functions (e.g. over speed, over temperature, etc.);
The objective function includes two performance indices. The performance indices are

normalized first and then weighted according to their importance by coefficients ��. In
addition, ����, ���� are the acceleration and deceleration times, which the engine

requires to follow the PLA command (settling times with e.g. ±2% error). Therefore,

these functions consider the engine response time and fuel consumption

simultaneously.

1

�COM development and CSD

�(See chapter 3.1 and 3.2)

2

�Control Strategy Design (with initial gains)

�(See chapter 3.2)

3

�Definition on the gain tuning procedure as an

engineering optimization problem (see table 1):

�� ����������	����� = ���������	��������
4

�Definition of penalty functions, constraints, and

objective function indices weights

5

�Setting the optimization parameters and applying the

algorithm to the problem

6

�Checking the satisfactory of the optimized controller

with simulation

MGO Algorithm

Contribution (see figure 5)
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Figure 10 – application of global optimization algorithms in gas turbine engines

controller gain tuning

4. The research challenges for application of meta-heuristic global optimization

algorithms in gas turbine engine modelling and control

In addressing high-level research requirements for the MGO application in GTEs, one

should return to the question as to what are the new aircraft engine modelling and

controller design challenges and how MGO approaches could deal with them.

• It is evident that one of the biggest challenges is to cope with interminable

increasing number of parameters in new designs of aircraft engines (e.g. Ultra-

High Bypass Ratio (UHBR), open rotors, Hybrid propulsion, etc.). The new

designs of aircraft engines are increasingly complex and many parameters

should be designed and tuned simultaneously for the optimal performance of

the engine and the aircraft. Moreover, the new advances in control algorithms

and gas turbine engine and accessories manufacturing process make matters

worse since the optimization running time increases with increasing the number

of the parameters noticeably.

• A second major issue is the reliability and repeatability of the MGO methods. A

proof of convergence to the global optima (not trapping in local ones) is still an

unsolved issue in MGO techniques. This does not make for an easy transition

to a practical MGO based approach from existing largely conventional control

systems implemented on ECUs. This is actually indicative of the non-analytic

optimization algorithm being uncertain.

In general, a good compromised MGO based approach is needed to refine any design

before committing it to hardware. This is to ensure that the benefits of a system

generate sufficient advantageous margin, particularly in terms of improvements in
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performance and safety. The recent and current efforts to cope with the above-

mentioned challenges and to smooth the implementation direction of MGO algorithms

in gas turbine engine applications could be categorized in two main fields:

4.1. New or modified optimization algorithms based on advanced

computational concepts

Among the numerous optimization techniques proposed for different applications, only

some of them are capable enough to offer reliable results in the flow of continuously

new techniques. The most famous ones are Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO), and Bee Colony Optimization

(BCO). All of them are nature-inspired algorithms and are very successful in different

applications. However, by increasing the number of parameters, the efficiency (static

and dynamic convergence) and computational affordability of MGOs will drop

noticeably [69-70]. Therefore, computer scientists are working on the principles of

these methods in order to enhance the convergence rate, run time etc.

Application of the linkage learning methods in EAs is one of these newly established

modifications in which the linkage concept is used to apply to the evolutionary

optimization algorithms operators to work on an optimal Building Blocks (BBs). The

basic idea was proposed by Harik on Genetic Algorithm as a combination of the coding

scheme and an exchange crossover operator to create an evolvable genotypic

structure [73]. This method (and methods like this) is currently under consideration by

computer researchers [71-72]. It has a great potential for application in huge size real-

world engineering problems and especially in advanced gas turbine engine problems.
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The linkage learning techniques use the ability to learn functional dependency

between genes to deduces the probability that sets of functional dependent values are

split up when crossover is performed [74].

In order to confirm the ability of the linkage learning method in enhancement of the

global optimization behaviour, an illustrative case study simulation is presented in this

section and the results are compared with those of the previous published studies.

For this purpose, the controller gains of a turbojet engine modelled in figures 3 and 4

will be tuned using Competent Genetic Algorithm (CGA), which is a version of genetic

algorithm combined with a linkage-learning algorithm to find the linkage groups and

organize the building blocks in the optimization approach.

The engine schematic and characteristics are presented in figure 3. A simple Min-Max

control algorithm is designed for the engine based on steady-state control mode,

transient control mode, and physical limitation control modes as shown in figure 11.

The modelling and control procedure is confirmed and validated in [3, 4, 35, and 68].

The optimization algorithm is to tune the four control loop gains in order to minimize

the objective function of equation 2 defined in Table 1.

This controller is tuned with genetic algorithm in [3], with particle swarm optimization

in [35], and with Invasive weed optimization in [68]. Now, the CGA is applied to the

model and the results are compared with other methods from different points of view.

Tomake the comparison fair, the objective functions, initial population, population size,

number of iterations, stopping criteria and other boundary and initial conditions are set

the same for all algorithms. In addition, the presented results are the average of 15

runs to deal with repeatability issues of MGO algorithms.



31

Figure 11 – The Min-Max control strategy for the turbojet engine

The working mechanism of the CGA is to enhance the GA performance by the

processing of the Building Blocks (BBs) of the problem that are groups of interacting

solution elements, each of which constitute a partial solution to the problem [75]. A

group of highly linked locus or variables that forms a BB is called a linkage group. To

solve the linkage-learning problem, linkage groups must be detected. Linkage groups

form an interaction model of the problem that describes the interactions between

variables of the problem. Once linkage groups are detected accurately, the

optimization algorithm can perform the mixing task efficiently and accurately without

BB disruption leading to appropriate convergence [76]. This procedure avoids doing

unnecessary cross over between the parameters which do not belong to a different

linkage group.

Figures 12 and 13 show the results of static and dynamic convergence of the used

algorithms respectively. As shown in figure 12, the CGA overcomes the GA and IWO

from the static convergence point of view (reached to the final solution in less
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generations). Although PSO has almost the same static convergence rate as the CGA,

the CGA merits are the higher reliability and repeatability in comparison with PSO

because of working with BBs and Dependency Structure Matrix (DSM). Figure 13 also

shows that the CGA is better than GA and PSO in dynamic convergence index and

performs almost the same with IWO in this index.

The most important point about the CGA is shown in table 3, which compares the

computational efforts of all algorithms. It can be seen that the CGA exceeds the IWO,

GA, and PSO from the required computational effort point of view. Therefore, CGA

has the potential to deal with the new advanced engine designs as it will be able to

tune many more parameters with affordable computational run time. In other words,

adding the linkage learning ability to the GA (and other EAs) enables it to afford more

complex and huge size problems and to cope with the first challenge mentioned earlier

(the computational capability in huge problems).

Figure 12 – Static convergence comparison of optimization algorithms for Min-Max

controller gain tuning of the turbojet engine (average of 15 runs)
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Figure 13 – Dynamic convergence comparison of optimization algorithms for Min-

Max controller gain tuning of the turbojet engine (average of 15 runs)

Table 3 – Computational effort comparison of optimization algorithms for Min-Max

controller gain tuning of the turbojet engine (average of 15 runs)

GA PSO IWO CGA

Simulation time (min : sec) 23:34 16:12 33:15 13:10

4.2. Combination of gradient-based and non-gradient based methods

The other approach for dealing with the research challenges of MGO techniques in

GTE applications is to work on developing new types of algorithms by combination of

MGO approaches and gradient-based methods [77] usually called “Hybrid Algorithm”

as discussed in [53-54]. A hybrid algorithm is an algorithm that combines two or more

other algorithms that solve the same problem, either choosing one (depending on the

data), or switching between them over the course of the algorithm. This is generally
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done to combine desired features of each, so that the overall algorithm is better than

the individual components [78-79].

By using one of these recent methods, a multi-objective optimization problem can be

converted to a single objective optimization problem to decrease the running time

while keeping the advantages of Pareto front results. The aggregative gradient-based

method proposed by Izui et al. in 2014 [80] is a combination of genetic algorithm and

an aggregative gradient-based method dealing with a weighting method to obtain

Pareto-optimal solutions. This algorithm determines the adaptive weighting

coefficients for each point with solving a linear programming problem [80-81]. After

linear approximation of the converted single objective problem, the design variables

are updated by a linear programming technique. Moreover, since a part of this

algorithm is analytic, the reliability and repeatability of the algorithm will be enhanced

noticeably; and it would address the second mentioned challenge (reliability and

repeatability) as well.

To investigate the ability of the hybrid methods to deal with new challenges of the gas

turbine engine modelling and control designs, the turbojet engine controller discussed

in the previous section is tuned using aggregative gradient-based method in a multi-

objective feature using the objective function of the equation 3 In table 2. The controller

with this vector objective function is tuned by Multi-objective particle swarm

optimization (MOPSO) in [35], by Multi-objective invasive weed optimization (MOIWO)

in [67] and with Multi-objective genetic algorithm (MOGA) in [3]. The results of applying

aggregative gradient-based method to the problem is presented in figure 14 and table

3. Again, the advantage of saving computational effort is clear from table 4. Moreover,

the other relative merits of hybrid optimization algorithms is their reliability and
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repeatability since they use analytical steps as well. It enables them to deal with both

challenges introduced earlier.

Figure 14 – Pareto front comparison of optimization algorithms for multi-objective

Min-Max controller gain tuning of the turbojet engine

Table 4 – Computational effort comparison of optimization algorithms for multi-

objective Min-Max controller gain tuning of the turbojet engine (average of 15 runs)

MOGA MOPSO MOIWO MO- aggregative gradient-based

Simulation time (min : sec) 32:14 24:20 48:14 16:10

5. Exploring the future of meta-heuristic global optimization algorithms in gas

turbine engine applications

In order to explore the future of the MGO methods in GTE applications it is worthy to

summarize the current ongoing progresses in the GTE field. Main progresses in

modelling and control of gas turbine engines could be explained as follows:

• NewGTEmodels [82]: the new, advanced models for gas turbines include more

complicated details and parameters than previous ones. The more complicated
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the model the more parameters to deal with by designers. As mentioned before,

the performance of the global optimization algorithms drops noticeably with

increasing the number of the parameters. So, the optimization algorithms

should be enhanced in parallel with these advancements in modelling

approaches. For instance, Mitsubishi reported that the combustion temperature

of power generation plants is increasing at a rate of approximately 20 degC per

year. There are some technical issues in this regard like reducing NOx

emissions and the need for higher strength materials. This matter causes

compromising effects on the objective function definition of the engineering

problems [83-85].

• New research topics in control [86-88]: CSD, and controller gain tuning with

new research topics are entering in a new era in which advanced concepts like

consensusability [89], formationability [90] and computability [91] have

emerged beyond the scope of the traditional plant, sensor, and actuator

structure. Therefore, new objectives and concerns in the future controllers

should be considered which are clearly more sophisticated and demanding than

the current ones.

It could be summarized that the enhanced optimization algorithms using advanced

computational methods and the hybrid optimization algorithms using gradient based

feature could deal with the new challenges in aircraft engine design, modelling and

controller optimization. Table 5 summarizes these challenges and potential solution.

Table 5 – Future challenges of MGO applications in GTE modelling and control

problems with proposed solutions
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Challenge Caused by Potential solution Evidence

1 Unaffordable computational

time respect to the huge

number of parameters to deal

with

Complex designs

of new gas

turbine engines

(e.g. NEA, MEA,

UHBR engines,

etc.)

Enhanced

optimization

algorithms (e.g.

Stud GA,

Competence GA,

Linkage learning,

etc.)

[38], [71-73],

Figure 12, 13 ,

Table 3

2 Finding global optimum for

new challenging objective

functions (repeatability and

reliability)

New systems and

components in

modern aircraft

engines

Hybrid

optimization

algorithms

[77-81], Figure

14, Table 4

6. CONCLUSIONS

MGO algorithms for GTE modelling and controller design and tuning procedures over

the past two decades were examined. Initially, the mathematical principles and

benefits of GO algorithms were expounded with the classification of these algorithms

into three main categories where their pros and cons were explained. Several

proposed applications of MGO in GTE problems dating back to 1996 were examined.

Three application classes were defined to help to put historical concepts into context.

A systematic examination of the critical areas in GTE modelling, control structure

design, and controller tuning successfully identified the remaining research challenges

for MGO algorithms in new advanced GTEs applications. These remaining research

challenges include the following:

• To reduce the considerable computational efforts caused by many more

parameters in the new GTE designs and controllers;
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• To gain a better reliability and repeatability of the MGOs in the presence of

many parameters of the new engine designs.

If these research challenges are overcome, it will then be possible to establish a

generic framework for MGO applications in GTE design and control problems. The

potential solutions for the identified challenges are proposed:

• To use advanced computational methods (e.g. linkage learning techniques) to

enhance the efficiency of the MGOs and to increase their affordability for

dealing with huge problems;

• To use hybrid optimization algorithms using both meta-heuristic and gradient-

based algorithms to enhance the reliability of the algorithms to cope with more

complex objective functions.

The effectiveness of both solutions are confirmed by simulation results and analysis.

Finally, it will allow the GTE modelling and control problems to be understood in order

to adopt a robust and enhanced MGOs that gives assurances of optimal results for all

new advancements of GTEs.
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