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Abstract 

Abundant wastes from the food and drink supply chain are valuable and infrequently 

used as anaerobic digestion (AD) substrates. This study quantifies their biomethane 

potential to contribute to solid waste reduction and energy production. 29 organic 

materials were evaluated: energy crops (6), pre-treated agricultural by-products (5), 

livestock slurries (3), agro-industrial wastes (7), fruit and vegetable wastes (4) and co-

digestion mixtures of chicken litter (CL) and fruit wastes (4). Results showed highest 

biogas yields for rendered fat washings (1379 ± 125 mL/g VSfeedstock), fish waste (898 ± 

107 mL/g VSfeedstock) and potato waste (768 ± 27 mL/g VSfeedstock). Synergistic benefits of 

co-digestion were evidenced. CL (20%) with avocado pulp (80%) led to 84% higher 

biogas than expected from contribution of single substrates. 
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Agricultural by-products; energy crops; co-digestion; livestock manure; anaerobic 

digestion  

1. Introduction 

ACCEPTED MANUSCRIPT

mailto:y.bajonfernandez@cranfield.ac.uk
li2106
Text Box
Bioresource Technology Reports, Volume 5, February 2019, pp. 243-250
DOI:10.1016/j.biteb.2018.11.004


li2106
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.biteb.2018.11.004. Please refer to any applicable publisher terms of use.





AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

2 

 

In 2015 the world energy supply was 13,647 million tonnes of oil equivalent and it is 

predicted to continue increasing due to population growth and advancement of 

developing countries (IEA, 2017a). However, concern over reserves and over their 

environmental impact is driving developments on renewable sources of energy.  

Renewable energy currently accounts for 13.4% of the total world production while 

petroleum and other liquids, natural gas and coal comprise the majority (IEA, 2017b). 

The United Kingdom (UK) used 17,296 thousand tonnes of oil equivalent of renewable 

fuels in 2016 which accounted for 12% of the country’s total energy consumption (UK 

Department for Business, 2017). The UK continues to progress in terms of using 

renewable energy sources and have already exceeded their Renewable Energy 

Directive target (UK Department for Business, 2017). Of the alternative options, 

anaerobic digestion (AD) plays a key role: it recovers valuable products, such as 

nutrients, reduces carbon dioxide (CO2) emissions, and yields renewable energy.  

In the past, AD plants typically used sewage sludge to yield biogas but in more recent 

years the AD industry has enhanced gas production by employing energy crops and 

food wastes (FW) as a feedstock . Currently, there are over 300 digesters in the UK 

operating with feedstocks other than sewage sludge (USDA, 2018) and biogas 

generated in ADs treating substrates other than sewage sludge is predominant in 

several European countries (EurObserv’er, 2017).   

Despite the increase in biogas production from alternative substrates, there is a drive 

to identify alternative feedstocks to enhance renewable energy production, either by 

mono digestion of single waste streams or by co-digesting with feedstocks such as FW 

and sewage sludge (Chiu and Lo, 2016). A promising alternative source is the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

3 

 

agricultural sector, which is responsible for one of the largest waste streams; 

generating natural wastes such as manure and arable by-products that could be used 

for renewable energy generation by AD. To illustrate, nearly 64 million tonnes of fish 

waste is generated annually worldwide, most of which is underutilised as low-value 

animal feed (Nges et al., 2012). Avocado processing generates ca. 18,144 tonnes of 

avocado waste annually for Mexico alone (Clarke et al., 2008; Siddiq et al., 2012). Both 

in the UK and the United States (US) chickens are the most farmed livestock followed 

by beef cattle and dairy cows (USDA, 2018). All of which constitute examples of waste 

sources that, if treated by AD, could significantly reduce disposal costs and the amount 

of uncontrolled methane (CH4) being released to the atmosphere, with concomitant 

increases in renewable energy production. There are previous studies available 

assessing the biodegradability of energy crops and agricultural by-products (Table 1). 

However, a single study that allows comparison of methane yields and formation 

kinetics for a wide range of substrates, performed with the same laboratory procedure, 

is still lacking.  

This study investigates the benefits of anaerobically digesting a wide variety of energy 

crops and agricultural by-products, as single substrates or as co-digestion. 29 different 

organic materials were selected and its biogas formation potential (yield and kinetics) 

evaluated: energy crops (6), pre-treated agricultural by-products (5), livestock slurries 

(3), agro-industrial wastes (7), fruit and vegetable wastes (4) and co-digestion mixtures 

of chicken litter (CL) and fruit wastes (4). 

2. Materials and methods  

2.1. Feedstock and inoculum 
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The inoculum used in all tests was the effluent from a FW AD plant located in 

Southwest England and treating 80,000 tonnes of FW per year. All substrates were 

collected from May to July 2017. All energy crops obtained were harvested in their 

milky stage, manually cut to approximately 2 cm and stored at 4°C until the moment 

of use. Grass was collected in its young leaf stage. Straw was collected before silage. 

Untreated wheat straw was manually cut to approximately 2 cm while pre-treated 

wheat straw was steam treated at 4, 6, 8 and 10 bar with temperatures ranging from 

140°C (4 bar) to 180°C (10 bar) using a continuous pressurised refiner (Andritz Sprout-

Bauer, Denmark) and then kept frozen until used. CL contained small amounts of 

bedding (consisting of sand, wood chips and straw bales) and cracked egg shells. The 

young chick litter, cow manure, onion waste and potato waste were all obtained from 

the same farm (Table 2). The young chick litter was collected from the tray beneath 

the cages and contained a small amount of feed. Cow manure was stored outside on 

the farm and contained wood chips and residual onion from their diet and a small 

amount of straw from the bedding. Onion waste consisted of peels, onion juice and 

damaged onions which are used to feed cattle on the farm along with potato waste. 

Potato waste, originating from potato processing, was stored outdoors while on site 

and was contaminated with small amounts of onion waste. Onion waste and potato 

waste were not further processed before being anaerobically digested. Cheese whey 

originated from blue cheese production. The spent grain was collected from open 

containers located outside the brewery and waste yeast was collected from a 

refrigerated, air tight container. Sugar beet tops were processed with a meat mincer 

to a particle size below 3 mm.  All substrates were stored at 4°C since collection until 

use, with the exception of wheat straw that was frozen. The banana peels (BP) used in 
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the batch tests were fully ripe and some were flecked with brown.  BP were manually 

cut into approximately 1.5 cm2. Fresh potatoes were peeled manually and the peels 

used for anaerobic digestion without further processing. Avocado seeds were tested 

for single substrate digestion experiments after being processed in a meat mincer to a 

particle size bellow 3 mm.  

Waste over-ripe bananas were manually separated from the flesh. BPs, whole bananas 

(WB) and avocados pulp were processed (< 3mm particle size) through a meat mincer 

to homogenize the substrates before preparing the co-digestion blends on wet weight 

basis of 50:50 BP with CL (50:50-BP:CL), 50:50 WB with CL (50:50-WB:CL), 80:20 

avocado pulp with CL (80:20-A:CL) and 50:50 avocado pulp with CL (50:50-A:CL) which 

were then stored at 4°C until further use. 

2.2. Batch digestion experiments 

Biomethane potential tests were conducted in 1 litre High-density polyethylene reactor 

bottles (Anaero Technology, Cambridge, UK) with a 700 mL working volume. The 

reactors were submerged in a water bath and maintained at 38°C in order to operate 

at mesophilic conditions. An inoculum to substrate VS ratio of 4:1 was used for all tests 

except soya (6:1), rendered fat washings (6:1) and CL (8:1). Inoculum was diluted for 

the rendered fat washings and cheese whey experiments (Table 2). BMP equipment 

(Anaero Technology, Cambridge, UK) normalised gas flow to standard temperature and 

pressure (STP) conditions (273°K and 1013.25 kPa). All reactors were continuously 

stirred at 45 rpm by a paddle mixer. A triplicate of inoculum without any feedstock was 

used in each set of tests as a control to determine the baseline gas production per 

gram of inoculum VS. All feedstocks were tested in triplicate except for: rye (whole-
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crop), soya (whole-crop), and untreated and pre-treated wheat straw which were 

performed in duplicate due to insufficient sample.  Sampling on site was performed 

once for each substrate, with sub-samples of the collected feedstock used for test 

replication.  

2.3. Analytical methods  

All substrates were analysed for total solids (TS) and volatile solids (VS) according to the 

American Public Health Association (2005). A 1-L Tedlar gas bag was connected to the 

discharge point of the gas flow meter. Biogas produced in the batch experiments was 

collected for the first 15 days and composition (CH4) was analysed once using a 

Geotech BIOGAS 5000 gas monitor. 

Biogas yield expressed in mL/g VS added was calculated as the cumulative volume of 

biogas produced per g of VS added to the reactor then subtracting the average biogas 

yield obtained from the triplicate control reactors based on inoculum VS. The 

termination criterion for ultimate biogas yield was when daily biogas production was 

less than 5%. The longest time it took for a substrate to reach less than 5% daily biogas 

production was 20 days. All substrates yields are reported to 20 days. 

2.3.1. Kinetic study 

Lag phase (λ) was estimated using the modified Gompertz equation (Ghatak et al., 

2014) fitted to experimental values and applying the Microsoft Excel Solver tool by 

performing a non-linear least-square regression analysis (3-1). 

 (Eq. 1) 
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Where, P is the cumulative biogas yield for a given time (mL/g VSfeedstock); Pmax is the 

biogas production potential (mL/g VSfeedstock); Rmax is the ultimate biogas production 

rate (mL/g VSfeedstock/d); λ is the lag phase (d); t is time (d) and e is a mathematical 

constant, exp (1), (e=2.178282). The Gompertz equation was applied as it is commonly 

reported to provide the highest correlation value for simulating cumulative biogas 

production in batch digestion as compared to the first order kinetic model. 

Analysis of variance (ANOVA) was used to determine statistical significance with a 

threshold p-value of 0.05. 

3. Results  

3.1. Biomethane potential tests 

3.1.1. Characterisation of inoculum and substrates 

The TS and VS of all substrates and inoculum tested in this study are shown in Table 2. 

Due to the wide range of substrates tested, the VS content of all substrates ranged 

from 0.2 to 69%, with rendered fat washings being the lowest and pre-treated straw at 

6 bar the highest. The inoculum used in all tests had an average TS and VS content of 

4.75±0.9% and 3.09±1.0%, respectively. 

3.1.2. Digestion performance: Biogas potential and kinetics 

Biogas yield, CH4 yield and CH4 content of all substrates are shown in Table 3. Lag phase 

for each experiment calculated with Gompertz equation are also reported.  

a. Energy crops 

Digestion of grass obtained the highest biogas yield (622±127 mL/g VSfeedstock) within 

the energy crops tested, achieving its ultimate biogas yield in around 8 days (Figure 1). 

For ryegrass, triticale, rye, wheat and soya, the cumulative biogas yields were 481±34, 
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510±18, 432±19, 404±38 and 594±31 mL/g VSfeedstock, respectively. However, the CH4 

yield of soya was the greatest compared to all other energy crops tested (376±19 mL/g 

VSfeedstock). The CH4 yields of the remaining energy crops varied between 283 to 359 

mL/g VSfeedstock (Table 3). It was observed that grass was the only energy crop to have a 

calculated lag phase of 0 days while triticale had the longest compared to all substrates 

tested, 6.8 days (Table 3). 

b. Pre-treated straw 

All pre-treated straw samples showed a similar biogas production rate on days 1 to 3 

(Figure 1). However, the untreated straw had a longer lag period (4.9 days) in 

comparison to all pre-treated straw (4 bar: 3.1, 6 bar: 2.0, 8 bar: 3.0 and 10 bar: 2.9 

days) (Table 3). The biogas yields for untreated straw, pre-treated straw at 4, 6, 8 and 

10 bar were 326±22, 441±42, 313±17, 426±7 and 356±11 mL/g VSfeedstock, respectively. 

Before day 13 all substrates had produced approximately 80% of their ultimate 

cumulative biogas yield. It was observed that straw pre-treated at 4 bar had the 

longest lag phase (3.1 days) compared to other pre-treated samples but resulted in the 

highest CH4 yield (271±26 mL/g VSfeedstock). In comparison, straw pre-treated at 6 bar 

had the shortest lag phase (2.0 days) but generated the lowest CH4 yield (198±11 mL/g 

VSfeedstock). The CH4 content of all straw digested ranged from 60.4 to 63.2% (Table 3). 

c. Livestock slurries 

The biogas yields of CL, chick litter and cow manure were 307±24, 371±23 and 123±32 

mL/g VSfeedstock, respectively. By day 9, chick litter and CL had produced more than 

twice the amount of biogas that cow manure produced during the 20-day test duration 

(Figure 1). CH4 content for all livestock substrates was similar (59.9, 61.8 and 61.6% for 

CL, chick litter and cow manure, respectively) (Table 3). 
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d.  Agro-industrial waste 

Rendered fat washings experienced a lag phase of 5.3 days but had a significantly 

higher cumulative biogas yield (1,379±125 mL/g VSfeedstock) in comparison to all other 

substrates tested. Its yield was ca. 54% more than the next highest yielding substrate, 

fish waste (898±107 mL/g VSfeedstock). Similarly, cheese whey generated a biogas yield of 

818±10 mL/g VSfeedstock. Comparing the two brewery wastes, spent grain generated a 

higher biogas yield (644±42 mL/g VSfeedstock) than waste yeast (412±33 mL/g VSfeedstock) 

which reached its full biogas potential by day 6. Sugar beet tops produced 95% of its 

total biogas potential by day 5, earlier than all other agro-industrial substrates tested 

(Figure 1). A lag phase was observed for potato waste until day 6 and a biogas yield of 

768±27 mL/g VSfeedstock was recorded. CH4 content of fish waste, potato waste, sugar 

beet tops, whey, spent grain and waste yeast was 60.7, 51.7, 65.5, 43.9, 60.5 and 

53.3%, respectively. The CH4 content of whey was the lowest out of all substrates 

tested although its CH4 yield was 359±4 mL/g VSfeedstock. 

e. Fruit and vegetable waste 

 

The avocado seed reached its ultimate biogas potential much earlier than potato peels 

and banana peels, producing 90% of its total biogas potential by day 7 (Figure 1). 

Biogas yields (mL/g VSfeedstock) were 568±17, 633±7, 474±23 and 576±15 for BPs, potato 

peels, avocado seed and onion waste, respectively. Potato peels exhibited a shorter lag 

phase in comparison to potato waste (3.7 and 6.2 days, respectively) but generated a 

lower CH4 yield (331±3 mL/g VSfeedstock). Onion waste performed the highest in terms of 

CH4 content, yielding 62.5% and after a lag phase of 6.5 days (Table 3). 

f. Co-digestion 
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Biogas yields of 80:20-A:CL, 50:50-A:CL, 50:50-BP:CL and 50:50-WB:CL were 811±19, 

602±94, 425±16 and 625±3 mL/g VSfeedstock, respectively (Table 3). 80:20-A:CL and 

50:50-WB:CL produced the highest CH4 yields of all co-digested substrates (517±13 and 

422±46 mL/g VSfeedstock, respectively). 50:50-WB:CL and 50:50-BP:CL exhibited similar 

initial (2.2 and 1.9 days, respectively) before producing 95% of their ultimate biogas 

potential before day 5. Both avocado mixtures showed a steady production of 

cumulative biogas during the 20-day test. CH4 content of all co-digested mixtures 

ranged from 63.8 to 67.5%. 

4. Discussion  

a. Energy crops 

Energy crops are recognised for providing substantial CH4 yields in contrast to sewage 

sludge or livestock slurries. Many AD plants in the UK operate with one energy crop as 

a feedstock; commonly maize, whole-crop cereals and grass silage. In general, energy 

crops have a recalcitrant structure, with high contents of lignin, cellulose and 

hemicellulose (Croce et al., 2016; Theuretzbacher et al., 2015). Lignin content covers 

the hemicellulose and cellulose layers preventing contact from enzymes, consequently 

preventing hydrolysis (Ferreira et al., 2014) and resulting in slow biogas production. 

This gradual digestion is observed in the batch assays for triticale, wheat and rye which 

had the longest calculated lag phases (6.8, 5.6 and 3.5 days, respectively). It is probable 

they contain greater amounts of lignocellulose as compared to ryegrass, grass and soya 

which all exhibited faster digestion times (2.6, 0.0 and 1.8 days calculated lag phase, 

respectively). In this study, soya was harvested early before beginning bloom which 

could have decreased the proportion of lignocellulosic structures allowing for it to be 

degraded more easily. Cellulose fibres are difficult for bacteria to degrade when they 
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are covered by lignin which prevents access to the cellulases. Biogas production of 

lignocellulosic biomass is influenced in several ways such as, biochemical composition, 

harvesting season and particle size (Amon et al., 2007). No studies have been reported 

on the digestion of whole-crop soya. However, all other substrates tested were in 

accordance to yields reported in literature (Table 1). 

b. Steam treated straw 

Straw is an abundant agricultural by-product consisting of the dry stalks of cereal crops 

and accounts for approximately half of the crop yield; making it a particularly suitable 

feedstock for AD (Croce et al., 2016). Due to its lignocellulosic nature pre-treatment 

methods such as steam are often applied to weaken the structures and increase 

degradability. Wheat straw is generally composed of 44.3% lignin, 24.5% cellulose and 

22.3% hemicellulose (Croce et al., 2016). Utilising steam pre-treatment has been 

reported to increase biogas and CH4 yields by altering the chemical composition (Bauer 

et al., 2014; Theuretzbacher et al., 2015). In this study, the only samples to produce 

biogas yields significantly higher than untreated straw were pre-treated at 4 and 8 bar 

and produced approximately 35 and 31%, respectively, more biogas than untreated 

straw which is similar to other studies that found an increase from using steam pre-

treatment (Amon et al., 2007).These yields obtained were in accordance to the range 

of values reported in literature (Table 1). The slight differences in yields could be 

attributed to a temperature difference during pre-treatment or possibly the pressure 

the steam was injected at. Ferreira et al., (2014) found a 19 to 24% increase in CH4 yield 

when using steam treated straw in the temperature range of 170 to 220°C which is 

higher compared to this study (Amon et al., 2007). The higher biogas yields suggest 

steam pre-treatment increases the biodegradability of lignocellulosic feedstocks. In 
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contrast, straw treated at 6 bar generated almost 4% less biogas than untreated straw 

and straw treated at 10 bar only produced approximately 9% more than untreated 

straw. Theuretzbacher et al., (2015) conducted a study using similar temperatures to 

this study (140 to 178°C) and concluded that steam treated straw produced similar or 

lower biogas yields compared to untreated straw (Theuretzbacher et al., 2015). 

Although pressure was not reported in Theuretzbacher et al., (2015) study, it was 

stated the “Economizer SE” was used for pre-treatment which operates between 5 and 

8 bar; allowing the assumption that the same pressure was applied to the samples 

tested. Similarly, their research found the highest CH4 yield to be from the sample 

treated at 140°C which is in accordance to results from this study. Other studies have 

reported that pre-treatment temperature has the greatest impact on biomass 

composition and hence CH4 yield (Theuretzbacher et al., 2015). Untreated straw 

experienced a lag in biogas production until day 5 where it reached a cumulative gas 

production rate like the pre-treated substrates. The initial lag period indicates steam 

pre-treatment increases the digestibility of lignocellulosic biomass by breaking down its 

complex structures increasing its accessibility to bacteria (Theuretzbacher et al., 2015). 

The yields observed in this study indicate that higher yields are obtained at lower 

pressure and temperature (4 bar and 140°C) and when increasing pre-treatment 

pressure and temperature there is an optimal range to remain within to avoid 

producing yields lower or similar to untreated straw. These variations in findings 

challenge the economic feasibility of steam pre-treatment of wheat straw when 

optimum conditions are not used. As a result, depending on the pre-treatment 

intensity (temperature and pressure), the pre-treated straw can result in lower yields 

(Theuretzbacher et al., 2015). 
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c. Livestock slurries 

CL and chick litter both produced higher biogas yields and at a faster rate than cow 

manure which could be due to their contrasting composition. Niu et al., (2014) 

reported that CL has a high protein content of 25% TS which is one of the largest 

contributions to anaerobic fermentation (Niu et al., 2014). In comparison, cow manure 

has a low protein and lipid content and approximately one-third of its total organic 

matter is comprised of fibre (Niu et al., 2014). It is probable that the cow manure 

evaluated in this study also consisted of a high fibre content which prompted its low 

yield and slow degradation. It has been noted that CL has a higher percentage of 

readily biodegradable material than cow manure which could explain the difference 

in initial cumulative biogas production rates(Kelleher et al., 2002). In relation to 

literature, the CH4 potential of cow manure (76±20 mL/g VSfeedstock) was lower than 

most values (Table 1). It is plausible that the cow’s diet (potato starch, wood chips 

and onion waste) is responsible for the lower yield. Studies have noted that manure 

characteristics and biogas potentials are reliant on a series of factors: animal species, 

diet, protein and fibre content, age, housing and more (Kelleher et al., 2002). Costa et 

al., (2013) found that cows fed with diets richer in concentrate (protein mixed with 

maize silage) as opposed to forage had lower levels of fibre and resulted in higher 

biogas yields in AD. Besides, livestock manure as a feedstock for AD can be precarious 

as it contains a mixture of feathers or hair, spilled feed, bedding and mortality, which 

leads to a great variability in reported biogas and CH4 yields from previous research 

(Table 1). 

d. Agro-industrial waste 
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The biogas production of fish waste exhibited a calculated lag phase of 3.7 days which 

can be attributed to the high lipid and protein content in fish waste which takes longer 

for bacteria to degrade but in turn produces high yields (Costa et al., 2013). Nges et al., 

(2012) estimated that nearly 64 million tonnes of fish waste is generated annually 

worldwide, mostly being underutilised as low-value animal feed (Sosa-Hernandez et al., 

2016), which evidences the potential for renewable energy formation if treated by AD. 

Rendered fat washings similarly consists mostly of protein (37%) and lipids (53%) 

(Hejnfelt and Angelidaki, 2009; Pitk et al., 2012) The measured biogas yield of 

rendered fat washings was high (1379±125 mL/g VSfeedstock) but corresponds to values 

presented in literature (Table 1). The biogas yield from potato waste (768±27 mL/g 

VSfeedstock) was slightly higher than values in previous studies but the CH4 content 

(51.7%) corresponds with reported values (50.8%) (Kryvoruchko et al., 2009). Potato 

waste generated the fourth highest biogas yield of all substrates tested; a possible 

explanation for this is its C/N ratio. The C/N ratio of potato waste is approximately 26 

which falls within the optimal ratio for biogas production (Kryvoruchko et al., 2009; Mu 

et al., 2017). 

e. Fruit and vegetable waste 

Potato peels comprised a relatively low CH4 content (52.3%) producing an ultimate CH4 

yield of 331±2.5 mL/g VSfeedstock. This could be explained by its high starch composition 

which is easily converted to VFAs and CO2 but not further to CH4 (Mu et al., 2017). 

Previous literature reports CH4 yields of 239 to 390 mL/g VSfeedstock (Table 41). This study 

has observed a similar yield in a decreased digestion time of 20 days (Liang and 

McDonald, 2015; Parawira et al., 2005). Onion waste, BPs and avocado seed exhibited 

a similar biogas production pattern where gas rapidly increased in the initial days 
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before slowing down around day 8. A possible explanation is the more easily degraded 

compounds were consumed in the first 8 days and slow degradation of more complex 

compounds followed after (Parawira et al., 2004). The biogas yields produced from BP 

(568±17 mL/g VSfeedstock) and onion waste (576±15 mL/g VSfeedstock) correspond with 

values reported in literature (Table 1). To the best of our knowledge, no studies have 

been reported for avocado seed as a feedstock for AD, which could constitute a viable 

source of renewable energy as avocado processing generates a significant amount of 

waste; with approximately 18,144 tonnes of avocado residues generated in 2008 for 

Mexico alone (Siddiq et al., 2012). 

f. Co-digestion 

Co-digestion is often recommended when dealing with animal manure to enhance 

biogas yields, decrease ammonia content and improve the C/N ratio (Akyol et al., 

2015). Chicken litter is a high ammonia substrate, with C/N ratios typically around 9 – 

13 (Zahan et al., 2018), hence why many studies have been performed co-digesting CL 

with substrates such as, lignocellulosic biomass, various animal manures, FW and fruit 

and vegetable wastes. Conversely, to the best of our knowledge no studies have been 

reported co-digesting CL with banana waste or avocado waste. Both mixtures tested 

containing ACL reached their ultimate biogas potential on day 19 as compared to day 5 

for BP/WBCL due to the high lipid content in avocado pulp which takes longer for 

bacteria to degrade. In comparison, overripe WBs and BPs are comprised of 16 and 

33% monosaccharides, respectively; making them easily degradable at a faster rate (lag 

phase: 2.2 and 1.9 days, respectively) (Table 3) (Emaga et al., 2011). It is probable the 

banana mixtures generated higher CH4 content compared to avocado pulp mixtures 

(Table 3) due to their high sugar content which a portion is transformed directly to 
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acetic acid and made available to acetate-utilising methanogens. It is likely to be the 

reason why 50:50-WBCL (422±46 mL/g VSfeedstock) generated a higher CH4 yield than 

50:50-ACL (393±62 mL/g VSfeedstock). However, it was observed that the co-digested 

substrate with the least amount of CL (80:20-ACL) produced the highest CH4 yield 

(517±13 mL/g VSfeedstock). It is to be remarked that the biogas production of 80:20-ACL 

and 50:50-ACL was 84% and 54% higher than the expected from their calculated 

individual contribution as single substrates, suggesting a synergistic effect this co-

digestion mixture.  

5. Conclusions 

All energy crops and agricultural by-products tested can be successfully anaerobically 

digested to produce biogas. The highest biogas yield (1379 ± 125 mL/g VSfeedstock) was 

obtained from digestion of rendered fat washings. Steam pre-treatment of wheat 

straw does not guarantee higher biogas yields in comparison to untreated wheat straw, 

indicating that it may not be economically attractive if pre-treatment conditions are 

not optimised. Synergistic benefits of co-digesting CL with fruit wastes were evidenced. 

Co-digesting CL with 50% and 80% avocado pulp led to a 54% and 84% higher biogas 

production, respectively, than expected from contribution of the separate substrates.  
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7. Figure captions 

 

 Fig. 1 - Cumulative biogas yield for a) energy crops, b) untreated and steam pre-

treated wheat straw, c) livestock slurries, d) agro-industrial wastes, e) fruit and 

vegetable wastes and f) co-digested substrates.  

 Table 1 – Comparison of biogas and methane yields from literature for substrates 

tested in BMP tests.  

 Table 2 – Characteristics of substrates tested prior to anaerobic digestion tests. 

 Table 3 – Biogas and methane yields with calculated lag phases using the modified 

Gompertz model for all substrates  
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Table 1 – Comparison of biogas and methane yields from literature for substrates tested in 
BMP tests.  
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Table 2 – Characteristics of substrates tested prior to anaerobic digestion tests.   

 
 

Note: The inoculum was diluted when testing rendered fat and cheese whey in order to maintain the required inoculum to 
substrate VS ratio while requiring a lower amount of feedstock sample, which was limited in these cases. 
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Table 3 – Biogas and methane yields with calculated lag phases using the modified 
Gompertz model for all substrates  
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Highlights  

1. The biomethane potential of 29 different organic substrates was evaluated.  

2. Highest biogas recorded for rendered fat washings (1379 ± 125 mL/g VSfeedstock). 

3. Synergistic benefits of co-digesting CL with fruit wastes were evidenced.  

4. Co-digestion of chicken litter with avocado pulp led to synergistic biogas yields. 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

30 

 

Conflicts of interest 

 

I declare that there are no conflicts of interest to declare for manuscript BITEB-D-18-00198 

ACCEPTED MANUSCRIPT



Figure 1


