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Abstract

This paper studies a range of formulations for third-body motion, based on the disturbing function derived from the
Hamiltonian of the Circular Restricted Three-Body Problem (CR3BP). The main one is the well known Keplerian Map
(KM), derived from a first-order Picard iteration on the Lagrange Planetary Equations. Three additional strategies
to model the third-body effect are generated. The first is the Periapsis-Apoapsis-Periapsis Keplerian Map (PAP-
KM), a semi-analytical formulation using the eccentric anomaly as the independent variable. The second is the Euler
Keplerian Map (EK Map), a model for long time propagation that uses an Euler method to obtain an accurate evolution
of the orbital elements throughout the motion. Finally, the third method is an approximate analytical solution for the
evolution of the semi-major axis of the motion, obtained via a Taylor expansion of the eccentricity. These formulations
are contrasted with the original KM model and show similar dynamical behaviour, with a decrease in computational
time. Furthermore, all of them prove to be more accurate within their application limits.
Keywords:(Third-body effect; Trajectory design; Keplerian Map; Disturbing function)

Nomenclature
µ: Normalised gravitational parameter
R: Disturbing function
U3B : Keplerian Third-Body Potential
T : Taylor series function approximation

Acronyms
Keplerian Map (KM)
Periapsis-Apoapsis-Periapsis Keplerian Map (PAP-KM)
Euler-Keplerian Map (EK Map)
Circular-Restricted Three-Body Problem (CR3BP)
Lagrange Planetary Equations (LPO)
Near-Earth Asteroid (NEA)
Guidance, Navigation & Control (GNC)

1. Introduction

Since the beginning of space exploration, close en-
counters with celestial bodies in the Solar System have
been exploited to change the motion of a spacecraft. Grav-
ity assists are such an example; since they take place
inside the planet’s sphere of influence, the patched con-
ics approximation is a good model for their computation.
This, however, simplifies the spacecraft’s motion as to be
affected by only one celestial body at a time. Higher accu-
racy approaches, such as the three-body problem, model a

simultaneous attraction of two bodies and its application
domain extends beyond the classical sphere of influence.

In between these approaches, perturbation techniques
exist to account for the effect of the secondary object in
addition to the main attractive body, well outside the for-
mer’s sphere of influence [1]. In this region, the space-
craft’s trajectory can be greatly affected by the secondary
body’s perturbation, especially in the case of co-orbital
regimes of motion, in which the spacecraft moves in a
nearly 1:1 resonance with the perturbing body. Using the
Sun-Earth system as an example, these kinds of trajecto-
ries are extremely useful for near-Earth asteroid (NEA)
capture mission designs [2], or long-term disposal strate-
gies for spacecraft [3].

One of these techniques is the Keplerian Map (KM),
a well-known method to compute the change of the or-
bital elements throughout one period of the motion due to
the third-body effect in the regime of distant encounters
outside the secondary body’s sphere of influence. This
model can be used in any system of small gravitational
parameter, such as the Sun-Earth one. Its development
started with the works of Petrosky and Broucke [4] and of
Chirikov and Vecheslavov [5]; the concept was then con-
tinued by Ross and Scheeres [6] to study distant flybys in
the planar CR3BP. Later on, it was expanded by Alessi
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and Sánchez [7] for three-dimensional applications.
The aim of this paper is to ultimately study the disturb-

ing function in which the KM is based on, and explore its
potentialities for preliminary mission design. Thus, three
formulations for the variation of a spacecraft’s orbital ele-
ments caused by the secondary body’s perturbation are de-
scribed. The first is a full analytical approximation of one
of the orbital elements of motion. The second is a semi-
analytical method to compute the variation or orbital ele-
ments for one period, akin to the original KM. The third
employs a numerical integration of the KM equations us-
ing an Euler method.

This paper is organised as follows: Section 2 provides
a brief overview on common methods to model the third-
body effect. Section 3 presents the derivation of the dis-
turbing function of the KM from the Hamiltonian of the
CR3BP. Section 4 describes the three main formulations
for the application of the disturbing function: numerical,
semi-analytical and analytical, and provides the approx-
imations and formulae involved in achieving the latter.
Section 5 analyses the original KM and expands it into
two new models: the PAP-KM and the EK Map. Finally,
Section 6 summarises current findings and highlights ar-
eas for future work.

2. Modelling the Third-Body Effect

There are several well-known methods to model the
motion of an object in a three-body system, given ade-
quate approximations. The ones compared to the methods
presented in the paper later on are revised below.

2.1 The Circular-Restricted Three Body Problem

When computing trajectories in the Solar System, the
complexity of the model of motion increases with the
number of bodies interacting. Beyond the two-body prob-
lem, the motion of any system with three or more ob-
jects has no general analytical solutions. Consequently,
the main strategy to compute motion in a three-body sys-
tem is the CR3BP, whose equations of motion are solved
using a numerical integrator. This framework appears as
a simplification of the three-body problem, in which the
third body’s mass is deemed insignificant compared to
the other two, the primaries, and their orbits are circular
around each other [8].

The CR3BP is typically represented in the synodic ref-
erence frame; all the physical quantities are normalised
in such a way that both the sum of the primaries’ masses
and the distance that separates them is equal to 1 [9]. The
normalised position tx, y, zu and velocity t 9x, 9y, 9zu in the
CR3BP obey the following equations of motion:

:x� 2 9y � x � �p1� µqpx� µq
r13

� µpx� 1� µq
r23

:y � 2 9x� y � �p1� µqy
r13

� µy

r23

:z � �p1� µqz
r13

� µz

r23
(1)

where r1 and r2 are the distances to each of the primaries
and µ � m2

m1�m2
is the normalised gravitational parameter

of the system.

2.2 Variation of Parameters
Variational methods compute the variation in the or-

bital parameters of a third body caused by an additional
gravitational force to the central one [10]. In other words,
they are ways to account for minor disruptive accelera-
tions in an orbit besides the gravitational effects due to a
point mass potential. Depending on the orbit that is being
analysed, these can be caused by the non-spherical shape
of planets, atmospheric drag, solar radiation pressure or
the gravitational attraction of other celestial bodies, the
case dealt with in this paper.

Most variational methods have in common that, instead
of numerically integrating the orbits directly, only devia-
tions from a two-body solution are considered. In this
way, the spacecraft’s motion is studied in the two-body
problem, but certain regions of movement are considered
to be perturbed by additional celestial bodies. This pertur-
bation is described by a disturbing functionR, which can
be derived using the Hamiltonian of the system.

3. The Keplerian Third-Body Potential

The Keplerian Third-Body Potential has been previ-
ously used in methods such as the aforementioned KM.
Its corresponding disturbing function is used to describe
the third-body perturbation in a planetary configuration of
small gravitational parameter, such as the Sun-Earth or
Jupiter-Callisto systems.

3.1 Derivation of the Disturbing Function
In order to derive the Keplerian Third-Body Potential,

the Hamiltonian of the three-body problem is formulated
in this inertial reference frame:

H3B � 1

2
pp2x � p2y � p2zq �

1� µ

r1
� µ

r2
(2)

in which r1 and r2 are the distances from the third body
to the primary and secondary, respectively. In order to
reach a barycentric notation, r1 and r2 have to be written
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as functions of the distance to the barycentre r using polar
coordinates tx � r cos θ;

a
y2 � z2 � r sin θu:

r21 � pr cos θ � µq2 � pr sin θq2 (3)

r22 � pr cos θ � 1� µq2 � pr sin θq2 (4)

where θ is the angle between r and the Sun-Earth line, as
it can be seen on Figure 1.

Starting with the development of r1 into a function of
r,

r21 � r2 � µ2 � 2rµ cos θ ô
ô 1

r1
� 1

r

1a
1� 2 cos θ µr � pµr q2

(5)

Assuming a Taylor expansion around µ � 0 for the
terms with r1 and r2:

1� µ

r1
� 1

r
� µ

�
� 1

r
� cos θ

r2

	
�Opµ2q (6)

µ

r2
� µ?

r2 � 2r cos θ � 1
�Opµ2q (7)

H3B � K � U �Opµ2q (8)

in which:

K � 1

2
pp2x � p2y � p2zq �

1

r
(9)

U3B � µ

�
1

r
� cos θ

r2
� 1?

1� r2 � 2r cos θ



(10)

The disturbing functionR is easily computed using the
Keplerian Third-Body Potential, asR � �U3B .

It is important to denote that the movement is not made
in the synodic reference frame: it is inertial, Sun-centred,
but measured from the Earth axis. This will hence be re-
ferred to as an Earth-pointing reference frame. This is
easily perceived in Figure 1. The inertial reference frame
is represented by tX,Y, Zu, but the spacecraft is observed
from the Earth-pointing one. It follows that a new quantity
has to be introduced: ΩRot, which replaces the traditional
Ω in the orbital elements. This quantity is the rotational
longitude of the ascending node of the spacecraft, defined
in such a way that the system’s x-axis is aligned with the
Earth [7]. In this way, ΩRot is defined as:

ΩRot � Ω� νC (11)

Following Alessi and Sánchez [7], νC can be formu-
lated as a function of the third body’s orbital elements. To

r

θ

ω ν

ν

Y

Rot

r

1

2

Fig. 1: Three-dimensional geometry of the three-body
problem in the inertial reference frame

achieve this, the following laws of planetary motion are
expanded:

MC � nCpt� t0q
M3B � n3Bpt� t0q (12)

Considering a circular Earth motion (with dimension-
less variables, nC � 1) and the equations above, Earth’s
mean anomaly can be described using purely third body
orbital elements in this manner:

MC
M3B

� nC
n3B

(13)

MC � M3B

n3B

νC � tC � M3B

n3B
� t0 �

d
a33B

1� µ
M3B

3.2 Formulations ofR
The disturbing function derived from the Keplerian

Third-Body Potential is highly dependant on two terms:
r and cos θ. Their formulation can be obtained based on
either the true anomaly, the method used by Alessi and
Sánchez [7], or the eccentric anomaly. These will be here
described, and the differences between formulations high-
lighted.

3.2.1 Formulation in True Anomaly
In this formulation, the quantity r is well known in lit-

erature, while cos θ is defined using the spherical trigono-
metric relations determined from Figure 1
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r � ap1� e2q
1� e cos ν

(14)

cos θ � cos ΩRot cospω � νq � sin ΩRot sinpω � νq cos i

Furthermore, Equation 13 can be further expanded into
this:

νC �
d

a33B
1� µ

�
2 arctan

�c
1� e

1� e
tan

�
ν3B
2




(15)

� e
?

1� e2 sin ν3B
1� e cos ν3B

�
� t0

From Equation 15, one can easily identify a singularity
corresponding to ν3B � π � 2πk, k P Z.

3.2.2 Formulation in Eccentric Anomaly
The formulation of the disturbing function can also be

done as a function of the eccentric anomaly E in order to
avoid the problem of describing νC as an arctangent of
a tangent function, which is not smooth. This is simply
made by replacing the values of r and cos θ by Equations
16, obtained using well-known formulas [10]:

r � ap1� e cosEq (16)
cos θ � cos i sin ΩRot�

p?1� e2 cosω sinEp�e� cosEq sinωq
�1� e cosE

�
cos ΩRotppe� cosEq cosω �?

1� e2 sinE sinωq
�1� e cosE

(17)

Finally, Equation 13 becomes:

νC � E � e sinE

n
(18)

The equations for r and νC become clearly less com-
plex, while the opposite happens for cos θ. Still, this
formulation has the aforementioned advantage of lacking
singularities (except when e � 1, which is disregarded
since the orbit is parabolic).

4. Formulations for the Third-Body Effect

The Keplerian Third-Body Potential can be used in
many different ways, depending on the application. In this
document, the different possible formulations obtained by
exploiting R are detailed. Their summary is presented in
Table 1.

Table 1: Different Formulations using the Disturbing
Function R to compute the evolution of the orbital el-
ement set K

Formulation Mathematical Representation

Numerical dκ
dt �

�
f
�
κ, dRdκ

	
�
Semi-Analytical ∆κ � ³tf

ti
f
�
κ, dRdκ

	
dt

Analytical ∆κ � T pκ, tf q � T pκ, tiq
� Computed with a numerical propagator

4.1 Numerical: Lagrange Planetary Equations
After obtaining the disturbing function R from the

Keplerian Third-Body Potential, the Lagrange Planetary
equations (LPE) can be used to obtain the equations of
motion of the perturbed body [10]:

da

dt
� 2

na

BR
BM

de

dt
� 1� e2

na2e

BR
BM0

�
?

1� e2

na2e

BR
Bω

di

dt
� � 1

na2
?

1� e2 sin i

BR
BΩ

� cos i

na2
?

1� e2 sin i

BR
Bω

dΩ

dt
� 1

na 2
?

1� e2 sin i

BR
Bi

dω

dt
�
?

1� e2

na2e

BR
Be � cos i

na2
?

1� e2 sin i

BR
Bi

dM0

dt
� n� 2

na

BR
Ba � 1� e2

na2e

BR
Be (19)

The derivatives of the disturbing function take the form
of Equation 20, in which K is one of the regular orbital
elements. The derivatives of r and cos θ with respect to
each element are trivial to compute, given their formula-
tion in Equation 14 or 16, depending on the independent
variable.

BR
BK �� 1

r2
Br
BK � 1

r2
Bcos θ

BK � 2 cos θ

r3
Br
BK� (20)

1

pr2 � 2r cos θ � 1q 3
2

�
r
Br
BK � cos θ

Br
BK � r

Bcos θ

BK



4.2 Semi-Analytical: The Keplerian Map
The KM is a well-known model to measure an orbital

element change throughout one period of motion caused
by the third-body perturbation. It is computed as a semi-
analytical method [7], as it employs a first Picard iteration
on Equations 19. Ultimately, this yields the changes in
orbital elements after a full orbit of the third-body.
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∆a � 2

na

» tf
ti

BR
BM0

dt

∆e �p1� e2q
na2e

» tf
ti

BR
BM0

dt�
?

1� e2

na2e

» tf
ti

BR
Bω dt

∆i �� 1

na2
?

1� e2 sin i

» tf
ti

BR
BΩ

dt�

cos i

na2
?

1� e2 sin i

» tf
ti

BR
Bω dt

∆Ω � 1

n
?

1� e2a2 sin i

» tf
ti

BR
Bi dt

∆ω �
?

1� e2

na2e

» tf
ti

BR
Be dt�

cos i

na2
?

1� e2 sin i

» tf
ti

BR
Bi dt

∆M0 �� 2

na

» tf
ti

BR
Ba dt�

1� e2

na2e

» tf
ti

BR
Be dt (21)

As the equations are integrated over a given period, this
formulation proves to be much faster than the straight-
forward numerical propagation of the LPE in Equation
19. However, given that the semi-major axis is changing
throughout the motion, the orbital period is accordingly
altered, making the time an unsuitable integration limit.
Following that the orbital element update is computed for
one full orbit, it is then more convenient to perform the
integration by taking either the true or eccentric anomaly
as independent variable, depending on the chosen formu-
lation.

In order to correctly modify Equations 21 for this pur-
pose, some relations need to be stated. For both the cases
of the true and eccentric anomalies, the corresponding for-
mulae are obtained from Chao [11]:

dt

dν
� r2

na2
?

1� e2
,
dt

dE
� 1� e cosE

n
(22)

BR
BM0

� a2
?

1� e2

r2
BR
Bν ,

BR
BM0

dt � 1

n

BR
BE dE (23)

Thus, as previously discussed, Equations 15 and 18
allow the computation of ΩRot as a function of the true
or eccentric anomaly of the third-body, which in turn is
the independent integration variable, transformed from
the normalised time. This makes the reference frame for
the KM, previously defined as the Earth-pointing refer-
ence frame, time-dependent; thus, Equations 15 and 18
are the mapping from the normalised time to the indepen-
dent variable.

The original KM, which will be mentioned through-
out this paper, makes the orbital elements update at each
periapsis passage, with integration over the true anomaly
(νi � �π, νf � π) [7]. These changes are then added
to the previously known orbital elements to obtain the up-
dated motion.

In this way, another physical quantity can be intro-
duced: the parameter αP , representing the phasing of the
third body with the disturbing one, while the first is at
periapsis (hence the subscript). In other words, it is the
angle between the Sun-Earth axis and the projection to
the ecliptic plane of the line connecting Sun to third body,
using the synodic reference frame. After one full period,
the new phasing can be computed with an update in αP ,
using Equation 24.

∆αP : 2π � 2π

d
a3

1� µ
(24)

Given that αP is a function of the longitude of the as-
cending node, Equation 24 can simply be used instead of
the update ∆Ω in Equations 21 [7]. Finally, gathering
Equations 21 and 24, the action of the KM can be repre-
sented by the mappingM:

M :ta, e, i, ω,M0|αPnu
ÞÑt∆a,∆e,∆i,∆ω∆M0|αPn�1u (25)

These equations do not need to be computed through-
out the entire motion; instead, they are used inside a
neighbouring region of the Earth, within which its gravi-
tational perturbation is non-negligible. This region is de-
fined by an interval of α values, shown to capture the ex-
tent of the disturbing effect; outside it, the gravitational
perturbation of the Earth is so small that can be effectively
neglected. Alessi and Sánchez [7] have determined this
region to be α ¤ |π{8|.

4.3 Analytical: Taylor Approximation
A full analytical formulation of Equations 19 is impos-

sible to concoct. There are two immediate factors behind
this, and both have to do with the independent variable
(true or eccentric anomaly).

• The mapping from time to the independent vari-
able, using Equations 15 and 18: it cannot be derived
with the remaining expression in Equation 20, hav-
ing to stay unchanged. Still, it adds a considerable
amount of complexity to the equations.

• The term introduced by Equation 23: depending
on the independent variable, it adds another layer of
complexity to the integration.
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KM

Analytical Approximation

Fig. 2: Absolute mean error in semi-major axis update af-
ter one period as a function of the eccentricity. Error
in logarithmic scale, averaged for 10,000 initial orbital
conditions

Still, approximations can be employed to obtain an an-
alytical solution to some of the differential equations. The
process can be broken down in the following manner: a
Taylor series is used to approximate Equation 20 for each
orbital element. Then, this expression is inserted back into
Equations 19, which may be solved analytically.

For this paper, a Taylor series of order zero of the ec-
centricity was successfully employed (other orbital ele-
ments and orders of approximation were tried, without
any success). The resulting analytical description of the
semi-major axis can be found in Equation 26. However,
the two factors listed above make it so that the semi-major
axis is the only element in which the equations are simple
enough to obtain an analytical formulation, without re-
sorting to any other approximation.

Equation 26is the analytical solution found for the evo-
lution of the semi-major axis. It provides a simple expres-
sion to quickly compute the behaviour of the orbital ele-
ment; nevertheless, it is limited by the fact that the orbit
must have a very low eccentricity. In order to understand
what kind of error would be obtained as a function of the
latter parameter, 10,000 initial conditions are computed.
The plot obtained in Figure 2 represents the average abso-
lute error (as compared to the CR3BP) for each eccentric-
ity value, for both Equation 26 and the original KM.

As it can be seen, the analytical approximation actu-
ally works better than the KM up until an eccentricity of
roughly 0.1. This is explained by the fact that the an-
alytical simplification avoids the well-known singularity
in eccentricity of the LPE. This is extremely useful when

0 1 2 3 4 5 6
1.03

1.0302

1.0304

1.0306

1.0308

1.031

1.0312

1.0314

1.0316

1.0318

CR3BP

Analytical Approximation

Fig. 3: Semi-major axis evolution of one orbital period
for elements ta � 1.03, e � 0.001, i � 0.001,Ω �
5.93, ω � 2.32, E � 0u

computing the behaviour of low eccentricity orbits, like
the ones of many NEA.

a �2µ

na

�
1

pn� 1q
b

1� a2 � 2a cospE � E
n � ω � Ωq

� 1

4a2pn2 � 1q
�

2pn� 1q cos
�
E � E

n
� ω � Ω

	

� p1� nq cos
�
E � E

n
� i� ω � Ω

	
� p1� nq cos

�
E � E

n
� i� ω � Ω

	
� 2p1� nq cos

�
E � E

n
� ω � Ω

	
� p1� nq cos

�
E � E

n
� i� ω � Ω

	

� p1� nq cos
�
E � E

n
� i� ω � Ω

	
�
�Ope1q

(26)

In order to better visualise the behaviour of Equation
26, Figure 3 analyses one of the initial conditions for
e � 0.001. It shows the one-period propagation of the
semi-major axis for both the CR3BP and the analytical
approximation. It can be seen that, while the final result
is slightly different, the evolution of the orbital elements
is very similar.
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Fig. 4: Semi-major axis evolution of one orbital period for
asteroid 2018 AV2. Extra back-propagation of half a
period for the CR3BP in a dashed line

5. Expansions

Given the analysis of the characteristics and limitations
of the KM conducted on Section 4, some improvements
can effectively be obtained. This section will explore
some of these ideas and examine any achievable enhance-
ments in accuracy.

5.1 The PAP-KM

As detailed in Sub-section 4.2, the original KM was
obtained using the true anomaly as the independent vari-
able for the integration. The interval

��π, π� was chosen
in order to avoid numerical errors, and it also bypasses the
non-smoothness of the mapping on Equation 15. As such,
the new conditions at periapsis are taken from the changes
between apoapses.

However, this approximation will naturally yield accu-
racy errors, especially in cases where the orbital elements
are noticeably altered. Figure 4 highlights one example:
it shows the propagation of asteroid 2018 AV2 in its clos-
est pass near the Earth, in 2037. The values highlighted
are the orbital propagation in different frameworks: the
CR3BP, the propagation of the LPE in Equations 19 with
the true anomaly as the independent variable, and the orig-
inal KM. The dashed line corresponds to the CR3BP prop-
agation in the section from �π to 0. It can be seen that
the ∆a given by the KM is actually similar to the �π to
π evolution given by the CR3BP. However, this ∆a does
not match the period from 0 to 2π, causing a large error
when updating the new semi-major axis.

The alternative is to use the Periapsis-Apoapsis-

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
10

-6

10
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10
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10
-3

KM

PAP-KM

Semi-major Axis
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10
-4
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PAP-KM

Eccentricity
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-5

10
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10
-2

10
-1

KM

PAP-KM

Argument of Periapsis

Fig. 5: Absolute mean error after one period as a function
of initial αP . Error in logarithmic scale, averaged for
10,000 initial orbital conditions

Periapsis-Keplerian Map (PAP-KM). This is simply done
by implementing the KM using the eccentric anomaly and
changing the propagation interval to

�
0, 2π

�
, as detailed in

Sub-section 3.2.2. The result can also be found in Figure
4, depicting the actual expected value for the semi-major
axis update.

For comparison on the performance of the KM and the
PAP-KM after one period of motion, these two methods
were compared with the CR3BP for 10,000 different ini-
tial conditions. The averaged result for each starting αP
was plotted in Figures 5. As it can be observed, the PAP-
KM case shows a much smaller error after just one pe-
riod, which confirms it as a better alternative to the origi-
nal KM.

5.2 The EK Map
An obvious drawback of the KM is that, as opposed to

the numerical method, the parameter update is made using
only its initial value, regardless of its evolution through-
out the orbit. In order to account for this effect, the
PAP-KM can be interpolated with an Euler method. This
will yield an approximation of the instantaneous element
change and also avoid possible integration errors from the
PAP-KM. This method is hence referred to as the Euler-
Keplerian Map (EK Map).

The number of computation intervals was chosen for
the computational time taken by the KM and the EK-Map
to be the same, which yielded 21 points. The algorithm’s
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Fig. 6: Absolute mean error after one period as a function
of initial αP . Error averaged for 10,000 initial orbital
conditions

pseudo-code works in the following manner:

Initialization: K = K0; E = 0;
while E   Efinal do

slope = Equation 19;
K = K + slope*step;
E = E + step;

end
Algorithm 1: Euler method for computing the evolu-
tion of the orbital element K

5.2.1 Phasing Update

As previously discussed, Equation 24 shows that the
update is done using only the period of the motion: more
concretely, only the semi-major axis is needed. Since this
element may be changing steeply throughout the orbit, the
contribution of an instantaneous semi-major axis would
be a great advantage. This can be accurately done using
the Euler method on the semi-major axis, as it is done in
the EK Map, using Algorithm 1.

In order to verify this claim, the regularly computed
αP in Equation 24 and the one obtained with the semi-
major axis instantaneous evolution were compared with
the CR3BP for 10,000 different initial conditions, in the
same fashion as Figures 5. The absolute error is again
shown in Figure 6 as the average of each initial αP . It can
be seen that the instantaneous α update performs much
better. This is more obvious in the region closer to the
Earth (αP � 0), where the semi-major axis is predicted
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Fig. 7: Average absolute error for orbital element update
for 21 periods

to change more drastically.
It is important to denote that the improvement in the α

update can also be done in the PAP-KM, just by adding an
extra computation of the instantaneous semi-major axis.

5.3 Long-Term Propagation
A short analysis of the long term propagation error for

the KM, the PAP-KM (with the instantaneous α provided
by Sub-section 5.2.1) and the EK Map is made on Figure
7: 10,000 initial conditions are propagated with the three
methods, over 21 periods of motion. At each periapsis,
the absolute error of each of this initial conditions is aver-
aged for each model, using the CR3BP propagation as the
baseline.

As expected, the error accumulates with the number of
periods for all of the orbital elements. For both methods
presented in this section, this happens at a much shorter
rate than the original KM. While the expectation would
be for the EK Map to perform the best, the error provided
by the PAP-KM with the instantaneous α is clearly the
smallest. This may indicate some problem with the Euler
method, or it may be so that small errors when comput-
ing the instantaneous orbital elements accumulate faster
in this setting.

Finally, similarly to what Ross and Scheeres did for
the KM [6], the dynamical behaviour of the EK Map is
compared to the CR3BP in Figure 8 in the Jupiter-Callisto
system. These show the evolution of the semi-major axis
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Fig. 8: Plot of the stable resonances in the Jupiter-Callisto system

in a long term propagation, as a function of the initial αP :
each point corresponds to the new semi-major axis after
one orbit, computed for roughly 300 periods. The initial
conditions were chosen for a P �1.1, 1.8

�
, avoiding the

islands corresponding to stable mean motion resonances
of the particle’s orbit with Callisto’s: these are the white
ovals depicted in the plots. It is possible to see that the
behaviour of the resonances and islands is maintained,
which ultimately confirms the validity of the EK Map.

5.4 Computational Time
Considering the low-fidelity of the methods developed

so far, it was considered important to have a decreased
computational cost in contrast to the CR3BP. Without any
further code optimisations for time, the original KM and
the PAP-KM were determined to be respectively 13% and
22% faster than the latter for one period, with the EK
Map having the same computational cost as the KM, as
explained in Sub-section 5.2. Still, over a full trajectory,
the methods described in this paper possess the advantage
of being used only in a restricted region of space, as de-
tailed in Sub-section 4.2. For the remaining motion, the
model used is the two-body problem, which decreases the
overall computational cost immensely.

6. Conclusions

This paper presented a study on approaches to compute
the third-body effect based on the Keplerian Third-Body
Potential, used to compute the disturbing function of the

Keplerian Map. As it is formulated, the KM is an accu-
rate, low-cost descriptor of the secondary perturbation for
third-body motion, provided that the system has a very
small gravitational constant µ.

Using the Keplerian Third-Body Potential as the start-
ing point, several different formulations for the third-body
effect were devised, their utility depending on the appli-
cation scenario. From these, three are highlighted: the an-
alytical approximation for the semi-major axis evolution,
the PAP-KM and the EK Map. The first can be used for
a quick understanding of the behaviour of the orbital ele-
ment in small eccentricity orbits. The PAP and EK Maps
are improvements on the original KM, removing its sin-
gularity and taking into consideration steep changes of the
orbital elements throughout the period of motion.

A very important characteristic of the formulations is
that they can be hybridized and combined together, de-
pending on the application scenario. For example, the an-
alytical prediction of the semi-major axis evolution can be
combined with the EK Map method for the evolution of
the remaining orbital elements of motion, which can then
be transformed into a predictor of the position and veloc-
ity of a spacecraft. This is potentially useful for fast online
computations and application in GNC algorithms.

Some aspects of these methodologies are very unique
and deserve further attention. The time-dependent nature
of the reference frame used and how it affects the differ-
ential equations is something that needs further consid-
eration. Furthermore, the validity and range of approxi-
mations to complement the semi-major axis analytical ex-
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pression will be studied in more detail. Finally, future
work will also consider the application of these methods
in a preliminary trajectory design scenario, such as aster-
oid capture missions or end-of-life disposal strategies.
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