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ABSTRACT 

 

The aim of this paper is to revise the suitability of Near-

Rectilinear Halo Orbits (NRHOs) as long-term destinations 

for a new crew-tended space station; referred here as Deep 

Space Gateway (DSG). NRHOs are a subset of the halo 

families characterized by promising stability properties. The 

document presents the formal definition and identification of 

NRHOs, as in the CR3BP model. Dynamical substitutes of 

the NRHOs are also refined in the Bi-Circular Model (BCM) 

by means of a multiple shooting method. Key features such 

as lunar south-pole coverage, station keeping requirements 
and accessibility of the orbit are then analysed. Several 

maintenance strategies based on three different underlying 

principles are considered and, finally, the accessibility of 

NRHOs from the Earth and polar Moon orbits is investigated. 

 

Index Terms— NRHO, DSG, Station keeping, Cislunar 

space, Differential corrections 

 

1. INTRODUCTION 

 

A renewed vision to send humans beyond Low Earth Orbit 
(LEO) has given rise to a whole range of studies proposing 

different destinations and operational orbits for a new crew-

tended space station; initially known as Deep Space Gateway 

(DSG). The DSG is envisaged as a staging location for lunar 

exploration and a gateway to interplanetary space [1]. 

However, the station will serve multiple additional purposes 

(not yet defined), including scientific observations or space 

environment analyses among others [2]. Therefore, a fixed 

destination for the DSG has not been designated. In fact, it is 

expected that the station will perform excursions between 

different useful orbits over its service life [3]. However, a 

potential destination for extended periods is required that 
should meet the following set of requirements: 

- Excellent lunar poles coverage. In particular, the south 

pole should be targeted, since it is the focus of current 

studies as a result of the availability of potentially water-

rich regions and constant exposure to sunlight. 

- A suitable orbit should not require high station keeping 

costs and risks associated with getting into escape 

trajectories should be minimised. Given the short 

timescales in the Earth-Moon system, misleading 

monitoring information or missing station keeping 
manoeuvres could lead a spacecraft into a diverging 

path within a few days. 

- Accessibility to and from the orbit is also a key driver 

requirement. Access to the lunar poles is crucial to 

facilitate lunar exploration and efficient transfers from 

terrestrial orbits are mandatory. 

 

NRHOs comply with these specifications and have been 

identified as one of the most promising destinations for the 

DSG [1]. A general study of NRHOs is presented in this paper 

to get a clear insight into their behaviour. 
Multiple missions in the Sun-Earth system and just a 

few in the Earth-Moon system have successfully carried out 

station keeping manoeuvres near the libration points [4]. 

However, no spacecraft has ever been placed into an NRHO 

[5], and no station keeping algorithms have undergone 

extensive analysis for this type of orbits. One objective of this 

study is the analysis and adaptation of station keeping 

strategies proposed in the literature for successfully tested 

trajectories ([6], [7], [8]) to missions in NRHOs. Apart from 

efficient, in terms of Δ𝑉 costs, and reliable, a computationally 

cheap methodology is sought, which would be beneficial for 
onboard implementation. 

As an attempt to validate the accessibility of NRHOs, 

the paper also investigates the natural flow associated with 

these orbits in search for low-cost trajectories through the 

exploitation of their invariant manifolds in the CR3BP. 

 

2. DYNAMICAL MODELS 

 

Throughout this investigation, force models that provide 

different levels of fidelity have been considered; the Circular 

Restricted Three-Body Problem (CR3BP) and the Bi-
Circular Model (BCM). 

 

2.1. Circular Restricted Three-Body Problem 

 

The initial design phases of orbits and transfer trajectories 

require a vast understanding of the dynamics that govern the 

motion of the spacecraft. Despite not yielding a closed-form 

solution, the CR3BP provides an autonomous approximation 

to the dynamics of the problem. The CR3BP is a particular 

case of the Three-Body Problem where the spacecraft's 

li2106
Text Box
Proceedings of the 7th International Conference on Astrodynamics Tools and Techniques (ICATT), 
6-9th November 2018, Oberpfaffenhofen, Germany.
https://indico.esa.int/event/224/contributions/4010/


li2106
Text Box
© 2016 The Authors. Published by ESA. This is the publisher Version of Record Manuscript. Please refer to any applicable publisher terms of use.






acceleration is dominated by the gravity field of two primary 

bodies (Earth and Moon in this case), which move in circular 

coplanar orbits around their common barycentre. Apart from 

its simplicity, this model is the one that allows the generation 

of certain closed periodic trajectories such as halo orbits, 

which are the focus of this study. 

 For convenience, quantities in this system are 

nondimensionalized such that the mean motion of the main 

bodies, as well as the distance between them, are both equal 

to unity. The Earth and Moon have nondimensional masses 

equal to 1 − 𝜇 and 𝜇, respectively, where 𝜇 is the mass 

parameter of the system. Using a barycentric reference 

system and a dimensionless set of units, the equations of 

motion can be found in [9]. 

 

2.2. Bi-Circular Model 

 

Despite being an accurate approach, for some studies to be 

reliable, it is appropriate to validate the preliminary results 

obtained in the CR3BP with higher fidelity models. A clear 

example is the case of station keeping analyses in the cislunar 
space. In the Earth-Moon CR3BP, the attraction of the Sun is 

one of the most important perturbations acting on a spacecraft 

[9], and not accounting for this celestial body can conduce to 

misleading orbit maintenance predictions. For that reason, a 

simplified four-body problem is employed for the 

computation of station keeping costs; the BCM. 

The BCM is a closer approach to the real dynamical 

environment than the CR3BP but still maintains a low level 

of complexity and computational cost. The main assumptions 

are; the Earth and the Moon move in circular orbits around 

their barycentre, and the Earth-Moon barycentre, in turn, 
moves in a circular orbit around the Sun-Earth-Moon centre 

of masses. Gómez et al. [10] presents the BCM equations of 

motion relative to the rotating Earth-Moon system. 

 

3. NEAR-RECTILINEAR HALO ORBITS 

 

In the Earth-Moon system, Near Rectilinear Halo Orbits 

(NRHOs) are a subset of the halo families characterized by a 

close passage over the polar regions of the Moon and tend 

toward almost rectilinear orbits as seen in the 𝑥-𝑧 plane, from 

which NRHOs take their name (Figure 1). 

 

Figure 1. 𝐿1 and 𝐿2 southern halo families. In the 𝑥-𝑧 view (left), 
the green line corresponds with the NRHOs and the black line 
identifies planar halo orbits (bifurcation from Lyapunov orbits). 

 

Figure 2. Period (left) and Jacobi constant (right) of 𝐿1 and 𝐿2 halo 
families. 

Halo orbits are commonly classified according to their 

perilune [11], denoted by 𝑟𝑝. Relevant parameters of the 𝐿1 

and 𝐿2 families are represented as a function of 𝑟𝑝 in the next 

figures. The period of the orbit is a useful parameter for the 

initial design phase of a mission. Especially, they play an 

important role when the Sun perturbation is considered, due 

to the resonance between orbits. Typical periods of halo 

orbits in the Earth-Moon system range from 1 to 2 weeks, 

approximately. This variable is exposed in Figure 2 (left). 

The Jacobi constant (𝐶) associated with each family is 

shown in Figure 2 (right). Generally, the larger the 𝑟𝑝, the 

higher the 𝐶 and, therefore, the lower the energy that 

corresponds to it. 

 

3.1. Stability: Formal Identification of NRHOs 

 
In the literature, NRHOs’ boundaries are usually 

delineated according to their linear stability [11]. It is found 

that the eigenstructure of the monodromy matrix of the 

system can be used to identify the unstable character of an 

orbit [12]. The eigenvalues (𝜆) can be associated with 

different subspaces according to their magnitude; the 

existence of eigenvalues larger than one would imply an 

unstable periodic orbit. Therefore, a useful parameter to 

characterise the linear stability of an orbit is the so-called 

stability index, 𝜈. In [13], it is defined using the following 
expression, 

 

𝜈 =
1

2
(𝜆𝑚𝑎𝑥 +

1

𝜆𝑚𝑎𝑥

) (1) 

 

Where 𝜆𝑚𝑎𝑥 is the length of the eigenvalue with the 
maximum magnitude of the monodromy matrix. In Figure 3, 

the stability index of the 𝐿1 and 𝐿2 halo families as a function 

of their periapsis is shown. 

Considering the definitions of stable, unstable and 

centre subspaces, it is clear that, the higher the stability index, 

the more unstable is the orbit. Therefore, large 𝜈’s imply that 

a trajectory would diverge from the reference orbit quickly. 

On the other hand, if 𝜈 = 1 (minimum value), the orbit is 

marginally stable according to the linear analysis. It should 
be noted that eigenvalues are constant along the periodic 

orbits, so, the stability index can be used to characterise them. 

There exists a region where 𝜈 is constrained between 1 and 3, 



approximately, which corresponds to the region of small 𝑟𝑝. 

This zone of Figure 3 (top) has been zoomed in in Figure 3 

(bottom). As it can be seen, several transitions between 

unstable ( 𝜈 > 1) and marginally stable (𝜈 = 1) orbits exist. 

In this paper, and for the Earth-Moon system, NRHOs are 

defined as the members of the halo families that range from a 

periapsis equal to the Moon radius (1737 𝑘𝑚) to the 𝑟𝑝 

corresponding with the last stability transition, from which 𝜈 

becomes increasingly unstable. 

 

Figure 3. Stability indices of 𝐿1 and 𝐿2 halo families. The region of 
NRHOs has been zoomed in (bottom), which ranges from 𝑟𝑝 =

1737 to 𝑟𝑝 ≈ 20,000 𝑘𝑚. 

 
3.1. Dynamical Substitutes 

 

Halo orbits have been defined as three-dimensional periodic 

orbits near the libration points of a three-body system. As 

mentioned before, it is necessary to assess the trajectories in 

higher fidelity models. The problem is, when a periodic orbit 

is calculated in the CR3BP and then propagated in a four-

body problem, the periodicity of this orbit is lost. In addition, 
it has been demonstrated that halo orbits are generally 

unstable, and some station keeping strategy is required to 

keep the motion bounded, even in the CR3BP. While the 

station keeping costs would be very low in the three-body 

problem, forcing the path of a spacecraft to follow the same 

periodic halo orbit using the BCM (or any other higher 

fidelity model) would lead to prohibitive Δ𝑉s. Therefore, a 

trajectory close to the reference periodic orbit that is natural 

in the new model is desired, i.e., a path that a particle would 

follow in the BCM without the necessity of any manoeuvres 

(in the case that no other perturbations or navigation errors 
were included). That is the so-called dynamical substitute. 

In order to obtain a dynamical substitute, a series of 

patch points are defined along a reference trajectory. A 

reference path would consist of multiple revolutions of a halo 

orbit stacked together. Then, a multiple shooting method is 

applied so that the discontinuities at the patch points created 

when transitioning towards a new model are eliminated 

(method available in [14]). An example of dynamical 

substitute, for an 𝐿2 NRHO of 𝑟𝑝 = 7000 𝑘𝑚, is shown 

below. 

 

Figure 4. Dynamical substitute of a periodic 𝐿2 halo orbit of 𝑟𝑝 =

7,000 𝑘𝑚 in the BCM propagated over 411 days. 

 
4. STATION KEEPING 

 

A key factor to determine whether near-rectilinear orbits are 

viable or not as a permanent destination for the DSG is related 

to their orbit maintenance. Most of the motions near the 

collinear Lagrange points are inherently unstable, and 

NRHOs are not an exception. As many other orbits, they are 

sensitive to perturbations and some station keeping strategy 

is required to remain close to the nominal path. The 

applicability of different strategies is studied in this section. 

The error model used in this work is based on conservative 
station keeping studies in the Earth-Moon system ([5], [6], 

[13], [15], [16]). Regarding orbit determination errors, 1 km 

in position and 1 cm/s in velocity (zero mean, 3𝜎) is assumed. 

A manoeuvre execution error is also applied, which is 

assumed distributed according to a normal law with a typical 

deviation of 1% of the Δ𝑉 magnitude (1𝜎) and zero mean 

deviation. Apart from that, if the calculated manoeuvre 

magnitude is smaller than a threshold (Δ𝑉𝑚𝑖𝑛 = 0.15 𝑐𝑚/𝑠), 

this is not executed. In this way, manoeuvres on the same 
order of magnitude as the hardware limitations are avoided.  

 

4.1. Station Keeping Strategies 

 

All the strategies considered have been tested using an 

algorithm that simulates a real-flight situation. The concept is 

illustrated in Figure 5. Patch points refer to the locations at 

which manoeuvres are applied. On the other hand, target 

points are defined as the aimed states after the application of 

every manoeuvre. Note that the target state is not necessarily 

the next patch point (e.g., 𝑥-cross station keeping strategy). 



 

Figure 5. Schematic of the general station keeping algorithm. 

The general scheme of the algorithm employed in this 

study is outlined below: 

1. Initially, a nominal trajectory is selected. 

2. Navigation errors (injection errors) are applied to the 

initial state or patch point. 

3. The initial perturbated state is integrated using the 

corresponding dynamical model until the first 

correction manoeuvre location. 

4. The required manoeuvre is determined to target some 
final state. Depending on the station keeping strategy 

considered, that state will vary, as well as the demanded 

ΔV. The correction is computed without taking into 

account any errors.  

5. Apply manoeuvre execution errors to the calculated ΔV 

and update the current state vector. Apart from that, add 

navigation errors, both in position and velocity. 

6. Integrate the perturbated state using the selected 

dynamical model until the next patch point. The patch 

points are defined depending on the particular station 

keeping strategy. 
7. Check divergence. If the trajectory has diverged from 

the reference one, the station keeping case has failed. 

Otherwise, go back to step 4. A useful quantity to 

identify a divergent path is the momentum integral [14].  

 

Steps 4 to 7 must be repeated until the last patch point is 

reached. As indicated, steps 4 and 6 are a function of the 

specific station keeping technique employed. Every single 

combination of manoeuvre determination strategy plus 

correction placement strategy will be labelled with a 

particular identifier (SKS-𝑖). These techniques are based on 
three different underlying schemes; Unstable Mode 

Cancellation, Differential Corrections and Target Points 

Optimisation. 

 

4.1.1. Unstable Mode Cancellation 

Techniques under this category harness the dynamical 

behaviour of the trajectories in the three-body problem. The 

idea behind these methods is to remove the unstable 

component of motion to avoid asymptotical departures from 

the vicinity of the reference orbit. 

In the context of the CR3BP, a nominal halo orbit is 
periodic. Then, the variational equations are linear with 

periodic coefficients [7], and the nonlinear system behaviour 

can be analysed through the eigenvalues of the STM after one 

period. According to Floquet theory [8], it is possible to 

define 6 periodic vectors related to the eigenvectors. They are 

the so-called Floquet modes (𝑒𝑖). It is clear that, due to errors 

in tracking, execution of maintenance manoeuvres, and 

inaccuracies of the dynamical model used, the spacecraft will 

always deviate from its nominal orbit. That deviation, 𝛿, can 

be expressed in terms of the Floquet modes (Eq. (2)). The 

objective of this technique is to provide an impulse such that 

the component of the error in the unstable direction is 
cancelled (Eq. (3)). 

𝛿(𝑡) = ∑𝑐𝑖𝑒𝑖(𝑡)

6

𝑖=1

 (2) 

𝛿(𝑡) + [0 0 0 Δ𝑉]𝑇 = ∑𝑎𝑖𝑐𝑖𝑒𝑖(𝑡)

6

𝑖=2

 (3) 

On the other hand, a plan to specify the patch points 

along the trajectory is required. Different approaches are 

available. The first one is based on the monitorisation of the 

unstable component (𝑐1) of the deviation vector. Given the 

unstable behaviour of halo orbits, 𝑐1 presents an exponential 

growth. Hence, the idea is to apply a manoeuvre every time 

it exceeds a maximum value (𝑐1𝑚𝑎𝑥
). This strategy is denoted 

by SKS-1.  

A second approach, also based on the unstable mode 

cancellation, consists in executing the correction manoeuvres 

according to a predefined schedule. Therefore, regardless of 

the magnitude of 𝑐1, a velocity change is applied at the patch 

points. Three cases have been studied:  

SKS-2: Manoeuvres are periodically applied at the 

apolune of the orbit.  

SKS-3: Two manoeuvres are placed per orbit. In this 

case, they are applied at points of rotating velocity 𝑣𝑦 = 0.  

SKS-4: Three manoeuvres are periodically placed along 

the trajectory. The first one is applied at the apolune. 

 
4.1.2. Differential Corrections 

In this category, the manoeuvre placement process is the 

same as in the second approach of the Unstable Mode 

Cancellation. The difference resides in the methodology to 

determine the Δ𝑉s. Now, a differential corrector is 

implemented to target a certain final state. 

A first approach consists in defining a set of control 

points at regular intervals, whose position must be targeted 

from every previous control point. To determine the direction 

and magnitude of the impulsive manoeuvres, a single 

shooting method is used where the only free variables are the 
initial components of the velocity and three position 

constraints define the final state. 

SKS-5: Manoeuvres are periodically applied at the 

apolune of the orbit.  

SKS-6: Two manoeuvres per orbit are placed at points 

of 𝑣𝑦 = 0.  

SKS-7: Three manoeuvres per orbit, evenly distributed 

(in time) are periodically applied. The first one is applied at 

the apolune. 



A second approach has been recently explored, showing 

promising results for NRHOs [15]. In the 𝑥-axis crossing 

strategy, the state at the end of each segment is defined by the 

𝑥-component of the velocity in the reference orbit. Therefore, 

the idea is to target a reference 𝑣𝑥 with a single shooting 

method. The target point is always placed at the 𝑥𝑧-plane 

crossing near the perilune of the orbit since it has been 
observed to provide the best results [15]. On the other hand, 

given the sensitivity of the motion near the periapsis, the best 

place to apply the manoeuvre is at the apolune. This strategy 

is denoted by SKS-8. 

 

4.1.3. Target Points Optimisation 

For strategies under this category, the equations of motion are 

propagated from an initial position for a given integration 

period. Then, an optimisation solver is applied in order to 

determine the initial velocity that minimises a previously 

defined cost function, 𝐽. An effective approach is given in [7], 

where 𝐽 is defined as the sum of the deviations of the 

predicted state vectors from the nominal orbit at specific 

control points plus the magnitude of the required manoeuvre 

(Eq. (4)). Every component of this cost function is then 

multiplied by a weighting matrix, which allows emphasising 

the most important variables of the function. 

𝐽 = Δ𝑉𝑇𝑄Δ𝑉 + ∑𝛿𝑟𝑖
𝑇𝑅𝑖𝛿𝑟𝑖 + 𝛿𝑣𝑖

𝑇𝑆𝑖𝛿𝑣𝑖

𝑛

𝑖=1

 (4) 

Three control points (as recommended in [7]) evenly 

distributed in time have been employed, placing the third one 

at the next patch point. One manoeuvre at the apolune of each 
orbit has been employed for this strategy, which is denoted 

by SKS-9. 

 

4.2. Monte Carlo Analysis 

 

In this section, a summary of the station keeping results is 

presented. A Monte Carlo analysis of 250 trials has been 

performed, allowing for a moderate accuracy on the statistical 

analysis while reducing computational costs. The strategies 

studied in this document have been tested for a set of halo 

orbits from both families ranging from 𝑟𝑝 = 2,000 𝑘𝑚 to 

𝑟𝑝 = 50,000 𝑘𝑚, emphasizing the NRHOs region.  

First, results corresponding with the 𝐿2 family are 

presented for the CR3BP and BCM, respectively. In every 

case, the yearly maintenance cost is shown. Take into account 

that, in the event of failure rates larger than 20% the 

corresponding Δ𝑉 costs have not been depicted. By 

inspection of Figure 6 (top), a clear trend is observed 

regarding the costs as a function of the periapsis radius. An 

increment of Δ𝑉 is observed as 𝑟𝑝 is increased, which can be 

associated with the larger stability indices of these orbits. In 

the NRHOs region, very low station keeping costs are 

provided for all the strategies in the CR3BP, with practically 

a 0% failure rate. Moreover, the 𝑥-axis crossing approach 

(SKS-8) seems to be the most efficient strategy, with annual 

costs between 0.2 and 0.4 𝑚/𝑠 in the zone between 𝑟𝑝 =

2,000 and 𝑟𝑝 = 8,000 𝑘𝑚. It is worth noting that after a 

periapsis of approximately 20,000 𝑘𝑚 to 30,000 𝑘𝑚, all the 
strategies relying on a single manoeuvre per orbit cease to 

effectively control the spacecraft trajectory. This is due to the 

longer period of small halo orbits, which leads to excessive 

time between consecutive manoeuvres.  

 

  

Figure 6. Station keeping results for the 𝐿2 family in the CR3BP 
(top) and BCM (bottom). 

Outcomes differ after the transition into the BCM. In 

Figure 6 (bottom), it can be appreciated that SKS-1 to SKS-4 

only converge in the area of low 𝑟𝑝 (NRHOs). However, 

results obtained indicate that the current implementation of 

the unstable mode cancellation technique is not suitable for 
orbits in the Earth-Moon-Sun system. Due to the Sun 

perturbation, the dynamical substitutes in the BCM do not 

follow a close path to the reference periodic orbit, and it must 

be noted that, in this implementation, the Floquet modes were 

calculated at each instant using the reference periodic 

trajectory (CR3BP). If the focus is placed in the remaining 

strategies, similar results to those from the CR3BP are 

obtained. As well as in the three-body problem, the 𝑥-axis 

crossing technique (SKS-8) only works for the NRHOs 

region but, unlike in Figure 6 (top), the maximum 𝑟𝑝 for 

which it converges is 8,000 𝑘𝑚. Due to the proximity of the 

period of nominal trajectories to a 1:3 lunar synodic resonant 

orbit with the Sun in the region between 𝑟𝑝 = 12,000 and 

𝑟𝑝 = 20,000 𝑘𝑚, the path of the dynamical substitutes 

completely diverges from the reference periodic orbit [14]. 

This leads to important variations in the orbital characteristics 

from one revolution to another, which conduces to ineffective 

corrections. Costs are slightly increased even in the NRHO 

region, and the success rate is decreased. This is due to the 

exponential growth observed as a function of simulated time. 

It is relevant to point out that the mean failure time of the 

unsuccessful trials for 𝑟𝑝 = 2,000, 4,000, 7,000 and 8,000 

are respectively, 322, 361, 302 and 345 days. This is a clear 

indication that, apart from significantly reducing the annual 

costs (because the exponential growing region would be 

avoided) a success rate of zero or nearly 0% would be 

achieved by decreasing the simulation time to 200 – 300 days 

in the case of SKS-8. Finally, the robustness of strategies 

SKS-5, SKS-7 and SKS-9 must be highlighted. 



Next, the analyses of maintenance costs for the 𝐿1 

family are exposed. 

    

   

Figure 7. Station keeping results for the 𝐿1 family in the CR3BP 
(top) and BCM (bottom). 

At this point, it is convenient to accentuate two differences in 

orbital and dynamical characteristics with respect to the 𝐿2 

family; stability indices are larger for the 𝐿1 family and, more 

importantly, two unstable modes coexist in a certain 𝑟𝑝 region 

(𝑟𝑝 = 1737 to 𝑟𝑝 ≈ 6600 𝑘𝑚). The latter is clearly reflected 

in the figure above, since none of the four station keeping 

strategies based on the unstable mode cancellation converge 

for the affected periapsis radii (2,000, 4,000 and 6,000 𝑘𝑚). 

One of the assumptions made to ensure the applicability of 

the technique is that only one unstable direction should 

appear, which is clearly not satisfied in the aforementioned 

interval. Results obtained after that region are similar to those 

observed in the 𝐿2 family in the CR3BP. Generally, all the 

strategies behave in the same way as in the 𝐿2 case although 
station keeping costs are slightly higher in the region of 

NRHOs. Most efficient techniques range from 0.5 to 1.2 𝑚/𝑠 

per year while in Figure 6 (top), the values are between 0.2 

and 1 𝑚/𝑠. However, an exception is found in the SKS-8. For 

𝐿1 NRHOs with perilune radii between 2,000 and 8,000 𝑘𝑚, 

the 𝑥-crossing method is ineffective for long-term station 

keeping. The difference in stability indices, apolune radii and 

period with respect the 𝐿2 family in this region might play an 

important role. 

Analysing the BCM results, it becomes evident the 

robustness of strategies SKS-5, SKS-7 and SKS-9 to 

efficiently control a spacecraft in both families. On the other 

hand, SKS-6 shows the same problems as in the orbits near 

the 𝐿2 libration point, although it is a robust strategy, larger 

costs are obtained when implemented in the BCM. 

Finally, Table 1 presents the mean computational time 

per iteration of all the station keeping strategies analysed in 
the study. Results from a single reference halo orbit are 

shown. However, similar trends are observed for all the 

members. The most computationally efficient techniques 

correspond to the strategies based on the unstable mode 

cancellation and periodical manoeuvre placement (SKS-

2,3,4). These are followed by the SKS-9 (control point 

optimisation). On the contrary, the 𝑥-axis crossing technique 

(SKS-8) is the most computationally intensive. 

SKS 1 2 3 4 5 6 7 8 9 

CR3BP 12.0 3.4 3.6 3.5 12.3 15.1 16.7 41.9 7.1 

BCM 13.6 2.1 3.4 3.0 32.5 33.6 24.8 67.1 9.3 

Table 1. Computational costs of station-keeping strategies. 
Numerical comparison between the average computational time per 
iteration (measured in seconds) of the station-keeping strategies 

analysed in this study. All of them correspond to an 𝐿2 halo orbit of 
𝑟𝑝 = 7,000 𝑘𝑚.  

 
5. TRAJECTORY DESIGN FOR MISSIONS TO 

NRHOs 

 

Another important factor to assess the feasibility of NRHOs 

as potential destinations for the DSG is their accessibility. 

First, access from the Earth is covered. Then, transfers to a 

Moon polar orbit are considered. 
 

5.1. Transfer from the Earth to an NRHO 

 

Although many types of transfers exist, the focus of this study 

is two-burn trajectories. An initial translunar injection 

manoeuvre (Δ𝑉𝑇𝐿𝐼) is applied at the parking orbit and a 

second insertion impulse (Δ𝑉𝐼𝑁𝑆) is used to achieve the 

desired final conditions. A parking orbit of 200 km altitude is 

considered for all the cases evaluated in this section. Recall 

that other orbital elements of this orbit are not constrained 
(e.g., inclination) and they could have an important role 

regarding the overall costs. Apart from that, the two burns are 

always applied tangentially to the trajectory (parallel to the 

inertial velocity vector). Although these transfers do not 

guarantee the most efficient Δ𝑉′𝑠, they should provide a good 

approximation for the costs of these missions. 

 

5.1.1. Fast Transfers 

The DSG is part of a planned long-term crewed mission. 

Therefore, there is an obvious preference for short duration 

transfers that reduce the exposure of humans to different 
hazards [11]. In this section, trajectories that depart from a 

200 km LEO and are inserted directly into the operational 

halo orbit are presented. Navigation errors are another factor 

that has an impact on the design of a mission. These become 

more critical in regions of the trajectory with high 

sensitivities [11], which are increased as the path 

approximates the primaries. Hence, insertion manoeuvres far 

from the Moon are preferred. For that reason, transfers 

tangentially arriving at the apolune of the halo orbits are first 

discussed. Translunar injection and insertion costs for the 

whole range of 𝐿1 and 𝐿2 halo families as a function of 𝑟𝑝 are 

shown in Figure 8. 

Although there is a clear dependence between the target 

𝑟𝑝 and the TLI burn, the total transfer cost is mainly 

determined by the halo insertion manoeuvre. Secondly, the 

overall cost is generally higher for the 𝐿1 family, especially 

in the region of NRHOs. While the 𝐿2 presents a minimum in 

the 𝑟𝑝 range close to the NRHOs, the 𝐿1 family shows a 

maximum. This leads to an approximate difference of 150 



m/s in the insertion burn between both families. Taking into 

account the results presented so far, it can be concluded that 

NRHOs of both families are accessible from the Earth at 

reasonable costs compared to other destinations [11]. 

Moreover, orbits near 𝐿2 offer better results for fast direct 

transfers with injection at apolune. 

 

 

Figure 8. Direct transfers from LEO (200𝑥200 km) to the apolune 
of halo orbits. Translunar injection and insertion costs for the whole 
range of 𝐿1 and 𝐿2 halo families as a function of 𝑟𝑝 (bottom), and 

geometry of sample trajectories to NRHOs of 𝑟𝑝 = 6,000 𝑘𝑚 (top) 

are shown. 

However, it is useful to see how the costs are influenced 

by making the insertion in different positions along the halo 
orbit. A spacecraft’s location within a halo orbit can be 

characterised according to the parameter 𝜏. It indicates the 

elapsed time since the last passage through a reference point, 

as a fraction of the orbital period. Therefore, it ranges from 0 

to 1. In this report, the reference point is taken at the apolune 

of the orbit, both for 𝐿1 and 𝐿2 families. Taking this into 

account, transfers to different points of the same halo orbit 

are depicted in Figure 9. The two halo orbits depicted have a 

perilune of 𝑟𝑝 = 45,000 𝑘𝑚. Although this is out of the 

NRHOs range, transfers to halo orbits with larger 𝑟𝑝’s are 

more easily converged at any 𝜏 of the orbit. Moreover, they 

provide valuable information that can be extrapolated to the 

whole halo families. In the first place, the 𝐿2 halo orbit shows 

its minimum Δ𝑉 cost at the apolune (𝜏 = 0 or 𝜏 = 1). 

Consequently, the results depicted in Figure 8 correspond 

with the most efficient transfers to get injected into an 𝐿2 halo 

orbit, through direct fast transfers. In the second place, the 

opposite occurs for the 𝐿1 family. The minimum appears at 

the periapsis of the orbit (𝜏 = 0.5). This indicates that, 

reportedly, results presented in Figure 8 can be considerably 

improved by placing the second burn at the perilune. In 

Figure 10 , transfer trajectories are analysed where the halo 

insertion manoeuvre is placed at 𝜏 = 0.5 (perilune). 

 

 
Figure 9. Direct transfers from LEO (200𝑥200 𝑘𝑚) to arbitrary 
points of halo orbits. Translunar injection and insertion costs as a 

function of 𝜏 for halo orbits of 𝑟𝑝 = 45,000 𝑘𝑚. 

 

Figure 10. Direct transfers from LEO (200𝑥200 𝑘𝑚) to the perilune 
of 𝐿1 halo orbits. Translunar injection and insertion costs as a 

function of 𝑟𝑝. 

As predicted, transfer costs are substantially reduced by 

placing the second injection manoeuvre at the perilune of the 

orbit. An approximate reduction between 300 and 400 𝑚/𝑠 
is observed. Unfortunately, no converged solutions have been 

found in the range of the NRHOs. Due to the dynamics in the 

vicinity of the Moon, no transfers meeting the tangential 

requirements at the insertion point are possible. The 

minimum 𝑟𝑝 that allows a fast transfer to the perilune of the 

𝐿1 halo family using the current implementation is in the 

order of 20,000 𝑘𝑚.   
 

5.1.2. Manifold Insertion 

The use of manifolds has been successfully implemented for 

several missions, especially in the Sun-Earth system [17], 

given that some of them have very close passages to the 

Earth, allowing for direct manifold insertions from low-Earth 

orbits. In the case of the Earth-Moon system, the flow around 

the region of interest does not yield manifolds close enough 

to the Earth [18], and a minimum of two manoeuvres are 

required to get into a halo orbit. 

For this analysis, a specific operational halo orbit is 

studied. An NRHO with 𝑟𝑝 = 7,000 𝑘𝑚 has been selected, 

both for 𝐿1 and 𝐿2 families. Initially, transfers to 𝐿1 NRHOs 

are dealt with. Hence, the stable manifold associated with it 



has been computed to analyse the flow near the halo orbit 

(Figure 11 (left)). 

 

 
Figure 11. Stable invariant manifolds associated with an 𝐿1 NRHO 
(𝑟𝑝 = 7,000 𝑘𝑚). Full discretised manifold (left) and region of the 

manifold yielding the closest Earth approach (right). 

Potential manifold candidates for low-cost transfers 

should have a periapsis with a close passage to the Earth [14]. 

In addition, an efficient trajectory should connect the LEO to 

the corresponding apogee of the manifold [14]. Considering 

this, the range of possible 𝜏’s can be restricted to those which 

lead to low perigees, which have been isolated in Figure 11 

(right). All these manifolds also share a common geometry in 

the zone near the second primary. The relation between 𝑡𝑚 

and the costs near the first apogee associated with the 

manifolds shown in Figure 11 is depicted in Figure 12. As 

expected, all the cases present a minimum in the 𝑡𝑚 span 

covered. In addition, manifolds with lower perigees present 

lower costs. It can be concluded that clear benefits are 

obtained through the exploitation of stable manifolds for an 

𝐿1 NRHO. A good strategy has been identified to determine 

efficient transfers to this type of orbits, and approximate 

savings of 400 to 500 𝑚/𝑠 are achieved with respect to fast 

transfers. The main drawback is the higher transfer times with 

respect to direct trajectories. 

 

 

Figure 12. Transfer costs near the first apogee of invariant 
manifolds (𝐿1 NRHO of 𝑟𝑝 = 7,000 𝑘𝑚). The manifolds analysed 

correspond to those depicted in Figure 11 (right). 

Next, the case of 𝐿2 NRHOs is addressed. It is observed 

that only exterior manifolds exist for the 𝑟𝑝 chosen. 

Therefore, only transfers with insertion manoeuvres placed in 

the exterior realm are possible. Δ𝑉 costs can be slightly 

improved with respect to direct fast transfers. However, due 

to the large increase in the TOF, a trajectory of these 

characteristics is not convenient. Hence, a fast transfer 

appears to be the best option for an 𝐿2 NRHO in a two-burn 

scenario. 

 

5.1.3. Complex Transfer: Halo Insertion plus Transfer to 

NRHO 

As an alternative to the transfer issues for 𝐿2 NRHO as 

described above, this section proposes to exploit the highly 

unstable character of classical halo orbits. The concept is to 

efficiently transfer from an LEO to an auxiliary standard halo 
orbit as a previous step to a low-cost transfer between two 

halo orbits. 

For the transfer between the halo orbits, it is suggested 

to construct a transfer trajectory by connecting the unstable 

manifold of the auxiliary halo orbit to the stable manifold of 

the final NRHO. Poincaré maps are commonly used to 

characterise the behaviour of groups of trajectories [19]. 

However, a vastly different and efficient technique is 

developed in [20], which was considered more appropriate 

given the properties of the orbit of this study. The difference 

with other techniques lies in the methodology used to identify 
the specific manifolds that would lead to small transfer costs, 

which is based on two-body dynamics.  

The total cost of the transfer can be minimised by 

searching for manifolds with similar characteristics (shape 

and orientation). The shape and orientation of a trajectory 

near a primary body can be quantified through two 

parameters associated with the two-body problem; the 

normalized angular momentum vector, ℎ⃗ 𝑛𝑜𝑟𝑚, and the 

eccentricity vector, 𝑒  [20]. Every point along a trajectory can 

be characterised by these two vectors. However, it must be 

ensured that the position is close enough to the primary so 

that the two-body problem assumption is valid. Hence, given 

two points (one from each manifold), the difference between 

the two vectors defined above determines how well they 

match in orientation and shape. This information can be 

expressed in terms of a single parameter as 

𝜅 = |ℎ⃗ 𝑛𝑜𝑟𝑚𝑠
− ℎ⃗ 𝑛𝑜𝑟𝑚𝑢

| + |𝑒 𝑠 − 𝑒 𝑢| (5) 

It can be shown that the transfer cost (Δ𝑉) and 𝜅 are 

linearly dependent [20]. So, a search is needed to find the 

combination of manifolds that gives the lowest 𝜅. Once the 

right pair of manifolds has been identified, the next step is to 

find the optimum bridge that connects both trajectories 

(Figure 13).  

The method explained above has been used to quantify 

the costs of a transfer to an NRHO of 𝑟𝑝 = 7,000 𝑘𝑚 from 

highly unstable halo orbits (Figure 14 (left)). The resulting 

geometry for the specific case of 𝑟𝑝 = 40,000 𝑘𝑚 is shown 

in Figure 14 (right). Highly efficient transfers exist (Δ𝑉 <
60 𝑚/𝑠) to an NRHO of 7,000 𝑘𝑚. However, as it is shown 
in Figure 14, costs are rapidly incremented as the periapsis 

radius of the initial unstable orbit is increased. Therefore, an 

𝑟𝑝 as low as possible is desired for the staging orbit. The 

proposed method (using normal halo as staging orbit) will be 



beneficial if efficient transfers to these auxiliary orbits are 

available, which is analysed next. 

 

 

Figure 13. Transfer between halo orbits schematic: The first 
maneuver on the unstable manifold (pink circle), targets a state on 
the stable manifold. The second maneuver (green circle), corrects 
the velocity at the end of the bridging trajectory (black) [20]. 

 

Figure 14. Total costs to transfer from a normal halo orbit to an 
NRHO as a function of the 𝑟𝑝 of the initial orbit (left) and sample 

trajectory (right). Different segments are identified; halo orbits 
(green), unstable manifold of the small halo orbit (orange), stable 

manifold of the NRHO (blue) and bridge segment (red). The halo 
orbits periapsis radii are 40,000 and 7,000 km. 

Unlike for 𝐿2 NRHOs, classical halo orbits possess 

interior manifolds that depart towards the Earth. The 

minimum 𝑟𝑝 that has allowed the exploitation of the interior 

stable invariant manifolds is 35,000 𝑘𝑚. Minimum costs to 

reach auxiliary halo orbits of different periapsis are presented 

in the following table. 

 

𝑟𝑝 [𝑘𝑚] Δ𝑉𝑇𝐿𝐼 [
𝑘𝑚

𝑠
] Δ𝑉𝐼𝑁𝑆 [

𝑘𝑚

𝑠
] 𝑡𝑚[𝑑𝑎𝑦𝑠] 

35,000 3.035 0.583 54.6 

37,500 3.037 0.565 54.6 

40,000 3.032 0.616 47.9 

42,500 3.033 0.600 45.4 

45,000 3.033 0.587 43.6 

47,500 3.033 0.591 43.0 

Table 2. Optimum costs and manifold propagation from a LEO 
(200x200 km) to of a set of halo manifolds. 

Finally, the total costs to transfer from the Earth to an 

𝐿2 NRHO using the complex transfer is computed combining 

costs of  Table 2 and Figure 14. Maximum savings with 

respect to fast transfers in the order of 250 𝑚/𝑠 are 

achievable. 

 

5.2. Transfer from an NRHO to a Circular Moon Orbit 

 

An important application of the DSG is to facilitate landing 

missions to the Moon’s surface. Particularly, polar regions 

are of great interest due to recent findings of abundant ice in 

shadowed areas of the Moon [21]. Therefore, accessibility to 
these zones is analysed in this section.  

The descent from the NRHO to the landing site will be 

carried out in different phases [1]. Initially, the spacecraft will 

be transferred from the NRHO to a polar circular parking 

orbit around the Moon. Subsequently, an impulsive 

manoeuvre will be applied to lower the periapsis of the orbit. 

Finally, when the perilune is reached, a landing phase with 

variable thrust is performed. For the purposes of this 

investigation, only the analysis of the first phase is considered 

useful. Both the second and third steps only depend on the 

circular parking orbit (CLMO). Therefore, only transfer costs 

to reach the CLMO are presented and compared with those 
from other cislunar orbits. 

The strategy followed to determine the transfer 

trajectories is the same as for direct transfers from an LEO to 

an NRHO. It should be noted, however, that the parking orbit 

constraints are now referred to the CLMO, and the state 

vector must be computed relative to the Moon. Also, given 

the special interest for the polar regions, an inclination 

constraint has been added to target a polar orbit (𝑖 = 90°). 

Apart from that, it has been considered appropriate to remove 

the tangency constraint at the NRHO since convergence 
issues have been observed for some cases. Results obtained 

to transfer from an NRHO of 𝑟𝑝 = 7,000 𝑘𝑚 to a CLMO of 

300 𝑘𝑚 altitude are presented below. 

 

Figure 15. Costs to transfer from an NRHO (𝑟𝑝 = 7,000 𝑘𝑚) to a 

polar CLMO (300𝑥300 𝑘𝑚) as a function of 𝜏 (left), and geometry 

of different transfers for the 𝐿2 NRHO (right). 

According to Figure 15, the optimal 𝜏 to transfer from the 

NRHO to a CLMO is 𝜏 = 0 or close to 0. That corresponds 

with the apolune of the orbit for both 𝐿1 and 𝐿2 halo families. 

On the contrary, transferring from the perilune (𝜏 = 0.5) 

entails the largest Δ𝑉’s. These results demonstrate the 
availability of efficient transfers connecting the near-

rectilinear halo orbits and the polar regions of the Moon 

(recall that all the transfers are injected into a circular orbit of 



𝑖 = 90°). Whitley et al. [22] provide with a general 

estimation of the costs to access the lunar poles from different 

orbits of the cislunar space. It is worth noting that all the 

alternatives to the NRHOs are more expensive in terms of Δ𝑉. 

(e.g., 830 m/s for Distant Retrograde Orbits and 800 m/s for 

𝐿2 halo orbits against <700 m/s for NRHOs). Another 

advantage of the NRHOs with respect to the alternatives is 

that, due to their close passage to the Moon, the TOF can be 
considerably reduced (from 4 to ~0.5 days) if needed [14]. 

This should be done at expenses of an increased ΔV (~800 

m/s). 

 

6. CONCLUSION 

 

The present study has focused on the assessment of station 

keeping costs and the availability of efficient transfers from 

the Earth and the Moon to the NRHOs and vice versa.  

A variety of station keeping strategies have been 

proposed to control a spacecraft in halo orbits, paying 
particular attention to NRHOs. Two robust techniques, one 

based on differential corrections (position targeting; SKS-5, 

6, 7) and another one based on a control-point optimisation 

scheme (SKS-9), have been identified. SKS-5 and SKS-9 are 

especially optimal for NRHOs station keeping, requiring a 

single manoeuvre per orbit. The latter has demonstrated to be 

more efficient in terms of computational and annual Δ𝑉 costs. 

As an approximation, a Δ𝑉 of 0.5 𝑚/𝑠 is required per year in 

an 𝐿2 NRHO. It has also been observed that, generally, 

maintenance costs are slightly higher in orbits near the 𝐿1 

point (~ 1 𝑚/𝑠 for NRHOs). The most efficient station 

keeping results have been provided by the 𝑥-axis crossing 

technique (~ 0.25 𝑚/𝑠 for 𝐿2 NRHOs). However, after the 

transition to the BCM, costs are increased to some extent 

(~ 0.8 𝑚/𝑠) due to an exponential growth of the Δ𝑉 

requirements at the end of the simulations. Also, the 𝑥-axis 

crossing technique is valid only for orbits with a perilune 

radius smaller than 12,000 𝑘𝑚 for the 𝐿2 family, and it is 

ineffective for the whole 𝐿1 family.  

The second goal of this study is to demonstrate the 

availability of efficient transfers connecting the NRHOs with 

other dynamical structures in the cis-lunar space and beyond. 

The CR3BP has been considered a powerful tool for this early 

phase of trajectory design. First, feasible direct and fast 

transfers from the Earth, crucial for crewed missions, have 

been evidenced for both 𝐿1 and 𝐿2 NRHOs, being cheaper in 

the case of 𝐿2 family. By allowing the TOF to be increased, 

very efficient transfers are found for 𝐿1 NRHOs by exploiting 

their stable invariant manifolds. The dynamical flow 

associated with 𝐿2 NRHOs does not allow to directly leverage 

their manifolds. Nevertheless, a technique has been presented 

to reduce transfer costs from the Earth by using the stability 

properties of other halo members of the same family. Finally, 

a study has been performed to compute efficient trajectories 

from a NRHO to the Moon and vice versa, showing 
promising results with respect to other dynamical structures 

in the cislunar space. 
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