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ABSTRACT
This article presents an efficient and economical automatic image analysis technique
for the droplet characterization in a liquid-liquid dispersion. The methodology em-
ploys a combination of the Satoshi Suzuki’s (Suzuki, 1985) find contours algorithm
and the method of minimal enclosing circle identification, proposed by Emo Welzl
(Welzl, 1991), to achieve the objectives. The round object detection algorithm has
been designed for the identification and verification of correct droplets in the mix-
ture which helped to increase the accuracy of automatic detection. Tests have been
performed on various sets of images obtained during several emulsification processes
and contain examples of droplets which differ in size, density, volume and appear-
ance etc. An effective communication between the two methodologies and newly
introduced algorithms demonstrated an accuracy of 90% or above in the measure-
ment of droplet size distribution and Sauter mean diameters through an automatic
vision based system.

KEYWORDS
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1. Introduction

In chemical and process industry, the mixing process manipulates a heterogeneous
system and aims to make it a more homogeneous. Such processes include pumping of
water into a swimming pool to make the temperature more homogenized, mixing of
two different paints or chemicals and mixing of gases in a liquid medium. Applications
can be various including (but not limited to) food industry, chemical reactors, cosmetic
industry, bio-fuel and many more. A consortium consisting of various industrial sectors
run by our industrial collaborator, referred to as the Fluid Mixing Processes (FMP),
looks at the research of single or multi-phase mixing processes in various applications.
One of the areas of importance for FMP is the the dispersion of two immiscible liquids,
normally referred to as liquid-liquid dispersion (LLD). In LLD two liquids phases, such
as oil and a water-based liquid, would segregate when poured in to a container without
mixing, however if correctly agitated using an impeller they would form dispersion.
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When the two liquid phases are dispersed, they form an emulsion which contains
droplets of the dispersed phase in the continuous phase that do not coalesce.

Droplet characterization, specifically measurement of the droplet size distribution
(DSD), is one of the most important parameters in LLD as it affects mass transfer
rates and other physical properties of the emulsion. Various factors can influence this
such as the concentration of the dispersed phase, viscosity and the mixing process
characteristics (e.g. size and type of impeller and rotational speed). FMP has developed
a number of correlations to predict the average equilibrium droplet diameter for a given
set of process conditions, however, they continuously collect data to improve the range
of applicability. In many cases surfactants are used, which are chemical additives to
assist the dispersion by lowering the interfacial tension and stabilize the system against
coalescing (referred to as a surfactant-stabilized or non-coalescing system).

Over the years, several efforts have been put in to accurately measuring the DSD
in an LLD, however this particular area is still of major interest to the industry and
researchers. Historically a manual approach based upon external sample analysis was
used for the measurement of DSD and Sauter mean diameter in the industry, however,
in-situ DSD measurements have been found to be challenging (Maaβ, Rojahn, Hnsch,
& Kraume, 2012). Although there is significant research (Narsimhan & Goel, 2001;
Tcholakova, Denkov, & Danner, 2004; Wright & Ramkrishna, 1994) carried out in the
area of external sample analysis, there are several limitations to this methodology.
The group of in-situ/on-line methods (which include techniques such as acoustic, laser
diffraction, light back scattering, videos and endoscopes) is dedicated to studies which
require knowledge of how emulsion changes its parameters throughout the mixing
process (Basaran & McClements, 1999; Chatzi, Boutris, & Kiparissides, 1991; Niknafs,
Spyropoulos, & Norton, 2011; Richter, Voigt, & Ripperger, 2007; G. Zhou & Kresta,
1998). Several in-situ/on-line techniques have been proposed over the last few years
(including the use of image analysis) and it has to be acknowledged that all techniques
offer some advantages and disadvantages. In approaches using a stream of light, for
example, a transparent system is required and as a result often are unable to make
correct measurements for emulsions with high volume fraction of dispersed phase,
however, this problem can be overcome by approaches using ultrasounds. The pros
and cons associated with other techniques indicate that the digital imaging technique
is still one of the better options and needs to be explored further (Alban, Sajjadi,
& Yianneskis, 2004; Kamp, Hnsch, Kendzierski, Kraume, & Hellwich, 2016; Maaβ,
Wollny, Voigt, & Kraume, 2011; Pacek, Moore, Nienow, & Calabrese, 1994; Ritter &
Kraume, 2000).

Use of imaging in emulsification has been employed for several years; historically,
analogue photographs have been used (Chen & Middleman, 1967; Coulaloglou &
Tavlarides, 1976) which could make imaging one of the first and most popular tech-
niques used for the DSD measurements. Analysis of the digital images technique can
be employed both for off-line and on-line measurement of droplets with limitation for
systems where high rate of droplet coalescence occurs (Alban et al., 2004). Off-line
measurement method is suitable for emulsions only if the stability of the droplets is on
a level warranting reliable size measurement. However, very often this stability con-
dition is unsatisfied and additional actions are required to improve kinetic stability.
Usually, a surface-active surfactant is used where in most of the cases only a small
amount of it added into studied emulsion can sufficiently increase its stability and
thus the reliability of the DSD analysis (Arai, Konno, Matunaga, & Saito, 1977). The
extra surfactant inside emulsion is not the only one known solution used for droplet
stability improvement; diluting the collected dispersion samples with an aqueous ver-
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sion of a surfactant (Lagisetty, Das, & Kumar, 1986; Tobin, Muralidhar, Wright, &
Ramkrishna, 1986) before size measurements, can also give desired stability.

It was noted (Pacek et al., 1994) that every interference in extracted samples from
emulsion changed its properties and made measurement ineffective; especially for sys-
tems where fast coalescence and reaction exists. Such situation is not good even for
short time of sampling (often less than one second) because changes in coalescence
and flow of the emulsion result in significant measurement discrepancies. In (Pacek
et al., 1994) proposed approach which solved this problem was suggested where they
used a digital video camera to record the mixing process. After this, they manually
analyzed the captured video frame by frame and thus they were able to get relevant
information for characterizing dispersion of chlorobenzene in water containing various
amounts of glycerol. Nowadays this method is widely used for image acquisition ei-
ther for basic, relatively simple systems or complex multi phase dispersions (Galindo
et al., 2005). However, parallel extraction of information from in-situ images remains
a challenging task for several reasons which are pointed in (Y. Zhou, Srinivasan, &
Lakshminarayanan, 2009).

Ribeiro et al. (Ribeiro, Guimares, Madureira, & Pinto, 2004) also utilized videos for
the image acquisition process. The video was analyzed frame by frame to characterize
the droplets in the studied emulsion. The manual methodology was time-consuming
and implied high labor costs thus could present high rate of errors. The overview of
the analysis process has been presented in (Junker, 2006) which demonstrates the use
of images for droplet detection. Most of the available studies consider off-line than on-
line sampling however, this trend is changing and these days state of the art approach
is the development of on-line computer applications capable of reliable automatic,
accurate and (equally important) fast analysis of acquired images. The analysis time
factor is determined by two parameters namely data acquisition time (DAT) and
measurement acquisition time (MAT).The DAT delivers information about the time
needed to capture an image of the studied emulsion, the MAT factor is a combination
of DAT and the real measurement time needed to extract relevant information from
an image. Ideally, MAT should be equal to DAT (Crawley & Malcolmson, 2004).
Image analysis can not change DAT because this factor depends only on equipment
specification used for emulsions photography, while MAT depends mainly on image
analysis algorithms. It is obvious that the condition of minimization of the difference
between MAT and DAT can never be satisfied by manual evaluation of images due
to its nature. On the other hand, the automatic droplets detection gives hope as it
can cope with the detection of the droplets but can also do this with as short time as
possible depending upon the algorithm.

Associated with these, another challenge is the quality of the images acquired dur-
ing the process which can present drawbacks such as overlapping droplets, lighting
and noise. Research in this area indicates that the quality of acquired images have a
big impact on the success of the automated detection of the objects of interest and
their measurements (Yan, Sayad, & Balke, 2009). The influence of the image quality
of automatic measurements precision and droplets detection success was tested and
presented in (Bras, Gomes, Ribeiro, & Guimares, 2009) where the authors proposed
algorithm for automatic image analysis for the measurement of DSD in an emulsion.
To evaluate the robustness of this methodology against variations in image quality as
objectively as possible they chose images with two different levels of quality. Firstly
droplets were identified manually by authors which indicated that there were more
than 100 droplets with varying parameters (such as radii, overlapping, border quality,
etc.) in each image. Automatic detection was then applied and results were compared
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to each other. For better visualization of the differences, they defined two parameters
namely the recall and the precision. The recall measured the proportion of droplets
that the program was able to identify correctly, whereas the precision was the pro-
portion of droplets identified by the program that are truly correct. As a result, they
obtained 0.71 recall and 0.89 precision for the first image and 0.55 recall and 0.87
precision for the second image with lower quality.

Generally, all algorithms work well for designed systems but for only low coalescence
- otherwise cannot give satisfying results in terms of droplets detection (Maaβ et al.,
2012). However, promising results in (Alban et al., 2004; Bras et al., 2009) show a
way forward. Alban et al. (Alban et al., 2004) proposed an interesting combination of
image processing algorithm for arc and circle center estimation and further a pattern
matching algorithm for verification of results. In this method the biggest problem
was with small droplets especially when their contours are weakly visible. On the
other hand, Bras et al. (Bras et al., 2009) presented an image processing algorithm
which allows extracting relevant information from an image and then used well known
Hough transform for detection of circles (Cohen & Toussaint, 1977). This approach
also has the biggest problem with the detection of small droplets but in both cases,
it does not have a big impact on Sauter mean diameter because this diameter mainly
depends on droplets whose sizes are medium to large. Then the wrong detection of
small droplets cannot significantly affect the final result. The much worse drawback is
high computational time. Both, the pattern matching by Alban and Hough transform
by Bras are demanding in terms of complexity of calculations. It led to high MAT
factor value and makes these methods less attractive for on-line measurements.

In summary, the industry requires an efficient and accurate solution for automatic
droplets detection and based upon previous efforts and experience it can be deduced
that a solution based on image analysis approaches can be a better candidate. This
article presents a method/algorithm for automatic droplets detection and size measure-
ment which uses image processing and images analysis techniques with the aim to cope
with various kinds of dispersions either with a high or a low density of the dispersed
phase. The secondary goal is to design a fast algorithm in order to satisfy on-line mea-
surement requirements. Section 2 below represents the methodology/algorithm and
Section 3 presents results on an acquired image.

2. Automatic Droplet Detection Algorithm

Automatic droplets detection algorithm is presented in four steps where each step in-
volves few actions. Figure 1 shows the flow of these actions and connections with one
another. In this section every step is discussed individually, however, it must be men-
tioned that many existing image processing techniques have found application in this
project. On the other hand for image analysis, a new approach has been presented for
effective and economical measurement of DSD, although using some known functions.
As such, the proposed program is a combination of known methodologies and known
functions which are brought together for automatic droplets detection and some of
new actions forced by the new approach of image analysis.

2.1. Parameter Adjustment

A lot of effort has been devoted to find solution to allows for an automatic initial para-
metric adjustments of samples with different properties however none cope with this
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Figure 1. Schematic representation of the automatic droplets detection algorithm.
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Figure 2. GUI for the parameter adjustments.

problem satisfactorily. Due to this reason the program still requires some adjustment
before the automatic detection. The aim of this adjustment is to establish images suit-
able for analysis as all of the images are characterized by different features like droplet
density, average gray level etc. Therefore, for convenience, the dynamic adjustment of
the parameters has been offered. It means that an image in the studied batch can have
its individual parameters however during tests first two or three images were enough
for establishing parameters suitable for the rest of the images in batch. Three dynamic
parameter adjustment tools provide the user a simple interface as shown in Figure 2.
The decision-making regarding which parameters should be available for the user has
been made after several tests on data and will be explained later in further sections
below:

• Intensity of blurring
• Brightness level
• Value of threshold

2.2. Image Processing

Image processing is responsible for extracting and enhancing relevant information
present in the image. This is precursor for the image analysis part where only the
most important information in the image needs to be considered. Some known func-
tions for edge detection and their enhancement has been tested, however techniques
such as Canny, Sobel and Marr-Hildreth (Schalkoff, 1989) presented unsatisfying re-
sults; all of them caused information loss which has consequences for later processes.
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The main drawback was partial loss of contour intensity for droplets with thin bor-
ders. Additionally, some of the information in given image data was wrong and could
cause errors during image analysis. For this problem, another method was required
to eliminate all irrelevant information such as shadows and imperfections captured
during image acquisition. Conventionally, simple contrast manipulation has been ap-
plied however, together with elimination of unnecessary data some important features
has been removed as well. Overall this stage faced two problems; firstly removal of
the irrelevant information without damaging important features and secondly the en-
hancement of important information at the same time. In this stage these challenges
have been solved independently as in (Maaβ et al., 2012) which applied two steps,
where in the first step redundant information is removed and in second step removal
of all illumination distortions is applied.

2.2.1. Lens cleaning

During image acquisition, not only shapes of droplets dispersed in the emulsion are
captured but some extra shapes and illumination patterns can also be observed in
the images such as marks on the lenses. This type of noise is individual for every
batch of acquired images and depends on lighting conditions, emulsion properties,
and photography equipment. However these are mostly common to every single image
in the batch and create redundant information which can be manipulated. This step
is called Lens Cleaning mainly due to the such noise having its origins in dirt or
particles on the lens. In order to separate these imperfections, the cumulative pixel
by pixel average image is created after analyzing every image in the batch, using the
Equation 1 (Maaβ et al., 2012):

S =
1

ηB

ηB∑
i=1

Bi (1)

The results of this process are represented in the Figure 3b and has been created by
the analysis of 152 images. The number of images can be crucial for this approach and
the main rule is, the more images the more accurate the method. In the algorithm, a
lower threshold of images count has been applied as 30; for a number of images smaller
than 30 this action is omitted because it may cause the wrong separation and instead
of increasing quality leads to its decrease (based on experience). Here arithmetic mean
image S is obtained, calculation of the new clean image is possible by subtraction of
the original image and its mean image S as represented by Equation 2 (Maaβ et al.,
2012):

B
′

i = Bi − S + S (2)

The S is an average gray level of the S image and addition of this factor is necessary
to keep the gray level of the whole cleaned image on the same level which original image
has. The result of this subtraction is presented in the Figure 3c. By this stage, the
image contains only relevant information and is ready for further processing.
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Figure 3. Explanation of Lens Cleaning method: a) original “dirty” image; b) extracted redundant informa-

tion; c) “clean” image created by subtraction of a) and b).
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2.2.2. Self quotient image (SQI)

As mentioned earlier, not only the unnecessary objects visible in the image can be
problematic for image analysis algorithm but also illumination variations may have a
big impact on automatic detection. These cause nonuniform gray level in the image
and all global actions such as thresholding become difficult to apply for one set of
parameters. This problem can be overcome by Self Quotient Image (SQI) (Shashua
& Riklin-Raviv, 2001), an example of its usage are presented in (Gopalan & Jacobs,
2010). Generally, SQI is applied to noisy images in order to increase the robustness
of the automatic objects detection. It is achieved by normalizing intensity of every
pixel based on its neighborhood. Name of this method is motivated by scheme of the
calculations which are explained by Equation 3 (Maaβ et al., 2012):

Q(x, y) =
B

′

i(x, y)

X(x, y)
(3)

The normalized SQI image is created by the division of the original image by its
blurred version (see Figure 4a and 4b ). The smoothed image is then the result of
the convolution between the original image and two-dimensional Gaussian kernel (K).
The size of this kernel determines the intensity of the the smoothing operation which,
in turn, allows useful manipulation of the SQI images. The Equation 4 (Maaβ et al.,
2012) below describes the application of this kernel.

X = B ∗K (4)

This feature is truly important in the process for further analysis because it es-
tablishes the most appropriate SQI image. The two-dimensional Gaussian kernel size
is available for the user through the first track-bar (Intensity of Blurring) showed in
Figure 2. The image obtained is shown in the Figure 4c, where the main advantage of
the operation is that the illumination variations have been removed and the histogram
of the gray color is less spread. Moreover, borders of droplets are preserved and no
important information has been lost.

2.3. Image Analysis

In most of the cases for droplet detection, conventionally, Hough transform has been
employed; one of the optimized version of this algorithm is proposed by (Yuen, Princen,
Illingworth, & Kittler, 1990). The authors suggested that combination of the Gerig
Hough Transform with a gradient (GHTG) and two stage Hough transform (2HT) is
much more efficient and accurate than the traditional approach. This finding was so
successful that it has been implemented to OpenCV library. Recently (Bras et al., 2009)
proposed a variation of the Hough transform dedicated for automatic measurement
of DSD for LLD. The reduced voting procedure which used only two sections of the
right circular cone was applied. However, the sensitivity to noise and poor quality of
images increased. Additionally, the computational costs, despite improvements, still
stayed on a relatively high levels.

To overcome such issues, a new round objects detection procedure is presented which
is not connected with already highly exploited Hough transform algorithm. Essentially
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Figure 4. SQI method explanation: a) original “clean” image; b) blurred version of a); c) SQI image created
by dividing a) by b).
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image analysis algorithm has been created in two steps. Firstly, the method of finding
contours in an image is applied and secondly all detected contours are enclosed in
circles whose sizes are as small as possible. After these two steps, next action is required
and is described in Section 2.4 later.

2.3.1. Finding contours

In this step, the thresholded image of the SQI is a base for calculations. Borders
existing in the image created by this operation now can be detected by the function
“findcontours” implemented in the OpenCV library. This algorithm retrieves contours
from the binary images as explained in (Suzuki, 1985). In their work, two algorithms
were presented, where the first one determined the surroundness relations among the
borders of a binary image and the second one followed only the outermost borders.
Both algorithms can be effectively used for border detection however in this work only
the second one is used. As the function “findcontours” requires a binary image, this
is created by thresholding operation. This is when the second parameter (Brightness
level) is manipulated through the middle track-bar as shown in the Figure 2. The
Equation 5 below explains how the brightness parametrization works. During division
of the original image by its blurred version the final result is multiplied by the value
selected by the user.

Q(x, y) = multiplying factor ∗ B
′

i(x, y)

X(x, y)
(5)

The interval of the selectable values of the multiplying factor has been settled be-
tween 95 and 115 (based on experience). This operation has an influence on the final
binary image as the thresholding operation is based on the constant value of the thresh-
old. This has been established experimentally during the development stage and its
value is set to 97 points of the gray color intensity. Thresholded image created by
combination of the brightness manipulation and thresholding is shown in the Figure
5a.

In the Figure 5b detected contours are presented. As shown, the strongest contours
are on the borders of droplets however, many other contours have also been identified.
This is due to the “findcontours” function which is not concerned with the specific
shape of an object (for example the round objects which is the main aim for the Hough
transform). Thus, it looks for all contours presented in the image. This procedure is
computationally less demanding which is a huge advantage however, further processes
is required to achieve the desired results which in our case is the measurement of DSD
using correct automatic droplets detection.

2.3.2. Find minimal enclosing circles

In this step another OpenCV function “minEnclosingCircle” is utilized. This function
finds the minimal enclosing circle of a two-dimensional point set using an iterative
algorithm by (Welzl, 1991). The function obtains information about the radius and
the center of each circle and the data thus obtained is relevant for further processing
which is performed in the further steps of the algorithm. The result of the detection
of minimal enclosing circles is presented in Figure 6a.
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Figure 5. Result obtained by the “findcontours” OpenCV function: a)binary image analysed by algorithm;
b) detected contours

.
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2.4. Results Verification

The combination of two described functions available in OpenCV library is an effective
method for contours detection but not for detection of round objects itself. It makes
calculations faster and easier, however together with simplicity, which is undeniably
advantageous, enables the significant reduction of image analysis time in comparison to
Hough transform. Further improvements are required in order to increase the accuracy
which at this stage is very low. This is carried out in three steps as below.

2.4.1. Delete small circles

After detection of minimal enclosing circles most of the detections are circles with a
radius equal or even smaller than 5 pixels. Such small droplets in dispersions are very
rare but in a case when they truly exist it is almost impossible for correct detection
even in a manual procedure. Therefore, initially the verification step deletes all circles
where radii are equal or smaller than 5 pixels. It means that designed algorithm is
unable to detect such small droplets but on other hands, it does not have a significant
influence on the accuracy of the final results. The results obtained after deleting all
small circles which met the condition is presented in the Figure 6b:

if(radius ≤ 5) =⇒ delete circle

2.4.2. Delete circles inside

Despite achieving improvements after the first step of the verification process, usually
a significant part of the circles is still wrong. Mainly it happens because of the shadows
inside droplets which during image analysis for the find contours process are treated as
an independent part, not connected with correct droplet border. In most of the cases,
it leads to the appearance of small droplets (but big enough to pass first verification
step) placed inside bigger droplet, usually a correctly detected circle. To remove these
erroneous circles, a new verification process is needed which is able to find out a relation
between existing circles. It can be done by using simple Cartesian plain geometry
and comparison process enabling to compare circles to one another in terms of their
location and sizes. The gray image is a two-dimensional space containing a number of
points equal to multiplying operation of its height and width, rendering well-known
equation for calculation of the distance between two points is valid here. An example
of a possible situation when one of the circle is placed inside other is explained through
the Figure 7 and Figure 8.

In the Figure 8 the rule of work of the comparison algorithm is presented. Every
single circle is compared to other circles as it is shown on an example of the circle 5 in
the Figure 7. During this comparison, the algorithm makes decisions whether the circle
is correct or not and the result of this decision process is shown as a middle vector
called “verification result” which is colour-coded (green colour means that circle is
correct and the red colour means that circle is wrong). As a result of this verification
process, a new vector is created which is called the “final vector”. This vector contains
only correct circles and is ready for further processing.

The procedure is based on circle center locations and radii sizes. Images in OpenCV
library have their origins always in the upper left corner. For implemented algorithm,
the unit of measurement is a pixel. During creation of minimal enclosing circles the
“minenclosedcircle” function delivers information about the radii and centers in a form
of two separated vectors. This knowledge is relevant and is used in two steps where
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Figure 6. First verification step - deletion of small circles: a) image before verification; b) image after verifi-
cation

.
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Figure 7. An example of the possible situation when one droplet is placed inside other one.

15



Figure 8. Testing procedure of the second verification step.

each of them checks different condition. In the first step, the distance between two
centers is checked. In a case of highlighted droplets in Figure 7, the location of the
center 5 is denoted as S5(x5, y5) and for centre 6 as S6(x6, y6). The Equation 6 below
states how the distance between these points is calculated.

distance5−6 =
√

(Sx6 − Sx5)2 + (Sy6 − Sy5)2 (6)

After this, a length of the radius 5 is compared with calculated distance and in a
case when it occurs to be shorter first condition is satisfied and the second condition
is checked. The first condition can be written in following way:

if(radius 5 ≤ distance5−6) =⇒ check second condition

The second condition is needed as satisfying the first condition only means that
one of the circle is inside the other but still it is impossible to determine which one
should be deleted. This problem is solved by comparing the lengths of the radius 5
and radius 6. Based on experience from industry, it is more likely that a circle with
a smaller radius is wrong and should be deleted. Thus, the second condition can be
written as:

if(radius 5 ≤ radius 6) =⇒ delete circle 5

In Figure 9b, the results of the second verification are presented. Now almost every
wrong circle has been deleted and accuracy is higher. As a comment, it is important
to say that this method is effective but its drawback is that the droplets detection
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algorithm is unable to detect droplets when more than half of their surfaces overlap.
Moreover, some more imperfections can still be removed but for this improvement the
third and last verification is required.

2.4.3. Delete wrong circles

This step can be referred to as the border verification because the base for it is the
most important feature due to which droplets are visible on acquired images. Looking
at the pictures of the emulsion it is clearly visible that despite several differences
between droplets taken from various types of the emulsion, one feature is constant
and common to all of them, i.e., the dark borders. This fact was noticed, for example,
by (Lin, Skaf, & Jennions, 1990) which used the gradients at the edges of droplets for
the development of their image analysis approach. This phenomenon occurs due to
the distortion of light caused by changes in density of the environment in which it is
dispersed. Before the last verification can be applied it is required to create an image
with extracted borders of droplets. Here, the last user interference is needed and the
bottom track-bar (presented in Figure 2) enables it. The track-bar changes a value of
the threshold which helps extract borders of droplets to the binary image. For this
purpose the image created during lens cleaning processing is taken as a base for the
thresholded image. The result of the operation is shown in the Figure 10.

As it was mentioned after second verification step, the accuracy of the results ob-
tained is increased but a few wrong droplets can still be observed, especially on the
borders of the image. Circles indeed are drawn because in these areas the droplets
exist but the precision is away from the ideal. It happens due to the fact that dur-
ing image acquisition these droplets have their centers beyond the scope of camera
objective. As the specification of the automatic droplets detection is concentrated on
enclosing contours in circles, for correct measurement at least half of the droplet sur-
face is required. However, not only partially visible droplets are problematic but also
non-circular objects with gray colour intensity (which is similar to droplet edges) can
cause wrong detections. To overcome this disadvantage new methodology has been
presented and the edges of the droplets are the most important feature helping verify
whether detected circle truly represents a droplet or not. Figure 11 presents the main
idea of the method. Eight square points placed inside detected circle check values of
the pixels which are in their scope. Scope of each checkpoint depends on size of the
detected circle. The condition that determines the size of the checkpoints is as follows:

if(radius < 40[pixels]) =⇒ size = 3[pixels] else =⇒ size = 0, 1 ∗ radius[pixels]

The values of checking pixels are taken from the binary image (Figure 10b). The
dynamic size of the checkpoints is applied to protect from inappropriate deletions of
the big droplets which, due to the intensive light distortion on their borders, may
be over estimated. This slight imprecision does not have an impact on the accuracy
of the overall measurement but may cause unnecessary removal of correctly detected
droplets. For the correct verification process, it is crucial to appropriately allocate
the checkpoint. The main requirement is that the checkpoints always check pixels
inside of the detected circle. It is possible by correct evaluation of the position of each
checkpoint. In the code, it has been realized by referring to the center location of
the circle. Next, for each of the square checkpoint bottom left vertex coordinates are
determined and then direction of the checking procedure is determined according to
the rule that it should converge to the center of the circle:

checkpoint 1:
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Figure 9. Second verification step - deletion of the circles placed inside other ones: a) image before verification;

b) image after verification.
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Figure 10. Thresholding operation for the third verification step: a) original “clean” image; b) thresholded
version of a).
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Figure 11. Locations of the checkpoints. Blue ring represents detected circle; Black ring is a thresholded

version of the droplet.
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√
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2 ; 5y = Sy − (radius∗

√
2)

2

directionx = 5x − size ; directiony = 5y + size

checkpoint 6:
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6x = Sx + radius ; 6y = Sy

directionx = 6x − size ; directiony = 6y + size

checkpoint 7:

7x = Sx + (radius∗
√

2)
2 ; 7y = Sy + (radius∗

√
2)

2

directionx = 7x − size ; directiony = 7y − size

checkpoint 8:

8x = Sx ; 8y = Sy + radius

directionx = 8x + size ; directiony = 8y − size

Obviously, the number of checking pixels depends on the size of the checkpoint and
is equal to size2. Checkpoint is marked as correct if at least one pixel inside its scope
is black. The black pixel means that checkpoint is placed on the edge of droplet. When
all checkpoints have their value, number of checkpoints marked as wrong is calculating
and following condition is inspected:

if(number of wrong checkpoints ≥ 2) =⇒ delete circle

The condition allows for existing one wrong checkpoint and all test which will be
presented in next chapter has been evaluated according to this exception. Changing
this parameter is not available to the user however examination of available samples
proved that the permission for one wrong checkpoint is the most optimal. For the
condition where no wrong checkpoints are allowed and where two wrong checkpoints
are allowed, it resulted in respectively 28,4% less and 13,8% more droplets detected
than for the semi-automatic detection which is treated as the most accurate method
for counting droplets. The final results look well after three verification procedures, as
in the Figure 12b. All droplets on the edges of the image that are beyond the viewing
range are ignored, and only properly detected droplets remained in the image.

3. Results

3.1. Testing Procedure

Several experiments were conducted to evaluate the reliability of the designed algo-
rithm for automatic droplet detection, its robustness to changes in the droplet concen-
tration, image quality and many other image properties which always change during
image acquisition of different LLD systems. Various batches of images were used which
were provided by an industrial collaborator which assures that the algorithm is based
on true data useful for industry. Moreover, each image is different in various aspects
(from density of droplets to the image quality). It provides good opportunity to carry
out validation procedure for code development on a variety of test cases. In order to
perform verification objectively, normalized work-flow has been defined in the Fig-
ure 13 which helps achieve results which can be easily compared with each other.
The assessment scheme is divided into three possible ways. For all batches of images
three variants of automatic, semi-automatic and manual approach has been checked.
A temporal assessment has been carried out for the manual approach for the DSD
measurement. For comparison of efficiency of the automatic droplets detection, the
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Figure 12. Third verification step - deletion of the wrongly recognised circles: a) image after verification; b)
image after verification.
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Figure 13. Work-flow of the testing procedure.

semi-automatic detection is considered as the most accurate method where all detec-
tions are correct. Therefore, the results of the automatic detection are compared to
the results of the semi-automatic detection.

3.1.1. Automatic droplets detection

The first step before activation of the automatic mode is a parametrization of the
three factors which were discussed in the earlier section. It means that automatic
detection is not truly automatic detection because it still requires some user attention.
However this drawback exists only at the beginning of the automatic mode and after
relevant adjustments the algorithm is ready for analysis on the given batch of sample
images. Usually, after first two or three images, it is possible to determine the most
optimal values of these factors for whole batch. It warranties that the algorithm can
cope with automatic measurement without any problems even totally new type of
images is tested. In the other words, in exchange for a small workload associated with
parametrization, the user receives a universal computer program.
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3.1.2. Semi-automatic droplets detection

The first step of the semi automatic mode is same as for the automatic mode. The user
has to decide which set of parameter is the most optimal for analyzed sample of images.
However, after this step, further verification is still required; this verifications process
is carried out by manually adding miss-detected droplets on the image. Similarly, when
the wrong circle was detected during automatic analysis it can be removed manually.
In our opinion, this approach is the fastest and the easiest. However, other possibility
exists were the parameter adjustment for every single image is performed. This makes
sense when most of the droplets were not detected for the previous set of parameters
and manual addition/removal could be more time consuming than establishing a new
set of parameters.

3.1.3. Manual droplets detection

Manual droplets detection is independent mode and all measurements are made by the
user. It allows to obtain estimated time required for manual DSD measurement which
can be compared with the time acquired during the automatic and the semi-automatic
measurements.

3.1.4. Data collection

As the last step of testing procedure common to all modes is data collection were data
is output in ASCII format and contains all captured information such as the number
of detected droplets, diameters of detected droplets and time required to carry out the
measurements. All these are required for further analysis to understand the perfor-
mance of the algorithm. In this case, the results obtained have been examined in three
important aspects determining usability of the designed code. The most important one
is the measurement of DSD which is the main factor describing emulsion, second is
Sauter mean diameter and its variations which are strongly connected with the DSD
and defines emulsion as one droplet diameter. The last one is the time it takes for the
measurements which is helpful in understanding the economical performance of the
algorithm.

3.2. Droplets Size Distribution

In this section results in terms of number of detected droplets are presented. For
clear understanding, droplets are segregated according to their sizes. It creates a his-
togram and shows how sizes of the droplets dispersed in the emulsion, are spread. The
comparison between automatic and semi-automatic approach is presented graphically
using charts, which provide information regarding the sizes of the droplets for which
the automatic approach faced challenges. Additionally, based on an overall number of
detected droplets it is possible to calculate the percentage droplets in each range of
the diameters which is the fundamental aim of the measurement of DSD. It must be
mentioned that if the bars representing automatic and semi-automatic detections are
not equal, it does not mean that the final result are incorrect; more important aspect
is to keep the same distribution of the droplets sizes. In the other words, dotted lines
which are added to every chart should be as close as possible to each other. Only this
feature has impact on the emulsion’s description. Characteristic features of the images
(examples are shown in Figure 14) which were used for algorithm evaluation are:
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• High and medium amount of the dispersed phase.
• Sizes of droplets are medium and small and the range is not very wide.
• Most of the droplets have similar contours which are dark and well visible.
• Droplets are close together but overlap phenomenon does not occur often.
• Clean images with good quality and uniform gray level.

Images in this sample are challenging and complex due to high density of the dis-
persed phase. However, results in terms of number of detected droplets shown in Figure
15 is satisfying. Here, the most of the error occur in the smallest range of droplets sizes
where automatic method found over 20 percent more droplets than the manual ap-
proach. This drawback is visible for almost every analysed batch of images. On the
other hand, rest of the droplets are detected with a difference around 10 percent or
less. This fact reduces the influence of wrongly detected smallest droplets on the cal-
culation of the emulsion parameters such as Sauter Mean Diameter (results in Section
3.3).

3.3. Sauter mean diameter

Performing a droplets size analysis is the best way to answer the question: What size
are those droplets? Once the analysis is complete the user has a variety of approaches
for analyzing the result. One of them is the calculation of a mean diameter which
delivers information about an average size of the droplets dispersed in the emulsion.
This can partially explain specification of the mixture and determine further actions
for the development of better emulsification processes.

The two types of mean diameter are considered as follows:

• Surface area moment mean D[3, 2] - so called Sauter Mean Diameter, is most
relevant where specific surface area is important e.g. bioavailability, reactivity,
dissolution. It is most sensitive to the presence of fine droplets in the size distri-
bution
• Volume moment mean D[4, 3] so called De Brouckere Mean Diameter, is relevant

for many samples as it reflects the size of those particles which constitute the
bulk of the sample volume. It is most sensitive to the presence of large droplets
in the size distribution.

The Sauter mean diameter can be calculated as below:

D[3, 2] =

∑n
1 D

3
i υi∑n

1 D
2
i υi

(7)

The base for this equation is a histogram chart which shows the upper and lower
limits of n size channels (Figure 15). The Di value for each channel is the geometric
mean, as shown in the Equation 8 below:

Di =
√
upper bound ∗ lower bound (8)

In the Equation 7, the numerator takes the geometric Di to the third power multi-
plied by the percent in that channel, summed over all channels. For the denominator
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Figure 14. Example of analysed images which were used for evaluation of the novel automatic droplets

detection algorithm.
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Figure 15. Number of detected droplets and droplet size distribution obtained by automatic and semi-
automatic method. 7 analysed images; 1096 detected droplets (AUTO); 1125 detected droplets (SEMI-AUTO).

Figure 16. Comparison of the obtained mean diameter (type d32 and d43).

takes the geometric Di to the second power multiplied by the percent in that chan-
nel, summed over all channels. The procedure for the De Brouckere Mean Diameter
is the same but instead of third and second power fourth and third powers are used
respectively. Results of this calculations are presented in Figure 16.

3.4. Measurement time

The algorithm developed has also been tested in terms of its economical benefits in
practical use. In the code, a timer is implemented for measuring the time when a batch
of images is delivered to computer application and stops measurement when the last
image in the batch has been analyzed. Time of the measurement has been check for
three approaches: manual, semi-automatic and automatic. Figure 17 presents a com-
parison the three approaches in terms of time each method takes. The analysis shows
that the automatic detection is almost 100 times faster than manual detection and
almost 13 times faster than the semi-automatic. This is a huge benefit for using the
proposed algorithm for the measurement of DSD in a industrial environment whether
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Figure 17. Time consumed for each droplets detection approach. Average number of droplets: 1100.

fully automatic or even semi automatic modes. Referring to the previous tests con-
cerned with the accuracy of the measurement, developed code is not only precise in
calculations but also offers huge improvements in terms of time.

4. Conclusions and Future Work

In this article, an automatic droplets detection method based on image processing and
image analysis operations has been presented. The objective of this algorithm is the
analysis of the images from an LLD process which (before the idea of this project)
were analyzed in a traditional manual approach where analysis time was of major
concern. Therefore, not only an accurate automatic droplets detection was required but
also time reduction was the important part of the algorithm development. Extensive
validation process shown in Section 3 demonstrates that the stated objectives are
satisfied. Accuracy in most of the cases is close to 90% or better and the characteristic
factors such Sauter mean diameter are calculated almost with the same precision as
in method based on user inference. It leads to the conclusion that the novel method
proposed in this report is able to detect a large proportion of the droplets.

Furthermore, various images were utilized in the testing process and it led to next
conclusion that method is not only efficient but also able to deal with a variety of sce-
narios and features in the images. Mostly it has been achieved by implementation of
algorithms such as contours detection and minimal enclosing circles recognition which
are much less computational demanding than well known and widely used Hough
transform. Proposed combination of these two methods along with the new techniques
proposed here provides a promising approach which after further improvement may
fully solve the problem of the on-line (in-situ) automatic droplets detection. However,
some drawbacks of the method were observed after the testing and validation pro-
cesses. Specifically, it pertains to false detections of the smallest droplets. This issue
appears almost in every type of tested images. It is probably because of the noise and
the characteristic feature of the methodology, which is very sensitive to this kind of
aberrations. On the other hand, this issue does not leave negative influence on the
Sauter mean diameter in any way.

Referring to the future work, the further validation process is needed to check how
high density of dispersed phase make automatic detection problematic and impossible
to overcome even with adjustment of the parameters provided for the user inference.
Mentioning the parameter adjustment it is crucial to highlight that this is the only
temporary solution and big effort should be devoted for development a way for auto-
matic parametrization in future. In authors opinion, it is possible to obtain by finding
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the correlation between properties of the analyzed image such as average gray color
value, an intensity of the borders, color histogram and the values of the most optimal
set of parameters. Lastly, some research concerned on the comparison of the already
exist programs in the industry with the method developed in this report could be
done. It may give wider knowledge about achieved improvements by applying method
differs to other methods mainly based on Hough transform and identify remains lack
of understanding or a possible way of the further development.
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