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Most response surface methods typically work on isotropically sampled data to predict a single variable 
and fitted with the aim of minimizing overall error. This study develops a metamodel for application in 
preliminary design of aircraft engine nacelles which is fitted to full-factorial data on two of the eight 
independent variables, and a Latin hypercube sampling on the other six. The specific set of accuracy 
requirements for the key nacelle aerodynamic performance metrics demand faithful reproduction of 
parts of the data to allow accurate prediction of gradients of the dependent variable, but permit less 
accuracy on other parts. The model is used to predict not just the independent variable but also its 
derivatives, and the Mach number, an independent variable, at which a certain condition is met. A simple 
Gaussian process model is shown to be unsuitable for this task. The new response surface method 
meets the requirements by normalizing the input data to exploit self-similarities in the data. It then 
decomposes the input data to interpolate orthogonal aerodynamic properties of nacelles independently 
of each other, and uses a set of filters and transformations to focus accuracy on predictions at relevant 
operating conditions. The new method meets all the requirements and presents a marked improvement 
over published preliminary nacelle design methods.

© 2018 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Response surface models (RSM) are interesting in the design of 
engineering systems, as they promise not just near-instant eval-
uation of complicated designs but also to maximize the use that 
can be made of existing data. For this reason, they have become 
frequently used in various engineering studies, both to augment 
and accelerate optimisation processes [1] and as substitutes for the 
higher-fidelity methods used to generate the training data, par-
ticularly in preliminary design [2]. Since the development of the 
original Kriging method [3], several variants were developed, and 
improvements have been found, leading to a generalization in the 
form of Gaussian processes. Standardized modelling approaches 
have been developed for a range of applications [4]. However, sev-
eral shortcomings have also been noted [5]. These include the 
simplicity of academic problems used to demonstrate RSM perfor-
mance as well as the assumption of univariate output. Although 
the methods are continuously being developed [6], there are many 
real-world applications to which the current best practices for 
Kriging models cannot be directly applied. This may be because 

* Corresponding author.
E-mail address: a.heidebrecht@cranfield.ac.uk (A. Heidebrecht).
https://doi.org/10.1016/j.ast.2018.08.020
1270-9638/© 2018 The Authors. Published by Elsevier Masson SAS. This is an open acce
data cannot be easily sampled in the recommended way or be-
cause the data characteristics change very quickly from continuous 
to highly non-linear. In some cases the metric of interest is not 
the predicted variable itself but its derivative with respect to an 
independent variable, or the value of the independent variables 
at which the dependent variable exhibits a given feature. At the 
same time, preliminary design applications permit comparably low 
accuracy on absolute performance figures as long as the effects 
of design changes are modelled correctly. This allows the use of 
methods with very selective accuracy, where data of low interest 
can be simplified to a large extent.

This study investigates a preliminary design problem where all 
of the above difficulties arise and develops an RSM to predict 
multiple performance criteria. Since the study was limited to es-
tablished methods with readily-available implementations, it was 
chosen to use a combination of several Gaussian process mod-
els. Due to the resources needed to produce training data, and 
specific research interests, the modelling techniques developed in 
this study are used exclusively on the problem of aero-engine na-
celle design. The resulting RSM is intended for use in preliminary 
nacelle design studies, and in trade-off studies investigating the 
wider field of engine design and integration. However, it is be-
lieved that the general approach to establishing an interpolation 
model, or some of the RSM components may be useful for other 
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Nomenclature

Abbreviations

CFD Computational Fluid Dynamics
CST Class-Shape Transformation
DoE Design of Experiments
GCI Grid Convergence Index
LHS Latin Hypercube Sampling
OK Ordinary Kriging
RSM Response Surface Method

Symbols

A Area
cD nacelle drag coefficient, related to highlight area
c′

D normalized drag coefficient

c′
D mean normalized drag coefficient

cD,ref reference drag
g1...g6 non-dimensional nacelle design variables
fmax non-dimensional position of maximum nacelle radius
fnx coefficient in nugget equation
lnac nacelle length
lnx limit in nugget equation
M flight Mach number
M ′

T normalized, transformed Mach number
MD R drag rise Mach number
Mref reference Mach number
MFCR mass-flow capture ratio
ṁintake intake mass-flow
n nugget

r radial coordinate
rhi nacelle highlight radius
ri f initial forebody radius: radius of curvature at nacelle 

highlight
rmax maximum nacelle radius
rT E nacelle trailing edge radius
v flow velocity
x independent variable
y dependent variable
z dependent variable
βnac boat-tail angle
γ isentropic exponent
ρ density
σ standard deviation

Modifiers

Xcruise cruise condition
XE O C end-of-cruise condition
Xhi nacelle highlight
Xi index
Xmax largest value
Xmin smallest value
XT transformed quantity
X∞ state at upstream far-field position
X ′ normalized quantity
�x difference
Qx quotient
problems, as it deals with challenges which are frequently found 
in engineering.

1.1. Aerodynamic nacelle design

The problem of the preliminary design of turbofan nacelles is 
becoming increasingly relevant, due to the increase in fan diameter 
which is typically associated with low-specific-thrust aero-engines 
with high bypass ratios. This increase is a consequence of the de-
mand for quieter and more fuel-efficient engines and the fact that 
both goals require an increase in propulsive efficiency, leading to 
reduced specific thrust [7]. This generally means an increase of 
the outer engine radius and thus the surface of the nacelle. The 
increased weight and drag from the nacelle counteracts the ef-
ficiency gained by reducing specific thrust [8,9]. This eventually 
outweighs the propulsive efficiency benefits [10]. For this reason 
it is important to assess the aerodynamic properties of potential 
nacelles early in the engine design process.

In this context, the precise achievable drag, although important, 
is not the only focus of attention. A nacelle must also be able 
to function at a range of operating conditions without exhibiting 
adverse behaviour. Geometrical constraints for nacelle design are 
imposed by the intake and nozzle design and the need to pro-
vide sufficient volume to accommodate auxiliary units and thrust 
reversers. The task for a nacelle designer in this scenario is to de-
termine the minimal overall dimensions required for a nacelle to 
fulfil all mechanical and aerodynamic requirements, and to esti-
mate the resulting drag of such a design [11].

1.2. Performance metrics of nacelles

Fig. 1a shows the drag of an example nacelle design as a func-
tion of the aerodynamic operating conditions (M , MFCR). The drag 
map is not rectangular since the maximum achievable MFCR is 
limited by the intake capacity, which depends on the flight Mach 
number and the intake design (see Section 1.1).

Nacelle drag coefficient varies only little at low flight Mach 
numbers and large MFCR, and stays at a low baseline level, com-
pared to other operating conditions. Towards both large flight 
Mach numbers and small MFCR, the drag increases, due to com-
pressibility effects and the acceleration around the profile leading 
edge, respectively. From a nacelle design perspective, this drag in-
crease should not take place at the conditions for which a nacelle 
is being designed, both to avoid high nacelle drag itself and be-
cause a nacelle with a very large shock or separated flow may 
also influence the flow over the wing and cause additional drag 
or loss of lift. Fig. 1b shows so-called drag-rise curves which high-
light how the sharp increase to nacelle drag as a function of M
is influenced by MFCR. For many designs, wave drag can become 
more than one order of magnitude larger than the other nacelle 
drag components. Fig. 1c shows that the effect of MFCR on nacelle 
drag is more gradual than the wave drag rise but is also non-linear.

During a typical flight, the aircraft will take-off at M ≈ 0.25, 
MFCR ≈ 2, then accelerate and climb at close to maximum MFCR
until it has reached cruise, usually at M > 0.8. For the purpose 
of this study, it is assumed that there is a margin of 0.02 be-
tween the cruise Mach number (Mcruise) and the drag-rise Mach 
number (MD R ), at which wave drag starts to rise sharply (Eq. (2)). 
There is no universal definition for MD R , and this study uses the 
gradient-based criterion defined in Eq. (1). Not all response sur-
faces used in this study provide a straightforward way to compute 
derivatives. In order to keep a consistent approach, all drag gra-
dients from response surfaces were evaluated using finite differ-
ences, with �M = 10−4. Once at cruise condition, the engines are 
throttled back slightly to sustain altitude and velocity. While MFCR
can vary significantly between different engines, it usually stays at 
or above 0.7 at the start of cruise. For this study, a representative 
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Fig. 1. (a) Drag map of an example nacelle. (b) cD as a function of M (“drag-rise curves”) at constant MFCR. (c) cD as a function of MFCR (“spillage curves”) at constant M . 
Drag coefficients use highlight area as reference area.
mass-flow capture ratio of 0.75 was assumed for the cruise condi-
tion (Eq. (2)). As the aircraft burns fuel during cruise, it becomes 
lighter and requires less thrust towards the end of the cruise seg-
ment. Depending on nacelle design and the mission, MFCR may 
be reduced to 0.6 at end-of-cruise. During descent, MFCR is fur-
ther decreased to 0.6 or below. Values of 0.5 or less are usually 
only reached in situations like engine failure. In such cases, the 
additional drag from the nacelle causes a yawing moment, which 
means that there is a limit to how much additional drag such a re-
duction in MFCR may cause [10]. The resulting requirements for a 
preliminary design method are accurate prediction of nacelle drag 
at MFCR > 0.6, with reduced accuracy acceptable below this mark. 
The lower bound for the regarded MFCR range was chosen to be 
0.4

MD R = M

∣∣∣∣ dcD
dM

=0.1
(1)

MFCRcruise = 0.75, Mcruise = MD R (MFCRcruise) − 0.02 (2)

1.3. Data characteristics and challenges for RSM

A response surface method models a variable as a function of a 
set of independent variables. Often, an implicit assumption is that 
these independent variables are created equal, i.e. that an isotropic 
sampling method can be used [5], such as Latin hypercube sam-
pling (LHS) [12,13]. Another frequent implicit assumption is that 
predictions need to be equally accurate for all combinations of in-
put variables, and that noise characteristics are similar across the 
sampled region. Lastly, most response surfaces are only used to 
predict the value of one dependent variable [5], whereas the RSM 
at hand needs to also provide values of independent variables at 
which a certain condition is fulfilled, and multiple pieces of infor-
mation derived from the dependent variable.

For the response surface model developed in this study, the 
assumptions outlined above are violated. The following Sec-
tions 1.3.1–1.3.3 describe these challenges in more detail.

1.3.1. Data sampling
The response surface regarded in this work models nacelle drag 

coefficient, cD , as a function of a set of six geometrical design vari-
ables (g1 through g6), as well as the two variables which describe 
the operating conditions, M and MFCR. From this data, other per-
formance metrics such as MD R are then derived.

The generally recommended sampling plan for RSMs is Latin 
hypercube sampling (LHS) [4,13]. However, this would require that 
for each nacelle design, the drag is sampled at only one single 
operating condition. Once a nacelle geometry is generated, a mesh 
created and a converged solution is obtained, it is much more com-
putationally efficient to generate multiple solutions for the same 
nacelle design at different operating conditions than it is to repeat 
the full CFD process for each data point. A much larger amount of 
data can be generated for a given computational budget by densely 
sampling nacelle drag along the M and MFCR axes and sampling 
more coarsely in geometrical design space. Another reason to sam-
ple anisotropically is the need to compute gradients of drag as 
a function of flight Mach number, which is required to evaluate 
MD R (Eq. (1)). Since the drag gradient changes rapidly within the 
transonic range (0.75 < M < 1.0), intervals between samples need 
in this range need to be on the order of 0.01. Similarly dense 
sampling on the other independent variables would be computa-
tionally prohibitive. This means that not all independent variables 
can be treated equally by the RSM, and that the two variables de-
termining the operating condition need to use sampling plans than 
the six geometrical design variables.

Since the space of valid operating conditions is not rectangular 
(Fig. 1), the sampling plan in (M , MFCR) cannot be a simple full 
factorial or a LHS. Either a non-rectangular sampling plan needs 
to be used, or an affine transformation must be applied to map a 
rectangular sampling plan onto the space of valid operating condi-
tions in a drag map.

1.3.2. Varying data characteristics and accuracy requirements
Fig. 2 shows how nacelle drag characteristics can change rapidly 

with operating conditions, and across different designs. Accurate 
drag prediction is mostly relevant at cruise Mach number at the 
cruise condition and MFCRs down to 0.6 (Section 1.2, Eq. (2)). The 
cruise Mach number is below drag rise by definition (Eq. (2)), and 
additional drag incurred while reducing MFCR from this condition 
is low for all acceptable nacelle designs. For Nacelle designs which 
do not meet these acceptability requirements, an accurate perfor-
mance prediction is not required. This means that, effectively, the 
operating conditions for which accurate predictions are needed are 
always within the part of the dragmap with only small variations 
in drag. Outside of this range, drag prediction is only important 
as it needs to be known whether a design meets the acceptabil-
ity requirements or not, but not the exact margin by which the 
requirements are missed.

The drag-rise criterion (Eq. (1)) also results in an additional re-
quirement on the RSM, to predict the range of operating conditions 
for which a particular nacelle design provides sufficient drag-rise 
margin. By testing this range against the mission profile of a partic-
ular aircraft, the designer can determine the viable range of nacelle 
designs to choose from. The resulting requirement on the RSM is 
accurate prediction of MD R , as a function of MFCR and the design 
variables. Since MD R depends on drag gradients, this requires an 
especially consistent prediction of cD up to drag-rise Mach num-
ber, but not at M > MD R .

The required accuracy varies not just with operating conditions 
but also across different regions in the geometric design space. If a 
design has particularly poor aerodynamic characteristics, it is suffi-
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Fig. 2. Drag maps of several example nacelles designs which feature (a) low overall drag, moderate spillage and good MD R , (b) high drag, very low MD R , (c) extreme spillage.
cient to know that a threshold has been crossed. For example, the 
very abrupt drag increase at low MFCR in Fig. 2c does not need to 
be represented accurately, as long as it is known that spillage drag 
is past the limit of acceptability.

Training a response surface model to model such highly non-
linear parts of the input data means tuning the model parameters 
to represent the very rapid and erratic changes to drag seen in 
Fig. 2c at MFCR < 0.6, or the considerable drag gradients at flight 
Mach numbers above drag rise. Such a model would not be opti-
mally suited to represent the much smoother drag maps of desir-
able nacelles (e.g. Fig. 2a), and would be expected to have reduced 
accuracy in more pertinent regions of the drag map (M < MD R , 
MFCR > 0.6). One way to address such a problem is to reduce the 
sampled space to exclude regions of undesirable data [14]. How-
ever, this is not an option in the current study since the extent 
of the problematic region is not known a priori, since the range 
of accurate predictions needs to include the transition regions to-
ward undesirable data, and because even for undesirable designs 
or unrealistic operating conditions, an indication of drag is still 
needed. A suitable RSM must thus prioritize the modelling of de-
sirable features, while still providing indicators when performance 
is not acceptable.

1.3.3. Data shift on independent variables
One of the main performance figures for nacelles is the drag-

rise Mach number (MD R ), as it determines the maximum flight 
Mach number at which the nacelle can operate with an acceptable 
drag. This poses a challenge: Fundamentally, MD R is not the de-
pendent variable predicted by the RSM, but rather the value of an 
independent variable at which the characteristics of the dependent 
variable change. This very distinctive feature of every drag map 
shifts along the M axis as the design changes, similar to the effect 
shown in Fig. 1b, where MD R changes as a function of MFCR.

The dense sampling on the M axis required to correctly de-
termine MD R cannot be feasibly used on the other axes, but the 
resulting RSM still needs to provide the necessary level of de-
tail to determine MD R at points in the design space at which no 
input data has been sampled. This cannot be expected of a stan-
dard interpolation method which only regards amplitude of the 
independent variable (cD ). As an example, a hypothetical Kriging 
method trained on the two drag-rise curves at MFCR = 0.65 and 
MFCR = 0.75 in Fig. 1b, is regarded. Although the main difference 
between both input curves is a shift of about 0.05 along the M
axis, an interpolation to MFCR = 0.7 would be expected to produce 
a blend between the input curves, where drag begins to rise early 
but more gradually than in either of the input curves.

To solve this problem, a suitable RSM must model not just the 
nacelle drag accurately but also has to include some measure of 
the shift of the drag-rise feature along the Mach number axis 
which occurs as a result of changes to MFCR or the design vari-
ables. A naïve interpolation method which simply models drag as 
Fig. 3. The parameters used to specify the nacelle geometry.

a function of all independent variables can not be expected to per-
form well in this regard.

1.4. Input data generation

The data used in this study was obtained with the process 
for axisymmetric CFD simulations for nacelles described by Heide-
brecht et al. [15]. The process is built around a parametric nacelle 
geometry (Fig. 3). The nacelle is constructed from a CST curve [16], 
constrained by an analytical approach [17] to conform to a set of 
six intuitive design variables. The geometrical set-up and the di-
mensional design variables are shown in Fig. 3, and are similar to 
the set-up used in other CFD simulations with the aim of deter-
mining nacelle drag [18]. The design variables are mapped to six 
non-dimensional degrees of freedom to define a non-dimensional 
design space (Table 1). The non-dimensional variables define the 
nacelle shape relative to the highlight radius, rhi . rhi was kept con-
stant for all designs in the input dataset, as it only affects the scale 
and has therefore only a small effect on aerodynamic coefficients, 
in the form of Reynolds number effects.

The CFD simulations were conducted with a compressible im-
plicit flow solver [19], with the assumption of a perfect gas with 
a constant isentropic exponent of γ = 1.4. They employed the 
k–ω SST turbulence model. The domain inlet boundary condi-
tion was set to the farfield total pressure, to generate an efflux 
which matches the farfield velocity. This was done to generate a 
generic exhaust condition independent of any specific engine de-
sign, and to minimize post-exit forces, which are not present in 
ideal pressure-matched exhausts [20]. The mesh consisted of ap-
proximately 39,000 cells, and a mesh sensitivity study found a 
grid convergence index (GCI) [21] of 1% on nacelle drag, based on 
meshes with halved and doubled resolution (11,000 and 155,000, 
respectively). A domain sensitivity study used domains between 50 
and 90 nacelle radii, and found the influence of domain size on na-
celle drag to be on the order of 0.01%, for the chosen domain size 
of 80 nacelle radii. Nacelle drag was extracted as modified stan-
dard drag [20], using the method developed by Christie [9]. Fig. 4
illustrates a typical convergence history, a mesh and a flow solu-
tion, for the same design used to produce the data in Fig. 1. The 
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Table 1
Dimensional and non-dimensional design variables for the parametric nacelle geometry, and the design space limits.

Variable Description Non-dimensional min max

rmax Maximum radius g1 = (rmax − rhi)
lnac

0.017 0.126

lnac Nacelle length g2 = lnac
rhi

2.6 4.5
fmax Location of maximum radius g3 = fmax 0.2 0.5

ri f Initial forebody radius g4 = f i f = ri f · fmaxlnac

(rmax − rhi)
2 0.6 1.5

fte Trailing edge radius g5 = rte − rhi
lnac

−0.05 0.035

βnac Boat-tail angle g6 = βnac/
◦ 9.5 14.5

Fig. 4. Data from the CFD simulation for a representative nacelle design. (a) Convergence history for one Mach number sweep, at maximum MFCR; (b) mesh; (c) flow field at 
M = 0.845, MFCR = 0.78.
CFD approach was also previously validated against measurements 
[22]. Fig. 4 shows an example of convergence, mesh and flow so-
lution for a representative nacelle design.

2. Methodology

Although it is computationally possible to generate tens of 
thousands of CFD results for the simple axisymmetric CFD model 
employed, the requirement to evaluate many operating conditions 
for each nacelle design means that the number of designs sam-
pled in the 6-dimensional design space is much lower than the 
total number of sampled nacelle drags. This may hinder the use 
of methods which might otherwise be useful for large numbers of 
samples, and it favours an approach which treats the design space 
separately from the 2-dimensional space which defines the oper-
ating conditions.

Consequently, the response surface modelling problem was de-
composed into several components. First, an interpolation method 
for individual drag maps is established for the full-factorial data 
generated for each input design. This is used to extract two scaling 
references from each of the drag maps in the input dataset. These 
scaling references to the two main outputs of the full model, drag 
at subcritical Mach numbers, and the onset of wave drag. They 
help exploit the self-similarities between drag maps of different 
designs, and allow the data to be normalized in such a way that 
the main features of drag maps are mapped to the same normal-
ized input variables for all designs. The remaining part of the RSM 
process uses normalized variables, and it models the individual 
differences in the shapes of drag maps, relative to their common-
alities, as a function of the design variables.

2.1. Analysis and interpolation for single design

The following sections describe how the data obtained for a 
single design is sampled, how a drag map RSM is created, and 
how the scaling references are determined and used to non-
dimensionalize the drag map data.

2.1.1. Data sampling and non-dimensionalisation
The aim of the sampling method for drag within the space of 

operating conditions (M and MFCR) is to provide data suitable to 
subsequently establish an accurate interpolation model for a drag 
map. It needs to provide sufficient sampling density where drag 
changes sharply, while not expending too many sampling points in 
areas of the drag map where drag changes very little. Particularly 
around the onset of wave drag, the sampling plan needs to provide 
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Fig. 5. (a) Drag map of an example nacelle. Symbols indicate sample locations. (b) cD as a function of M at for a range of fixed MFCR. (c) cD as a function of MFCR at different 
M . (d), (e), (f) The same data as functions of MT and MFCRT .
sufficient data to accurately compute the drag gradient information 
required to find MD R (Eq. (1)).

The maximum possible MFCR at a given Mach number,
MFCRchoke can be computed for isentropic flow (Eq. (3)). Because in 
real flows the intake boundary layer effectively reduces the intake 
throat area, and because a flow very close to choking may cause 
divergence in a CFD solver, the maximum value was set to 95% of 
the isentropic choking value. The lowest sampled MFCR was cho-
sen as 0.4 (Eq. (4)), to allow prediction for values of MFCR that 
may be reached in engine-out scenarios (Section 1.2). Rather than 
distributing sampling points evenly within the interval, it was de-

cided to use a mapping which is linear with 
√

MFCR
−1

, mapped 
to the interval [0; 1] (Eq. (5)). The inverted square root function 
increases the sampling density towards lower MFCR, where larger 
drag gradients are expected, and the linear mapping allows the 
drag map interpolation to work on a unit square.

MFCRchoke =
(

1 + 0.2M2

1.2

)3
1

C R · M
(3)

MFCRmin = 0.4; MFCRmax = 0.95MFCRchoke (4)

MFCRT =
√

MFCR
−1 − √

MFCRmax
−1

√
MFCRmin

−1 − √
MFCRmax

−1 (5)

The sampled Mach number interval was chosen to be 0.2–0.95 
(Eq. (6)). Since it is known that aerodynamic effects which are de-
pendent on Mach number mainly appear at high Mach numbers, a 
sampling distribution was chosen which takes this into account. In 
this work, the Prandtl–Glauert factor, 

√
1 − M2, which is used in 

the Prandtl–Glauert transformation [23], is used to linearize some 
of the compressibility effects. This biases the sampling density to-
wards larger Mach numbers. Like MFCRT , the transformed Mach 
number is linearly mapped to the interval [0; 1] (Eq. (7)).

Mmin = 0.2; Mmax = 0.95 (6)
MT =
√

1 − M2 −
√

1 − M2
max√

1 − M2
min −

√
1 − M2

max

(7)

Within the square created by MT and MFCRT , a linear full fac-
torial sampling was generated. Since the nacelle drag is influenced 
much more by Mach number than by MFCR, the sampling plan 
comprises 28 samples along the MT axis and 7 samples along the 
MFCRT axis. Fig. 5 shows the sampling plan as a function of the 
original (M and MFCR) and transformed (MT and MFCRT ) oper-
ating conditions. It can be seen that the transformation success-
fully biases the sampling towards the conditions where the largest 
changes in drag occur, and reduce some of the non-linearities in 
the data. For example, lines of drag at constant Mach number show 
less curvature when plotted as a function of MFCRT (Fig. 5c, f). The 
drag-rise curves as a function of MT show a much more gradual 
onset of wave drag than the same curve plotted against M , with 
the segments on either end of the curve approaching linear trends 
(Fig. 5b, e).

2.1.2. Interpolation of drag maps
To interpolate within a drag map, a Gaussian process model 

[24] is generated. This uses the implementation in scikit-learn [25]. 
The implementation offers the ability to specify a custom regres-
sion model, as well as a local nugget variable to express the mea-
sure of confidence in the accuracy of a given value. The definition 
for the nugget is shown in Eq. (8), where σi is the standard devi-
ation on the input value at index i. The base nugget value chosen 
for all input data was nbase = 4 ·10−6, which corresponds to a mean 
prediction error of 0.2% in the CFD results.

n =
(

σi

yi

)2

(8)

It was found that attempting to model all of the potentially ir-
regular input data (e.g. Fig. 2c) with this accuracy can corrupt the 
RSM, as it leads to a low estimated correlation between the data 
points, which results in oscillations throughout the entire map. 
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Fig. 6. Four example drag-rise curves, sampled at maximum MFCR. (a) Raw input data, cD against M; (b) cD against MT ; (c) transformed and normalized to c,ref and Mref , 
c′

D as function of M ′
T .
Therefore, the nugget values for some of the irregular input data 
were increased to reduce their impact on the model parameters. 
Such an increase can be justified for data from parts of the drag 
map where the respective design would not conceivably be re-
quired to perform well. This is the case for data above drag rise or 
data points with very high spillage drag. Such data does not need 
to be accurately reproduced by the RSM, as long as it is possible to 
provide an indication that drag is unacceptably high. Even at con-
ditions below drag-rise, small-scale irregularities may be smoothed 
out. In the context of preliminary design, this corresponds to the 
assumption that it is possible to remove such small-scale features 
from the drag map at a later stage in the design process.

To deal with non-smooth data, the nugget was increased by 
two additional terms which depend on the smoothness of the drag 
map, as indicated by the second-order finite differences in the in-

put data, δ2cD

δM2
T

and δ2cD

δ2MFCR2
T

. For both indicators, acceptability limits 
were determined by analysing the dragmaps for nacelles with ac-
ceptable performance. Should the indicator fall outside these limits 
for a given data point, the nugget for this data point is increased 
proportionally to the square of the margin by which each limit is 
violated.

A Gaussian process model is then generated to predict cD as 
a function of MT and MFCRT . It uses a squared exponential cor-
relation model [24] and employs a custom regression function, to 
make use of existing knowledge about the general shape of drag 
maps. The custom regression model consists of second-order poly-
nomials for both MT and MFCRT , in addition to exponential terms 
dependent on MT , as well as all combinations of interaction terms 
between the two input variables. The exponential terms allow the 
model to account for a quickly increasing drag gradient with in-
creasing Mach numbers.

2.1.3. Scaling references and normalisation
To prepare the data for interpolation between the drag maps 

of different nacelle designs, two scaling references are determined 
which are then used to normalize the data and to make it easier 
to exploit some fundamental self-similarities between aerodynamic 
properties of different nacelle designs. The first scaling reference, 
cD,ref was chosen to be the nacelle drag at M = 0.6, MFCR = 0.75
(Eq. (9)). This is representative of the level of the typical drag 
plateau at low Mach numbers and high MFCR. cD,ref also indi-
cates the level of drag at which accuracy is most important, as 
there should not be large changes in drag between the reference 
operating conditions (Eq. (9)), and the cruise condition (Eq. (2)).

The second scaling reference, Mref , is defined using the gradi-
ent criterion in Eq. (10). This uses a very similar definition as the 
drag-rise Mach number (Eq. (1)) but using a larger threshold for 
the drag gradient. The reason for this is that Mref can be deter-
mined with greater accuracy than MD R because any inaccuracy in 
determining the drag gradient has a smaller influence on the result 
if the gradient is larger.

cD,ref = cD (M = 0.6,MFCR = 0.75) (9)

Mref = M

∣∣∣∣ dcD (MFCRmax)

dM
=0.5

(10)

Each drag map is then normalized with respect to the two scal-
ing references. To do this, two new variables are introduced, the 
normalized drag, c′

D (Eq. (11)), and the normalized transformed 
Mach number, M ′

T (Eq. (12)). This normalization maps both the 
reference drag (cD,ref ) and the reference Mach number (Mref ,T ) 
to nominal values of 1. The different stages of the transformation 
from M and cD to M ′

T and c′
D are shown for four sample drag-rise 

curves in Fig. 6. As can be seen, many of the systematic differences 
between the curves are removed by the normalization. Most im-
portantly, the bulk of the wave drag increase appears at the same 
position on the M ′

T axis for every design, and the slopes of the 
curves at M ′

T > 1 are almost equal. The main remaining differences 
between the drag-rise curves are at 0.8 < M ′

T < 1.1 (Fig. 6c). These 
differences are of much smaller amplitude than in the input data 
(Fig. 6a) and concern the shape of the curves during the onset of 
wave drag rise.

c′
D = cD − cD,ref + 1 (11)

M ′
T = 1 − MT

1 − Mref ,T
(12)

This normalisation step allows the subsequent process to use 
separate models for the different aerodynamic properties of nacelle 
designs, represented by the scaling references (c,ref and Mref ) and 
the normalized input data (c′

D as a function of M ′
T , MFCRT and the 

design variables).

2.2. Interpolation between multiple designs

2.2.1. Sampling in design space
To populate the design space, a Latin hypercube sampling (LHS) 

[12,26], was generated, which covers the entire six-dimensional 
design space (g1–g6, Table 1). Some combinations of design vari-
ables lead to nacelle geometries which are not fully convex, and 
such designs were rejected since they are expected to have un-
acceptable drag characteristics. This process generated 235 valid 
nacelle designs from a LHS of over 500 samples. After constructing 
an initial RSM, an additional 55 infill samples were generated to 
improve the quality of predictions. The infill samples were selected 
based on the uncertainty estimator for a Kriging model trained to 
predict Mref from the initial sample nacelle designs. For 5 of the 
290 resulting designs, the CFD process failed due to extreme and 
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Fig. 7. Overview of the RSM construction process.

adverse aerodynamics. The total set of CFD results contained 285 
designs. For each of these designs, the method described in Sec-
tion 2.1.1 was used to determine drag at the combinations of M
and MFCR shown in Fig. 5. This data was then used to train a 
drag map interpolation model (Section 2.1.2) for each drag map 
to compute the scaling references (cD,ref , Mref ) and normalized 
drag maps (Section 2.1.3). For 6 of the 285 sample designs, the 
drag map interpolation model generation failed due to highly er-
ratic drag distributions associated with severely adverse designs, 
and they were removed from the set. The remaining set contains 
279 designs with 196 CFD solutions per design, comprising 54684 
CFD solutions.

For each design, the drag map processing (Section 2.1.3) yields 
the scaling references (Mref and cD,ref ), a Gaussian process to in-
terpolate the drag map, and the drag map itself, normalized to M ′

T , 
MFCRT and c′

D .

2.2.2. Construction of RSM
A schematic overview of the process by which the RSM is con-

structed is shown in Fig. 7. It is explained in detail below.
After establishing the scaling references and computing the nor-

malized dragmaps for each design in the database, two Gaussian 
process models are generated to interpolate the scaling references 
(Mref and cD,ref ) across the design space. In both cases, the choice 
of correlation and regression model, as well as the constant nugget 
value were optimized to minimize the RMS of the prediction errors 
obtained through leave-one-out (LOO) auto-crossvalidation. LOO 
auto-crossvalidation is the best-practice method to obtain an unbi-
ased measure of the accuracy of machine learning models [27].

The ability to predict the scaling references (Mref and cD,ref ) 
at any point in the geometrical design space makes it possible 
to convert between dimensional (M , MFCR) and normalized (M ′

T , 
MFCRT ) operating conditions for any design. This allows the RSM 
generation process to work on the normalized drag maps, whose 
drag-rise slopes and subcritical drag levels are aligned, as illus-
trated in Fig. 6c. The part of the data for which the drag prediction 
must be accurate is the subset where cD ≈ cD,ref , and thus c′

D ≈ 1. 
This is only a relatively small portion of the full range of c′

D in the 
input data.

Fitting an RSM to directly interpolate the normalized drag map 
data in design space is similar to generating a drag map interpo-
lation model (Section 2.1.2), as there are regions of strong non-
linearities and regions in which the data changes little but must 
be modelled very accurately. To solve this problem, the normalized 
drag map data was decomposed further, into a mean normalized 
drag map, c′

D = f
(
M ′

T ,MFCRT
)
, and a deviation from this mean. 

This was done by using the Gaussian process models for each in-
put drag map to interpolate all normalized drag maps onto one 
regular grid in M ′

T and MFCRT , and compute the mean normal-
ized drag on each of the grid points. To prevent data from designs 
with particularly adverse aerodynamic properties from influencing 
the result, and to improve quality of the method for nacelles with 
beneficial aerodynamics, input data points were ignored by the av-
eraging process if drag was more than two standard deviations 
above the mean normalized drag (c′

D ) at the same normalized op-
erating condition (M ′

T , MFCRT ). The averaged drag data were then 
used to generate a drag map interpolation model in normalized 
coordinates (modelling c′

D = f (M ′
T , MFCRT )). Similar to a custom 

regression model for a Gaussian process, this allows to split out 
large systematic trends from the data.

After computing the mean normalized drag map, the drag quo-
tient QcD (Eq. (13)) was computed for each normalized input drag 
map. QcD is a function of M ′

T and MFCRT and represents the quo-
tient between the drag of each sampled nacelle design to the drag 
that would be obtained by re-dimensionalizing the mean normal-
ized drag map.

QcD
(
M ′

T ,MFCRT
) = c′

D

(
M ′

T ,MFCRT
) − 1 + cD,ref

c′
D

(
M ′

T ,MFCRT
) − 1 + cD,ref

(13)

Fig. 8 illustrates the process using the example drag-rise curves 
shown in Fig. 6. The four example drag-rise curves in Fig. 8a are 
decomposed into the mean drag-rise curve of all nacelle designs 
in the dataset (Fig. 8b), and the drag quotient QcD (Fig. 8c). The 
mean drag-rise curve contains much of the systematic trends. With 
these systematic components removed, the individual differences 
between the drag-rise curves make up a much larger proportion 
of the overall signal in the QcD data (Fig. 8c), compared to the 
normalized curves (Fig. 8a).

The last component of the overall RSM method is a Gaussian 
process model which interpolates QcD , as a function of all eight 
independent variables: six design variables (g1 through g6) and 
the normalized operating conditions M ′

T and MFCRT . It was found 
that this Gaussian process model produced the most accurate re-
sults when choosing a cubic correlation model [28]. No regression 
function was used, as systematic trends have already been ex-
tracted from the data as far as possible. Each input data point 
was assigned the same nugget as for the drag map interpolation 
model described in Section 2.1.2. Since there are as many input 
points as there are CFD solutions in the input dataset (ca. 55,000), 
this requires a significant amount of computational working mem-
ory. A set of three filters was applied before fitting the model, to 
remove data from the set which may make prediction of desir-
able performance less accurate, and at the same time reducing 
the memory requirements per nacelle design to allow inclusion 
of a larger number of sample designs. The first filter removes 
all data above Mref (Eq. (14)). Since M ′

T = 1 maps to Mref and 
Mref > MD R , this only removes data above the Mach number range 
in which accurate drag prediction is required. The second filter re-
moves all data points at which QcD is larger than three (Eq. (15)), 
i.e. drag data points which is more than three times as high as 
would be expected based on the mean normalized drag and the 
reference drag at the same normalized operating conditions (M ′

T , 
MFCRT ). The justification for this filter is that designs which gen-
erate three times the drag as an average nacelle at the same nor-
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Fig. 8. (a) Normalized example drag-rise curves, (b) mean drag-rise curve, (c) the QcD function for the example drag-rise curves.
malized conditions are not suitable to operate at this condition, 
therefore an accurate prediction is not required. It is also assumed 
that there remains enough data in the input set with QcD < 3.0 at 
neighbouring operating conditions to inform the model that QcD

is very large. The third filter removes all data points from the 
input set with a nugget value above 2.0 (Eq. (16)). According to 
Eq. (8), this means that the expected relative uncertainty on the 
input value is greater than 

√
2 (i.e. larger than 140% of the in-

put value itself), and the information lost from removing the input 
would not have notable impact on the model prediction.

M ′
T < 1.0 (14)

QcD < 3.0 (15)

n < 2.0 ⇒ σQcD

QcD
<

√
2 (16)

2.2.3. Drag interpolation method
The model building procedure generates one Gaussian process 

model to predict each of the scaling references (Mref and cD,ref ) 
across the design space, one Gaussian process model to predict 
the normalized mean drag as a function of the normalized operat-
ing condition, specified by M ′

T and MFCRT , and a Gaussian process 
model to predict QcD (Eq. (13)), as a function of the normalized 
operating condition and the six design variables. To predict drag 
for a given nacelle geometry at a given operating condition, a set 
of six design variables and an operating condition, determined by 
M and MFCR, must be provided. First, the scaling references (Mref

and cD,ref , Eqs. (10), (9)) are predicted from the design variables, 
using the Gaussian process models for cD,ref and Mref . The oper-
ating condition (M and MFCR) is converted to normalized variables 
(M ′

T and MFCRT ), using Eqs. (12) and (5), and the interpolated 
Mref . With the normalized operating condition, the normalized 
mean drag map model (Fig. 8b) can then be evaluated to predict 
the mean normalized drag coefficient, c′

D . The drag quotient QcD

is predicted from the same variables (Eq. (13), Fig. 8c). From this 
data, the predicted drag coefficient can be computed by inverting 
Eq. (13) and combining with Eq. (11) into Eq. (17).

cD =
(

c′
D − 1 + cD,ref

)
QcD (17)

To predict MD R for a given design, at a given MFCR, one could po-
tentially generate a separate RSM to model MD R = f (MFCR, g1...g6)

directly. This was not pursued because the results of such an 
independent RSM would not necessarily be consistent with the 
derivatives of the predicted drag, and because MD R is not guaran-
teed to be a continuous function of the other seven independent 
variables, and there may be more than one unique Mach number 
for a given design at one MFCR which meets the drag-rise criterion 
(Eq. (1)). Instead, MD R is found by predicting the drag-rise curve 
for a nacelle design and iteratively evaluating drag gradient to find 
the Mach number which satisfies Eq. (1).
3. Results

Several tests of components of the RSM and of the overall 
model were carried out. An investigation into the distribution of 
nacelle drag prediction errors across different operating conditions 
was also conducted. Predictions from the drag map interpolation 
model were tested against a high-resolution drag map generated 
from CFD. The interpolation models for the scaling references 
(Mref and cD,ref ) were tested through LOO auto-crossvalidation, 
and the overall RSM was tested against an independent CFD 
dataset, which allows for statistical computation of the model ac-
curacy. Finally, the distribution of nacelle drag prediction errors 
for different operating conditions was characterized by comparing 
predictions from the RSM and CFD for several example nacelle de-
signs.

3.1. Drag map interpolation

Both the computation of the scaling references (cD,ref and 
Mref ) from training data and the evaluation of mean normalized 
drag, c′

D , in the drag prediction process (Section 2.2.3) depend on 
the drag map interpolation method described in Section 2.1.2. The 
drag map interpolation thus needs to provide not just accurately 
interpolated drag but must be consistent enough to provide reli-
able estimates of the derivative of drag in regard to Mach number. 
To test the drag map interpolation model, a CFD drag map with 
a resolution of 125 Mach numbers and 30 values for MFCR was 
generated for one specific nacelle design. This was in addition to 
a drag map with standard resolution of 28 Mach numbers and 7 
MFCRs, generated for the same nacelle design.

Fig. 9 shows contour levels of drag obtained from CFD data 
sampled at high resolution (Fig. 9a) and standard resolution 
(Fig. 9b). The comparison of drag-rise criteria (solid lines in Fig. 9b) 
based on each dataset shows an offset of 0.0024 for all MFCR > 0.6, 
when using first-order finite differences to compute the drag gra-
dient (Eq. (1)). The same offset is observed with respect to the 
criterion for Mref (Eq. (10), dashed lines in Fig. 9b). Another vis-
ible difference between both maps are the oscillations of the line 
for dcD/dM = 0.1 in the high-resolution data (Fig. 9a). A direct 
comparison between the two maps found that these originate 
with small-scale oscillations in the CFD results for nacelle drag 
at MFCR < 0.55, M > 0.6, with an amplitude of less than 0.5% of 
nacelle drag. At these low MFCR values, drag in transonic flow 
is very sensitive to small changes in the highly loaded boundary 
layer interacting with a sonic shock. This effect causes a reduction 
in numerical convergence and amplifies its effect on the computed 
nacelle drag. Although the amplitude of these oscillations is very 
small, the calculation of dcD/dM is affected due to the high sam-
pling rate used for the high-resolution drag map, while the effect 
is not noticeable at the normal sampling resolution. Both the in-
accurate MD R and Mref obtained by linear interpolation from the 
standard resolution drag map and the irregular gradients obtained 



408 A. Heidebrecht, D.G. MacManus / Aerospace Science and Technology 84 (2019) 399–411
Fig. 9. Drag map from (a) high-resolution CFD data (125 ×30 samples) and (b) standard resolution (28 ×7). Drag maps interpolated from standard resolution to high resolution 
using (c) ordinary Kriging (OK) and (d) the proposed new drag map interpolation method (Section 2.1.2). Difference between high-resolution data and maps interpolated by 
(e) OK and (f) the proposed new method. Solid lines mark dcD/dM = 0.1, dashed lines mark dcD/dM = 0.5. Black lines represent data from the high-resolution CFD drag 
map. Symbols denote sampling locations.
from the high-resolution drag map confirm the requirement for a 
more sophisticated interpolation model to obtain accurate, smooth 
drag gradients.

To test the drag map interpolation method used by the nacelle 
drag prediction RSM, the CFD nacelle drag data at standard resolu-
tion in Fig. 9b was interpolated to the operating conditions which 
had been sampled in the high-resolution drag map (Fig. 9a). For 
comparison, this was done with an ordinary Kriging (OK) process, 
in addition to the method described in Section 2.1.2.

Fig. 9a shows the results of the naïve application of OK to 
model cD as a function of M and MFCR, based on the standard res-
olution drag map CFD data. This approach differs from the method 
described in Section 2.1.2 in that it does not use a regression 
model (“constant regression”), and uses a constant nugget value of 
4 × 10−6, corresponding to the baseline nugget employed by the 
drag map interpolation method. The resulting interpolated drag 
map shows that the ordinary Kriging (OK) model produces con-
siderable errors even at low Mach numbers, up to the drag-rise 
Mach number (Fig. 9c). At the same time, the high-drag portion 
of the drag map is comparably well reproduced, including the 
curve for dcD/dM = 0.5. The CFD-derived and OK-derived curves 
for dcD/dM = 0.5 show a Mach number difference of 0.01 at the 
maximum MFCR, which indicates a less accurate interpolation of 
drag gradient than achieved by linear interpolation (Fig. 9b). Com-
pared to this, the lines indicating dcD/dM = 0.1 (Eq. (1)) bear 
almost no resemblance to the original data, as the oscillations 
in the low-drag range of the drag map cause the gradient of 
dcD/dM = 0.1 to be exceeded frequently, even at M < 0.3. Rela-
tive interpolation errors (Fig. 9e) reach or exceed 10% in several 
places, even at conditions where there is little variation in the 
drag data, but the amplitude of errors does not increase in the 
high-drag regions of the drag map. The large errors at low-drag 
operating conditions are the consequence of the model adapting 
to the high drag gradients and strong non-linearities in the drag 
data at Mach numbers above MD R . The ordinary Kriging inter-
polation does not allow useful predictions of drag or drag gra-
dients at the relevant operating conditions. The fact that higher 
gradients are represented more accurately by OK confirms that 
the OK model adjusts to the stronger gradients and larger drag 
amplitudes found in the data above drag-rise Mach number, to 
the detriment of accuracy at conditions with small drag gradi-
ents.

The dragmap interpolation method described in Section 2.1.2
produces a much more accurate approximation of the high-
resolution drag map, based on the standard resolution data 
(Fig. 9d). The lines for dcD/dM = 0.1 and for dcD/dM = 0.5 are 
in excellent agreement. The error is small enough that drag-rise 
Mach numbers (MD R , Eq. (1)) can be determined from the in-
terpolated data with an error of less than 10−3, at MFCR > 0.55, 
and the error for Mref (Eq. (10)) is less than 5 × 10−4. Both error 
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Fig. 10. Validation against an independent data set, predictions from RSM compared to CFD results. (a) Drag-rise Mach number at MFCR = 0.75 from a simple Gaussian 
process model; (b) drag at cruise conditions (Eq. (2) from a simple Gaussian process model; (c) and (d) use the combined RSM developed in this paper.
margins are significantly lower than with either linear interpo-
lation or OK, and also an order of magnitude below the errors 
required for the nacelle drag prediction RSM. The differences be-
tween the interpolated map (Fig. 9d) and the high-resolution drag 
map from CFD (Fig. 9a) are below 1% at all conditions where 
M < Mref (Fig. 9f). The error only exceeds 1% at the highest 
sampled Mach numbers which have no relevance for the appli-
cation at hand. This is the intended result of de-prioritizing input 
data points with very large drag gradients. The small-scale oscil-
lations visible around M = 0.7 at the lowest MFCRs are not due 
to the interpolation but originate with the high-resolution CFD, as 
already explained in the discussion to Fig. 9a and b. In a prelim-
inary design context, it is desirable that the interpolation model 
produces smooth gradients in place of any small-scale oscilla-
tions.

3.2. Interpolation of scaling references

The interpolation models for the scaling references (Mref and 
cD,ref , Section 2.1.3), were tested by leave-one-out (LOO) auto-
cross-validation [27]. The RMS of the prediction error was found 
to be 2.6 × 10−4 for cD,ref . With typical values of 0.025 of cD,ref , 
this error is well below 1% of the cD,ref value. This means that the 
interpolation model for cD,ref does not add any significant amount 
of uncertainty to the overall method.

The LOO validation for the Mref model found an RMS of 
4.7 × 10−3. For a representative case of Mref = 0.9, MD R = 0.85, 
this leads to an error of about 5.5 × 10−3 in the estimate of MD R . 
This is an acceptable result, and it is significantly better than the 
uncertainty of nacelle drag-rise prediction in published preliminary 
methods [29], which is around 0.02.
3.3. Full model validation

3.3.1. Validation dataset and validation criteria
Generating a Gaussian process model for QcD requires a no-

table amount of computational effort, therefore it is impractical 
to conduct LOO cross-validation for the QcD model or for the full 
RSM. To obtain reliable indicators of the accuracy of the full na-
celle drag prediction model (Section 2.2.3), an independent CFD 
dataset was used. This consisted of 93 designs within the same 
design space (Table 1), sampled according to a Latin hypercube dis-
tribution. These nacelle designs were analysed using the same CFD 
procedure as the input data for the RSM.

The validation regarded the prediction of two performance met-
rics which are defined in Section 1.2. The first metric was drag-rise 
Mach number (MD R , Eq. (1)) at MFCR = 0.75. The second metric 
was drag at the assumed representative cruise condition (Eq. (2)), 
which is specific to each nacelle design. Each of the two perfor-
mance metrics was extracted from the CFD validation dataset, us-
ing the drag map interpolation method described in Section 2.1.2. 
The same metrics were then predicted from the full RSM, and com-
pared to the results from the CFD dataset.

3.3.2. Prediction of performance metrics
To compare the results of the RSM model to the output of a 

more conventional process, the Gaussian process used to predict 
QcD was trained on data of drag coefficient (cD ) directly as a func-
tion of M , MFCR, and the six design variables. Since the full dataset 
is too large to train a Gaussian process with the available working 
memory, this model used the reduced dataset left after applying 
the filters in Eqs. (14)–(15). This introduces some information from 
the complete RSM to the simple comparison model, and gives it an 
advantage over an entirely naïve method with fewer designs and 
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Fig. 11. Comparison of CFD results and predictions from RSM. Lines show MD R as a function of MFCR computed from CFD data (solid), and predicted from the RSM (dashed). 
(a), (b) Drag maps from CFD; (c), (d) drag maps for the same nacelles, from RSM; (e), (f) error of the RSM prediction relative to the CFD results. Positive �cD indicate drag 

over-prediction.
no filtering of undesirable input data. The nugget for this simpli-
fied RSM was set to a constant value of 4 × 10−6, the baseline 
nugget used for the QcD and the drag map interpolation models.

Validation was conducted against the independent validation 
dataset of 93 nacelle designs (Section 3.3.1). Both the simplified 
and the full RSM were used to predict the performance metrics 
MD R and cD,cruise (Eqs. (1), (2)). Fig. 10 shows the results of the 
validation for both models. To quantify the goodness of fit, the 
standard error was computed for each predicted variable for each 
model, according to Eq. (18).

σX =
√√√√1

n

n∑
i=1

(
Xpredicted − XC F D

)2 (18)

For the simplified RSM, the standard error for MD R is 0.023, 
with a considerable number of outliers in the validation graph 
(Fig. 10a). Within the context of this study, this is an unacceptably 
large error, as the majority of model evaluations would result in er-
rors larger than the typical design margin of 0.02 between Mcruise
and MD R . The standard error for cD,cruise (Eq. (2)) is 2.3 × 10−3

or 9.5% of the correct cruise drag (see also Fig. 10b). In contrast 
to this, the full response surface method presented in this paper 
achieves a standard error for drag-rise prediction of 0.014, with 
fewer outliers (Fig. 10c) than observed in the results from the sim-
ple model (Fig. 10a) and a standard error for cruise drag prediction 
of 3.6%, almost a third of the error achieved by the simple Gaus-
sian process. Both results clearly surpass the error margins quoted 
for estimation of cD and MD R with the preliminary nacelle design 
method published by ESDU [29], of 8% on subcritical nacelle drag, 
20% on wave drag at cruise and 0.02 on prediction of MD R .

85% of all observed errors on MD R are smaller than 0.014, and 
in 75% of all cases the error is smaller than 0.01. With a nor-
mally distributed error, one would expect to have only 68.1% of 
all samples within the standard deviation. This suggests that out-
liers contribute significantly to the standard error, and that in the 
majority of cases, predictions are already more accurate than the 
standard error indicates. The performance of the response surface 
model for predicting cruise drag of nacelles (Fig. 10d) is more than 
sufficient for a preliminary design application, where average er-
rors of the order of 10% are acceptable. This limit is only exceeded 
for one of the 93 validation designs.

3.3.3. Prediction of drag maps
To assess the ability to predict the properties of likely na-

celle designs, as opposed to the random designs in the valida-
tion dataset, and to test the prediction accuracy of drag prediction 
across different operating conditions, two example nacelle geome-
tries were generated. These nacelles were chosen from the valid 
design space to have desirable performance characteristics. This 
was done to evaluate the model performance for cases which could 
reasonably be the results of a design process, and for which de-
tailed drag prediction is relevant, rather than for arbitrary designs 
which are of less relevance and also more likely to have hard-to-
interpolate extreme drag characteristics, such as shown in Fig. 2c. 
Fig. 11 shows the difference between the RSM prediction and CFD 
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results for the two nacelle designs. A comparison of Fig. 11a, b to 
Fig. 11c, d shows that the general shape of each drag map is cor-
rectly predicted by the RSM, including the characteristics of MD R
as a function of MFCR. No oscillations or systematic errors are no-
ticeable in the predicted drag maps. The error maps in Figs. 11e, 
f show that the accuracy of drag prediction at subcritical Mach 
numbers is generally within 1%. At Mach numbers close to MD R , 
this difference increases but generally stays below 10% at all op-
erating conditions below MD R . The fact that above MD R , the error 
increases and can reach 20%, is acceptable for preliminary design, 
and is in part also intended consequence of prioritizing accuracy at 
cruise condition over high-drag conditions. The fact that the pre-
diction errors shown in Fig. 11e, f change very gradually with op-
erating conditions below MD R means that the RSM is sufficiently 
consistent to compute drag gradients. The gradients of drag error 
increase above MD R , but are still small enough around drag-rise to 
predict MD R with good accuracy, with an error of less than 0.01 
for both nacelle designs, for MFCR > 0.55.

4. Conclusions

The problem of nacelle drag prediction from RSM presents a 
unique combination of challenges which prevent the application 
of standardized methods. One challenge is that the data cannot 
be sampled isotropically, because not just drag but gradient of 
drag over Mach number needs to be represented accurately in the 
sampled input data. This prevents the use of a global Latin hyper-
cube sampling (LHS). Another challenge is that both the input data 
and the accuracy requirements are inhomogeneous. At conditions 
of low drag and low drag gradients, modelling must be accurate, 
while the presence of high drags and large gradients at other con-
ditions needs to be indicated but not modelled accurately. Even for 
a single nacelle design, an ordinary Kriging approach fails to model 
the inhomogeneous characteristics of the data. The third challenge 
is that the model is effectively used as a multivariate predictor 
since the immediate output, nacelle drag, is used to compute the 
gradient of drag over Mach number, which is then used to deter-
mine the drag-rise Mach number.

The presented method decomposes the problem into several 
components which are based on Gaussian processes. It exploits 
self-similarities between different drag maps and orthogonal prop-
erties of designs, such as drag-rise Mach number and the drag 
level at low Mach numbers. These are then interpolated, per de-
sign, by separate models. Another strategy that was applied is the 
consequent use of filtering and nuggets to focus accuracy onto the 
most relevant parts of the data. This allows prediction of nacelle 
drag with a standard error of 3.6% at cruise condition, while very 
sharp drag changes outside of the plausible operating range of a 
nacelle design are only approximately modelled. At the same time, 
the model retains the important ability to indicate the range of vi-
able operating conditions. Predictions are consistent enough to ob-
tain smooth first derivatives of nacelle drag with respect to Mach 
number. This allows prediction of drag-rise Mach number with a 
standard error of 0.014. The new method is a notable improvement 
on previously published methods for preliminary nacelle design, 
which claim standard errors of 0.02 on drag-rise prediction and 8% 
on the prediction of nacelle drag at cruise condition.
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