
1 

Digital soil assessment for quantifying soil constraints to crop production: 

a case study for rice in Punjab, India

EZEKIEL I. OKONKWO, RON CORSTANJE & GUY J.D. KIRK 

Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, MK43 0AL, UK

Correspondence: E. I. Okonkwo. E-mail: e.okonkwo@cranfield.ac.uk

Running Title: Digital Soil Assessment 

Abstract

Assessments of land capability for particular functions such as food production need to allow 

for uncertainties both in the criteria used to specify the function and in information on 

relevant soil properties. In this paper we evaluate the use of digital soil assessment (DSA) 

for dynamic assessment of soil capability allowing for both uncertainties and spatial 

variability in soil properties, and flexibility in the values of assessment criteria. We do this 

for soil constraints to rice production in the state of Punjab, India, where soil salinity and 

alkalinity are potentially important constraints to cropping. In DSA, spatial predictions of 

soil properties and associated uncertainties made with digital soil mapping (DSM) are used 

to assess soil functions. We use a combination of DSM and Monte Carlo simulation methods 

to estimate the spatial variation in soil electrical conductivity (ECe) and pH to 20 cm depth 

in soils across Punjab. We then use the estimates and associated uncertainties to assess the 

likelihood that soil salinity or alkalinity or both could constrain rice production. Results 

show that allowing for prediction uncertainties of soil attributes results in far smaller areas 

affected by salinity (1.2 versus 2.0 Mha) and alkalinity (3.0 vs 3.2 Mha). Results also show 

the importance of correctly setting threshold values for constraint criteria and the flexibility 

of the DSA approach for setting thresholds.  
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Introduction 

Land capability assessment for crop production is often limited by the availability of high-

resolution spatial soil data, and assessment criteria are therefore correspondingly coarse. 

Digital soil mapping (DSM) has emerged as a credible alternative to traditional soil survey 

methods (Lagacherie, 2008; Minasny & McBratney, 2016). As well as being cheaper and 

faster, DSM has the advantage over traditional soil mapping that its statistical models are 

repeatable and uncertainty of outputs can be estimated. This facilitates the translation of 

quantitative information on soil properties generated through DSM into assessments of 

constraints to soil functions, such as supporting crop production. This is the purpose of 

digital soil assessment (DSA; Carré et al., 2007; van Zijl et al., 2014; Harns et al., 2015). 

In traditional soil survey, soil suitability assessments are made according to categorical 

classifications tailored to the spatial resolution of soil maps. As such they may not 

adequately reflect the true spatial variability of the soil and they cannot convey uncertainty. 

By contrast, DSA incorporates the high-resolution spatial information on soil properties and 

associated uncertainties provided by DSM into a flexible, quantitative framework for 

assessing soil functions. This process has been applied in identifying environmental risks 

and in land evaluation, such as for crop production (Kidd et al., 2015; Malone et al., 2015). 

But full DSA methods are yet to be widely applied, in spite of the widespread use of DSM 

methods. This is particularly so for areas where existing soil information is sparse. But such 

areas are where DSA may have the greatest potential.  

In this paper, we evaluate DSA for assessing soil constraints to cropping in areas with 

limited existing soil data. The methodology we develop involves mapping soil properties by 

DSM and using a stochastic simulation technique and specified threshold values for soil 

constraints to determine the spatial extent of the constraints. We do this for the lowland rice 

growing areas of Punjab in the Indo-Gangetic plain of India, as a case study. A coarse-

resolution assessment of soil constraints to rice production globally was made by Haefele et 
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al. (2014) producing one mapping unit per 17,400 ha across 112 countries. We aim for a 

much finer resolution. We chose Punjab because of its importance for food production, and 

because of the extent of salinity and alkalinity (high pH) in the soils (Sidhu et al., 1995), and 

because recent studies indicate a general decline in soil fertility in the Indo-Gangetic plain 

due to abiotic, biotic and socio-economic factors (Bhandari et al., 2002). We have the 

additional complications with lowland rice that the changes in soil chemistry with flooding 

for rice mean the soil conditions during the rice season may be quite different to those in the 

air-dry aerobic soil on which most measurements are made (Ponnamperuma, 1972; Kirk, 

2004). Also long-term growth of lowland rice produces permanent changes in the soil 

(Greenland, 1997).  The aim of the paper is to assess the use of DSA for gauging soil 

constraints to cropping in areas with limited soil data, as for rice soils in Punjab. We develop 

methods for allowing quantitatively for uncertainties in the soil information. We also 

demonstrate the flexibility of the DSA approach to correctly set threshold values for soil 

constraints in poorly quantified soil systems, such as for paddy rice soils.  

Materials and Methods  

In brief, we used DSM methods to model the relationships between soil attributes and 

environmental covariates to produce 250-m resolution digital soil maps with corresponding 

uncertainties. We then used DSA methods to map the extent of soil salinity and alkalinity 

constraints to rice production, as defined by set criteria, using Monte Carlo methods to allow 

for the effects of uncertainties. 

Study area 

Punjab is in northwest India (Fig. 1). It covers an area of 50,362 km2 and is divided into 22 

Districts with three Divisions and 46 Sub-divisions. The predominant crops are rice and 

wheat. The climate is predominantly sub-tropical semi-arid and monsoonic. The mean 
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annual rainfall is 705 mm and varies from 1200 mm at Pathankot to < 300 mm at Abohar. 

The monsoon season is from July to September.  Dry conditions prevail from October to the 

end of June, except for light showers from December to February. The general slope is from 

northeast to southwest and the elevation is 180 to 300 m AMSL in the plains; and 300 to 

700 m AMSL in the Siwaliks. The major geological units are Siwalik tertiary deposits and 

recent alluvium, and the main landforms are alluvial plain, piedmont plain, Siwalik Hills 

and aeo-fluvial plain.  

The soils of the Siwaliks and piedmont plain are deep to very deep, well drained and 

with loamy sand to sandy loam texture. The soils of the alluvial plain (90% of the area) are 

very deep, well to moderately-well drained with textures varying from sandy loam to silty 

clay loam. The soils have been classified by the USDA system (Soil Survey Staff, 2014) 

into seven sub-orders (Aquepts, Fluvents, Ochrepts, Orthents, Argids and Psamments) and 

fifteen sub-groups by the National Bureau of Soil Survey and Land Use Planning 

(NBSS&LUP), India (Sidhu et al., 1995). The dominant soils are red Ochrepts covering 50% 

of the area.  

Digital soil mapping 

Input datasets. Legacy soil data were obtained from the National Bureau of Soil Survey and 

Land Use Planning (NBSS, Sidhu et al., 1995). This included soil maps covering the Punjab 

at 1:500,000 scale and depth-resolved data on soil properties for representative profiles at 

34 locations (Fig. 1). The soils are classified into four orders and 15 sub-groups of USDA 

system (Soil Survey Staff, 1986) with 124 mapping units. The soil map sheets appended 

with the report were digitized. A digital elevation model (DEM) at 30 m resolution was 

generated from CartoDEM of the National Remote Sensing Centre, India (NRSC ISRO, 

2015). From the DEM, common soil covariates such as elevation, slope and flow direction, 

representing landscape morphology, erosion and deposition processes, were determined. 

Vegetation data at 250 m resolution were derived from monthly averages of sixteen-day 
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MODIS products (MOD13Q1) of the United States Land Processes Distributed Active 

Archive Centre (NASA, 2016). Land use and land cover at 30 m resolution was extracted 

from GlobeLand30 dataset (Chen et al., 2014). Climatic variables for the 1950-2000 periods 

at 1 km spatial resolution were generated from the WorldClim database (Hijmans et al., 

2005).  Landforms were derived by digitizing 1:240,000 map sheets obtained from World 

Soil Survey Archive and Catalogue (WOSSAC, 2017). All data sources were brought to a 

common 250 m resolution.   

Depth-averaged data. Analytical data for 34 representative soil profiles were obtained from 

the NBSS (Sidhu et al., 1995). An equal-area quadratic spline function (Malone et al., 2009) 

was fitted to the values of soil ECe (representing salinity) and pH at the depths reported to 

a maximum depth of 2 m, in order to derive depth-averaged soil properties over a nominal 

rice rooting depth of 0–20 cm The spline function f(z) was obtained by minimising the 

following equation applied to the measured property values yi at n depths zi:  

��� (�� − ��� )��
��� + � � ��(�)� ����

�� �� (1) 

where ���, is the mean value of f(z) over the ith depth interval, f’(z) is the first derivative of 

f(z) and λ is a smoothing parameter (here 0.1) (Bishop et al., 1999). The first term in 

Equation (1) represents the fit of the spline to the data; the second term measures the 

roughness of the function f(z). The parameter λ controls the trade-off between the fit and the 

roughness of the spline. The observed ECe and pH values had a log-normal distribution and 

were log-transformed before splines were fitted. Mean values over 0–20 cm depth were then 

obtained by integrating the spline function over 0–20 cm. These values were used for the 

DSA maps.

Modelling. Artificial neural networks (ANN) based on multilayer perceptron (MLP) were 

used to model the relationship between the desired soil properties (ECe and pH) and 
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environmental covariates. A total of 20 networks were trained and the five best-performing 

networks were retained. The data were randomly divided into 80 % for model calibration 

and 20 % for validation. We evaluated regression model performance using 20% of the soil 

datasets. We used three criteria to evaluate the accuracy of the spatial prediction models of 

ECe and pH:  root mean square error (RMSE), coefficient of determination (R2) and adjusted 

coefficient of determination (adjusted R2). We used neural networks on the basis that 

predictions can be made simultaneously at each depth interval, and that the resulting model 

can capture a greater variety of non-linear relationships than a traditional logistic regression 

model. The ANN model was then used to generate spatial predictions of ECe and pH across 

the study area. ArcGIS software was used to generate raster grids of ECe or pH spatial 

distributions for each modelled depth at each pixel within the study area. 

Digital soil assessment  

We focused on potential soil constraints that are widespread in Punjab: high salinity and 

high pH. The numerical thresholds set to define constraints are critical to any mapping 

exercise. A strength of DSA is that it is easy to assess the consequences of varying threshold 

values, and to set appropriate values. We first used threshold values from the Fertility 

Capability Classification (FCC) system of (Sanchez et al., 2003), which includes 

modifications for lowland rice following Sanchez and Buol (1985). In the FCC system, high 

salinity is defined as ECe (measured in a saturated paste) > 4 dS m-1 and high pH is defined 

as pH (1:1 in H2O) > 7.3. However, these values are only crude approximations for lowland 

rice given that, for practical reasons, they must be determined on the soil when air-dry and 

therefore aerobic, whereas the relevant values for lowland rice may be very different given 

the changes in soil chemistry that occur following soil flooding. Further, ECe values only 

indicate the total salt content, not its composition, whereas salinity stress is sensitive to the 

soil solution composition, particularly the ratio of Na to other cations. Based on actual 
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lowland rice responses, Fairhurst et al. (2007) give the following values for yield reductions 

in rice due to salinity: ECe > 4 dS m-1 slight yield reduction (10–15%); ECe > 6 dS m-1

moderate yield reduction (20–50%); ECe > 10 dS m-1 > 50% yield reduction in susceptible 

cultivars. Accordingly we set a critical value of ECe > 8 dS m-1 for high salinity. For high 

pH, the principal effects on rice are deficiencies of micronutrients, particularly of Zn. 

However, pH is only one of the determinants. Particularly, Zn deficiency in rice is also 

associated with high soil organic C content and perennially wet conditions (Kirk, 2004). 

Further, flooding alkaline soils for rice generally produces a decrease in pH towards neutral, 

even in soils with aerobic pH > 9 (Kirk, 2004). According to IRRI (2018), pH 8.8–9.2 is 

considered as non-stress, pH 9.3–9.7 moderate stress and pH > 9.7 higher stress. 

Accordingly we set a critical value of pH > 9.3 for high pH.  

Allowing for uncertainty in soil constraint assessment 

We used Monte Carlo simulations to generate likelihood scenarios for constraint levels and 

assess the real extent of likely constrained soils (Fisher, 1991; Heuvelink, 1998; Nol et al., 

2010; Nelson et al., 2011). The basis of the Monte Carlo method is the simulation of possible 

realisations (pixel-by-pixel) of the input variables to obtain a distributional description of 

the likelihood of these to exceed the constraint criteria. One hundred realisations of the 

model were obtained from the probability distributions based on the predicted mean and 

standard error of ECe and pH values at top soil level (0–20 cm). The probabilities were 

estimated as the number of occurrences of each constraint class divided by the total number 

of realisations. Pixels were then classified based on values above the defined critical levels 

for ECe and pH (ECe > 4 or 8 dS m-1; pH > 7.3 or 9.3). If the probability of the critical value 

exceeding the set level was less than 50 %, the soil was classified as not saline or not 

alkaline; if the probability was greater than 50% but less than 80 %, the soil was classified 

as possibly saline or possibly alkaline; otherwise, the soil was classified as likely saline or 
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likely alkaline. The resulting likelihood maps (salinity and alkalinity) were displayed as a 

soil constraint map of Punjab.  

The remaining steps were undertaken only for grid cells with rice cultivation, as 

identified by Gumma et al. (2011). We intersected the raster cell values representing the 

area of each rice cell with the constraint levels of ECe and pH to compute the areal coverage 

of soil constraints to rice production. We aggregated and tabulated these data to the district 

level and report the results in hectares and percentages. 

Results  

Descriptive statistics of ECe and pH   

Figure 2 shows the dependence of predicted soil ECe and pH (0–20 cm depth) on auxiliary 

variables. It shows the most important predictors of both ECe and pH are soil class and 

landform. The DSM outputs of the spatial distribution of ECe and pH at the standard soil 

depths are displayed in Figures S1 and S2 (Supplementary Information). The figures indicate 

that salinity decreases with increasing depth. The mapping further shows that the Southwest 

region of the state drained by the Satluj and Beas rivers are largely saline. The soils on the 

plain, underlain by alluvium, are often alkaline in the subsoil or throughout the profile.  

The results of the model evaluation and the assessment of the uncertainty of DSM 

outputs used for DSA are shown in Table 1. The RMSE shows a low prediction accuracy 

for soil ECe (RMSE = 5.44 dS m-1) compared with the prediction of soil pH (RMSE = 0.44). 

Similarly, the adjusted coefficient of determination (adjusted R2) indicates that prediction 

accuracy of the model was 40 % for soil ECe and 54 % for soil pH (Table 1). Allowing for 

prediction uncertainties improved the accuracy of prediction for soil pH and ECe as 

indicated by the coefficient of variation (CV) (Table 1). Figure 3 shows the distribution of 

the predicted soil pH and ECe values across the study area.  
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Digital soil assessment  

The outputs from the soil constraint assessments using alternative DSA techniques (with and 

without allowing for prediction uncertainties) and with alternative threshold values for the 

soil constraints (FCC values versus our own values) are shown in Figure 4 and Table 2. The 

results in Table 2 are that, with the FCC criteria, and not allowing for prediction 

uncertainties, over 2 Mha (43 % of the total land area) of Punjab is predicted to have salinity 

problems and 3.2 Mha (64 %) alkalinity problems. A further 24 % is classified as possibly 

saline and 10 % as possibly alkaline. These numbers far larger than realistic for Punjab, 

given that it is one of the main rice production areas in India. Allowance for model 

uncertainties reduced the estimates somewhat: 1.16 Mha (23 %) likely saline and 2.98 Mha 

(59 %) likely alkaline (Fig. 4a and Table 2). However these numbers are still larger than 

realistic. The reason for these larger numbers compared with values in Figure 3 is because 

the classification was based on estimated probabilities of ECe and pH which allowed for 

those values that are near or slightly above the critical levels to define the constraints. 

Figure 4b and Table 2 show results using more stringent critical values of soil salinity 

and alkalinity, better matching paddy soil conditions, and allowing for model uncertainties. 

The areas categorised as likely or possibly affected by salinity or alkalinity or both are 

greatly diminished compared with the FCC criteria, demonstrating the sensitivity of 

predictions to the criteria. These results are far more consistent with expectations for Punjab 

based on the productivity of rice there. From results for individual districts using the more 

stringent criteria  (Table S1), about 9% (0.25 Mha) of all districts are likely saline, and 5% 

(0.14 Mha) likely alkaline. None of the areas is classified as possibly saline or alkaline. The 

saline soils are mostly located in southwest of the Punjab, which is a semi-arid alluvial plain. 

This is most likely due to accumulation of soluble salts brought in from higher elevation 

areas. Salinity is also found in patches in other areas, possibly due to poor quality irrigation 

water and management.  
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Discussion

Advantages of the DSA approach compared with more-traditional soil suitability 

assessments include: (i) the incorporation of uncertainty in the assessment results in the 

assessment as likelihood of a soil constraint, reflecting both the underlying spatial variability 

and the relative quality of the available data on the soil; and (ii) it is relatively 

straightforward to run reassessments with new suitability criteria as new data are obtained, 

over-turning past assumptions, or when a new cropping or soil-crop combination is being 

considered for which the original suitability criteria are inappropriate. The importance of 

allowing for uncertainties and having appropirate constraint criteria is illustrated by the 

senistivity of our constraint estimates to the various criteria we tested. Malone et al. (2015) 

showed similar sensitivities in the land suitability assessment approach they used. Harms et 

al. (2015) discuss the importance of quantifying uncertainties in land suitability assessments.  

The sample support in this study is sparse, but equivalent to those used in other studies 

(e.g. Hengl et al., 2017) for areas where it is difficult to obtain hard data on soil variability. 

We have not sought to produce a definitive map of soil constraints for the Indian Punjab. 

Rather we aimed to illustrate how, for areas of the world where data is sparse but the 

assessment of soil capability critical for food supply, this approach can allow for the 

consequences of data scarcity.  

The results show the sensitivity of predictions to the criteria used to define constraints. 

The areas predicted to be affected by salinity or alkalinity were far smaller with the revised, 

more-stringent criteria than with the FCC criteria. These criteria are more appropriate for 

lowland rice than the FCC criteria because, in most rice soils, the biogeochemical changes 

that occur following flooding for rice cause decreases in both salinity and alkalinity. Hence, 

higher threshold values are appropriate for the un-flooded aerobic soil in which the 

underlying measurements were made. The results demonstrate the importance of setting 

appropriate threshold criteria for judging soil constraints for particular applications. The 



11 

DSA approach provides a quantitative basis for setting such criteria. In analysing gaps 

between potential crop yields – set by agro-climatic constraints in a given region – and actual 

yields in the region (e.g. Laborte et al., 2012; Silva et al., 2017), DSA can be used to quantify 

the potential contributions of soil constraints versus socio-economic, farm- management and 

other factors. Threshold values for soil constraints can be set using DSA in regions for which 

non-soil constraints to production are well defined.  

This research highlights how digital soil constraint assessments can flexibly assess the 

functional capacity of soils for particular applications, taking account of uncertainties arising 

from incomplete understanding of soil variability in the region being assessed. The DSA 

approach provides a quantitative basis for assessing what level of measured soil information 

is required to support land suitability assessments, and hence the need for ground-based soil 

survey. As requirements for soil information increasingly focus on what the soil does (soil 

functions) rather than its properties, this study illustrates the benefits of using a DSA 

approach, incorporating information from DSM to describe and model soil functioning in a 

manner which allows for different evaluations of those functions.  

Conclusions 

This study provides an example where soil attributes generated from limited existing legacy 

soil information were incorporated into a DSA framework to assess soil constraints in 

Punjab rice production. Using this approach, it was possible to quantitatively assess the 

importance of incorporating prediction uncertainties in soil constraint assessments. The 

research demonstrates the flexibility of DSA for matching assessment critical values to 

actual constraints. Because the assessment of the soil constraints was done digitally, it is 

possible to continually update mapping to improve accuracy.  
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Table 1 Model evaluation and descriptive statistics of predictions of soil ECe and pH and associated uncertainties at 0–20 cm depth. RMSE = 

Root mean squared error of predicted soil ECe and pH, R2 = Coefficient of determination of the prediction accuracy, Adjusted R2 = Adjusted 

Coefficient of determination of the prediction accuracy, MC = Monte Carlo simulation analysis of prediction uncertainties 

Observed Predicted MC 

RMSE R2 Adjusted R2 Mean Stdev CV Mean Stdev CV Mean Stdev CV 

ECe (dS m-1)  5.44 0.97       0.40  3.41  4.39 128.6  2.98  4.56 153  2.95  3.57 121 

pH  0.44 0.98       0.54  8.03  0.63 7.88  8.02  0.64 7.98  8.51  0.63 7.46 
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Table 2 Extent of soil salinity (ECe) and alkalinity (high pH) constraints to rice production in Punjab assessed using FCC and alternative 

constraint criteria and DSA techniques with and without allowing for prediction uncertainties using Monte Carlo (MC) methods.  Data are 

areas in Mha with percentages of total area in parenthesis 

Saline Alkaline 

Likely Possibly Not Likely Possibly Not 

Whole area (5,010 Mha) 

FCC criteria only                    2,140 

(43) 

1,207 

(24) 

1,663 

(33) 

3,219 

(64) 

806 

(16) 

985 

(20) 

FCC criteria with MC            1,161 

(23) 

501 

(10) 

3,348 

(67) 

2,980 

(59) 

982 

(20) 

1,048 

(21) 

Rice area (2,800 Mha) 

FCC criteria only                   1,061 

(38) 

931 

(33) 

809 

(29) 

1,976 

(71) 

370 

(13) 

455 

(16) 

FCC criteria with MC            540 

(19) 

201 

(7) 

2,059 

(74) 

1,894 

(68) 

395 

(14) 

511 

(18) 

Alternative criteria with MC                    247 

(9) 

0 

- 

2,554 

(91) 

148 

(5) 

0 

- 

2,652 

(95) 
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Figures Captions 

Figure 1 Study area indicating the locations of the representative soil profiles with 

analytical data used for soil property mapping  

Figure 2 The dependence of (a) soil ECe and (b) soil pH at 0–20 cm depth on auxiliary 

variables: LDF, landform; Soil_Tax, USDA soil class; Flowdr, Flow Direction; Lulc30, 

land cover; RedR, Red Reflectance Band 1; Prec, precipitation; MIR: mid-infrared 

reflectance band 7; Tmean, mean temperature; NIR: near-infrared reflectance band 2; 

Dem, digital elevation model; NDVI, normalised difference vegetation index. 

Figure 3 Distribution of predicted soil pH and ECe at 0–20 cm depth. Bars are predicted 

values; red line is a fitted normal distribution.  

Figure 4 Soil constraints maps allowing for prediction uncertainties with two sets of 

constraint criteria: (a) the FCC criteria, and (b) more stringent criteria that are more 

appropriate for lowland rice. 
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Figure 2 Study area indicating the locations of the representative soil profiles with analytical 

data used for soil property mapping. 
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Figure 2 The dependence of (a) soil ECe and (b) soil pH at 0–20 cm depth on auxiliary 

variables: LDF, landform; Soil_Tax, USDA soil class; Flowdr, Flow Direction; Lulc30, land 

cover; RedR, Red Reflectance Band 1; Prec, precipitation; MIR: mid-infrared reflectance 

band 7; Tmean, mean temperature; NIR: near-infrared reflectance band 2; Dem, digital 

elevation model; NDVI, normalised difference vegetation index.
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Figure 3 Distribution of predicted soil pH and ECe at 0–20 cm depth. Bars are predicted 

values; red line is a fitted normal distribution. 
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Figure 4 Soil constraints maps allowing for prediction uncertainties with two sets of constraint criteria: a) the FCC criteria and b) more stringent 

criteria that are more appropriate for lowland rice.


