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Abstract: This paper examines and analytically reviews the thermal management systems proposed
over the past six decades for gas turbine civil aero engines. The objective is to establish the evident
system shortcomings and to identify the remaining research questions that need to be addressed to
enable this important technology to be adopted by next generation of aero engines with complicated
designs. Future gas turbine aero engines will be more efficient, compact and will have more electric
parts. As a result, more heat will be generated by the different electrical components and avionics.
Consequently, alternative methods should be used to dissipate this extra heat as the current thermal
management systems are already working on their limits. For this purpose, different structures
and ideas in this field are stated in terms of considering engines architecture, the improved engine
efficiency, the reduced emission level and the improved fuel economy. This is followed by a historical
coverage of the proposed concepts dating back to 1958. Possible thermal management systems
development concepts are then classified into four distinct classes: classic, centralized, revolutionary
and cost-effective; and critically reviewed from challenges and implementation considerations points
of view. Based on this analysis, the potential solutions for dealing with future challenges are proposed
including combination of centralized and revolutionary developments and combination of classic
and cost-effective developments. The effectiveness of the proposed solutions is also discussed with
a complexity-impact correlation analysis.

Keywords: thermal management systems; next generation of gas turbine engines; aero engines;
engine efficiency; performance enhancement

1. Introduction

New designs of gas turbine civil aero-engines are increasingly complex. Nowadays, we are facing
with More Electric Aircraft (MEA) with higher demands on engines for thrust and power generation
resulting in hotter fluids, higher components temperature and higher heat generation, which means
critical thermal management issues. So, it is time to think differently about how we can manage the
thermal loads in modern gas turbine engines. In other words, future aircraft propulsion systems
should be able to meet ambitious targets and severe limitations set by governments and organizations
(e.g., the Advisory Council for Aviation Research and Innovation in Europe has a target of a 75%
reduction in CO2 emissions and a 90% reduction of NOx emissions by 2050) [1]. These targets cannot
be achieved just through marginal improvements in turbine technology or aircraft design.

High power and high heat flux cooling requirements of new aero-engine designs result in
generation of more excess heat by Gas Turbine Engines (GTEs). The Thermal Management System
(TMS) plays a key role in dealing with this heat to limit payload size and to enhance the engine
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performance. The TMS utilizes engine fluids to transfer excess heat from the engine heat sinks like
bearings, accessory gearbox, pumps, generators, constant speed drive and power gearbox in new
geared turbofans. It is worthwhile to mention that the TMS structure is not usually discussing the
turbine blade cooling and the cooling mechanisms used for this purpose as it has a separate circuit
fed by the compressor bleed air. A comprehensive review about the cooling mechanisms for high
level heat flux components [2–4], physic-based models and cooling mechanisms (convection, film,
transpiration cooling, cooling effusion, pin fin cooling etc.) [5–8] and control systems for the associated
cooling mechanisms could be found widely in the literature [9–11].

Of course, there are limitations and constraints in TMS design and implementation. For instance,
the total volume and weight of the TMS will be limited by engine design and geometry. Moreover,
the operable temperature for fuel, oil and other fluids communicated throughout the engine should be
maintained. Engine oil may undergo coking and fuel may undergo lacquering, gumming, or varnishing
above certain temperature limits [12]. These constraints limit the heat sink capacity of the TMS
and highlight the requirement of a smart optimized TMS design for modern GTEs. In addition,
an optimized TMS should be able to increase engine performance by using the engine excess heat
(e.g., heat may be transferred into the engine fuel in order to increase the fuel efficiency).

In the last 60 years, many ideas, concepts, embodiments and research studies have been done
on thermal management systems for gas turbine aero-engines to meet all thermal load management
requirements and to achieve optimized performance for the TMS and the engine. The historical
progress in the development of TMS for aerospace applications can for convenience be divided into
three phases:

• Phase 1: Pioneering work: The first two decades (between 1958 and 1978). The first theoretical
studies and embodiments’ presentation were undertaken, resulting in generation of the main ideas
for the aerospace TMS: using two heat exchangers for the engine thermal management, using
catalyst to increase the fuel heat capacity and oil flowrate tuning through the heat exchangers
to control the engine fuel temperature. These ideas helped researchers to build a very strong
integration phase in the field.

• Phase 2: Integration: The second two decades (between 1978 and 1998). The idea of having
integrated thermal management system for engine and airframe is presented and discussed in
several embodiments in this phase. Moreover, the most practical idea for the TMS structure,
having two separate cooling loops for the management of engine heat loads, is also proposed
and developed.

• Phase 3: Detailed Design: The last two decades (between 1998 and 2018). More comprehensive
studies based on detailed testing and real applications were published in this phase. The ideas
of new advanced structures for the TMS, fuel temperature control in TMS and using different
cooling fluids like water, Therminol, which is a synthetic heat transfer fluid and thermally neutral
heat transfer fluid (TNHTF) are presented and discussed as well.

Obviously, the above-mentioned phases are concentrated on different ranges of power and
technology development that was the state of the art in the date of research. Table 1 shows the
quantitative analysis of different phases that would be discussed in next chapters.

Table 1. Quantitative analysis of different phases [12–17].

Thrust (lbf) Turbine Entry
Temperature (◦C) Bypass Ratio Turbine Blade

Cooling Efficiency

Phase I ≤40,000 ≤1200 ≤5 ≤0.55
Phase II 40,000–55,000 1200–1400 5–7.6 0.55–0.65
Phase III ≥55,000 ≥1400 ≥8 ≥0.65
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Moreover, taking the new advances in material sciences into account, it could be seen that the
turbine entry temperature has had an average increase of about 8 ◦C rise per year over the last
20 years [17]. It is due to the new advanced materials used for the turbine manufacturing in new
aircraft engines (e.g., SC cast alloys and ceramics). So, more increase in thermal loads is expected for
the future engines. Consequently, designing an optimal thermal management system architecture is
a key factor for the heat management in future civil engines.

The most important publications and milestones during phases 1 to 3 are discussed in detail in next
sections. Section 2, focuses on pioneering work and concepts dating back to 1958. Section 3 describes
the integration phase in thermal management system architecture design that occurred between 1978
and 1998. Section 4 concentrates on detailed design phase in the last two decades addressing the state
of the art technologies for thermal load managements in civil aero engines. Based on the results of
these sections, different classes of development for the future thermal management systems design are
classified and described in detail and the pros and cons of each class is discussed in Section 5. Based on
this discussion, two potential solutions for dealing with future challenges of thermal management
systems are proposed and illustrated. The conclusion remarks are also presented in Section 6.

2. Pioneering Work on Thermal Management Systems Design

First, in 1958 an invention presented on oil cooling and drag reducing system for high speed
vehicles such as aircraft, sleds, or boats. It is the first publicly available publication that presents
thermal management system architecture for aircraft engine systematically [18]. Moreover, another
invention related to lubricating oil cooling systems for turbojet engines presented in 1963 [19]. The main
idea of these two patents were to utilize two heat exchangers, Air/Oil Heat Exchanger (AOHE) and
Fuel/Oil Heat Exchanger (FOHE), to dissipate extra heat generated by engine components. These two
heat exchangers could be mounted in the cooling loop in series or parallel architecture.

In 1969, a patent was registered by Nodding et al. in which a cooling system for engine and
airframe is proposed where fuel is used as the heat sink to absorb frictional heat produced by airstream
passing over wing and fuselage surface [20]. They showed that by using a catalyst an endothermic
chemical reaction would be promoted, allowing fuel to absorb more heat. The main idea is to break
down the fuel into smaller molecules and to alter the fuel’s characteristics as a propellant. However,
this embodiment requires temperature of 700 to 1000 ◦F for operation and is consequently limited in
high supersonic or hypersonic applications.

Finally, fuel delivery control system and its effects in oil cooling system of gas turbine aero engines
was discussed at last years of the pioneering work phase [21,22]. The main idea of these embodiments
was to use a position control valve to tune the oil flowrate in FOHE in order to protect the engine from
fuel over temperature and malfunctions.

Consequently, the main presented ideas of the pioneering work phase could be summarized
as follow:

(1) Using two heat exchangers to manage the excess heat of the engine: FOHE and AOHE
(2) Using a catalyst to increase the fuel heat absorption capacity
(3) Tuning the oil flow rate through the FOHE to control the engine fuel temperature

These interesting ideas were the main motivations for the next phase.

3. Integration Phase on Thermal Management Systems Design

From 1978, the integration phase in TMS design and development started. The idea of having
integrated TMS for the engine and airframe was proposed for the first time by Frosch, et al. in 1981 [23].
The main idea was to refrigerate fuel to deal with all cooling requirements that resulted in necessitating
additional power for the refrigeration system. However, as the cooling demand of the airframe and
engine increase, the required quantity of heat absorbing fuel is increased as well. So, the cooling
capability will be reduced significantly near the end of mission because of the minimal quantity of
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the fuel. Also, the other prior art based on fuel refrigeration was proposed in 1985 that had the same
disadvantage as discussed above [24,25].

As a milestone, United Technologies Corporation registered a patent in 1987 on fuel and oil heat
management system for a gas turbine engine [26]. This patent presented two different embodiments
both contained two oil cooling loops, two fuel-oil heat exchangers and two air-oil heat exchangers to
deal with cooling requirements of gas turbine engines. The heat exchangers characteristics and design
is used from previous embodiments presented in References [27–29]. The embodiments are designed
to manage the excess heat from different sources efficiently. The schematic of the architecture is shown
in Figure 1. This structure has been used widely in real-world applications for thermal management of
gas turbine aero-engines. The main working strategy of this embodiment could be described as follow:

(1) The main heat sources of the engine like bearings and accessory gearbox will be cooled (and also
lubricated) by main oil loop in which the oil will be distributed and collected throughout the
main engine structure and then it will be returned to a collection point after absorbing excess
heat generated by the engine components.

(2) Another oil loop is designed to lubricate and to dissipate extra heat from accessory drive like
constant speed drive for the aircraft service electrical generator.

This method is simple, straightforward and easy to design, implement and control. However,
since the maximum temperature of the fuel is limited, an extra air flow from bleed valve is required to
cool the oil loop in some situations and it results in increasing the overall engine power demand for
a given level of useful thrust. This power penalty increases the engine thrust specific fuel consumption.
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Figure 1. Thermal management system embodiments proposed by United Technologies Corporation.

In 1988, Hudson and Levin proposed an integrated aircraft fuel thermal management system to
optimize the TMS by integrating airframe and engine fuel heat sink systems into a composite heat
sink and a secondary power source [30]. They used several accessories like boost pumps, bypass
relief valves, temperature control valves and filters to control the fuel temperature and to reduce the
dependency on supplemental ram air for the fuel cooling heat exchanger. Moreover, the engine control
unit (ECU) is designed to be cooled by the airframe environmental control system (ECS) to increase its
reliability. However, in this embodiment, the integrated drive generator (IDG), accessory drive gearbox
(ADG) and airframe hydraulic system (Hyd) have not been considered by thermal management system
with this assumption that they do not have critical temperature requirements.
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The rest of the studies in the integration phase were focused on the above milestones and tried to
sort out the disadvantages of the proposed ideas [31–34]. These efforts resulted in emerging another
phase in TMS development for gas turbine aero-engines: the detailed design phase.

The main presented ideas of the integration phase could be summarized as follow:

(1) Integrated cooling system for the engine and airframe
(2) Designing two separate cooling paths for the engine thermal management
(3) Integrating airframe and engine fuel heat sink systems into a composite heat sink and a secondary

power source

4. Detailed Design Phase on Thermal Management Systems

After integration phase, the research studies and proposed ideas have been focused on the detailed
design and novel ideas during the last two decades. Some of the most important achievements of this
phase are covered in this section:

An interesting idea is to use the Cooled Cooling Air (CCA) system to improve the gas turbine
engine efficiency. In 1999, air force research laboratory suggested that when utilizing the available
heat sinks in a gas turbine engine, the overall engine performance could be improved [35]. The main
novelty was to use a heat exchanger to cool the compressor bleed air to decrease the required air flow
rate for the turbine blade cooling. Four different embodiments were investigated in detail and the
results of the study showed that the CCA system with a fuel-to-air heat exchanger offers the greatest
potential for improved engine performance while rescuing some of the dependence on advanced
materials. The schematic of this idea is shown in Figure 2. However, the main drawback of this idea is
its complexity and weight as well as safety and reliability considerations.
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In 2002, Haung et al. focused on the fuel-cooled thermal management for advanced aero engine
by utilizing endothermic cracking and reforming of hydrocarbon fuels [36,37]. By developing
a bench-scale test rig, they presented a conceptual design to demonstrate the technologies necessary
for utilizing conventional multi-component hydro-carbon fuels for fuel-cooled thermal management
system including the development of the endothermic potential of JP-7 and JP-8+100, a demonstration
of the combustion of supercritical/endothermic fuel mixture and conceptual design of a fuel-air heat
exchanger [38,39]. However, the requirement of high fuel temperature (700 to 1200 ◦F) is still the limit
of this concept [40,41].

Between 2004 and 2007, two comprehensive research studies were published on the remaining
challenges for future aircraft power systems thermal management [42,43]. The main conclusion of
these studies could be summarized as follow:

(1) The first step in designing an optimized TMS for an aircraft engine is to precisely define the
boundary conditions and to recognize the requirements and constraints of the specific system.
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(2) Different approaches should be taken for different applications and aircraft platform in order to
optimize the power and TMS.

(3) Different levels of heat flux should be discussed in detail and suitable approaches for each level
should be proposed.

(4) Since all power system components such as batteries, capacitors, power semiconductors,
generators, pulsed power sources and beam conditioners have thermal design issues, partial
solutions have been sought by way of increased heat transfer through the use of spray cooling,
micro channels and subcooled boiling, loop heat pipes, capillary pumped loops, energy storage
and spray cooling arrays.

In 2009, Maser et al. presented a thermal management modelling approach for integrated power
system. Based on the control-volume method they developed a dynamic model for the TMS and
the propulsion system in Numerical Propulsion System Simulation (NPSS) software and linked it to
an electrical model created in MATLAB/Simulink [44]. However, in their model they assumed that
the engine oil cooling would be dealt with using a separate cooling system. Moreover, the effect of the
air bleed cooling system was not considered in this study.

In 2012, United Technologies Corporation presented another schematic of a two integrated loops
TMS for gas turbine engines [45]. The main idea of this patent is to have two cooling loops with different
temperature to deal with different levels of heat flux in flight mission. So, a thermal management
system with an air-to-oil heat exchanger to provide the first conditioned fluid and a second (fuel-to-oil)
heat exchanger to provide a second conditioned fluid and a third air-to-oil heat exchanger in parallel
flow communication with the second heat exchanger to meet the fluid temperature limits was proposed
as shown in Figure 3. In this figure, the first heat exchanger (Number 1) provides a first conditioned
fluid (Number 2), a second heat exchanger (Number 3) exchanges heat with the first conditioned fluid
(Number 2) to provide a second conditioned fluid (Number 4) and a third heat exchanger (Number 5)
selectively exchanges heat with the first conditioned fluid (Number 2) to provide a third conditioned
fluid (Number 6).
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United Technologies Corporation.

Therefore, the TMS in this embodiment enables the designer to have two cooling loops with
different temperatures for engine thermal loads management.

A turbomachine structural assembly in which the nose cone provides an aperture that communicates
air to an interior of the nose cone was proposed by Suciu et al. in 2013 [46]. This embodiment enhances the
thermal management performance of the turbomachinery. However, more accessories like a motor and
a clutch and a control mechanism is required for implementation of this idea. Some other embodiments are
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also focused on this topic and its pros and cons from practical point of view [47–49]. These patents focused
on cooling requirements of GTE as well as engine fluids temperature limitations and based on defined
boundary conditions, different structures and architectures for GTEs thermal management system were
proposed in detail. The four different proposed architectures could be categorized as follow [50,51]:

(1) The first system includes an air/oil heat exchanger and an oil/fuel heat exchanger as shown
in Figure 4. A small percentage of the fan bypass duct air flow passes through the Air-to-Oil
heat exchanger (AOH). This embodiment not only adds weight to the aircraft but also creates
a pressure loss in the fan bypass duct airflow (BPA), resulting in a reduction in propulsive thrust.
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(2) The second idea is shown in Figure 5 includes an oil/fuel heat exchanger (OFH) that transfers
heat from the hot engine oil. However, the oil returns directly to the engine from the OFH in this
embodiment. In addition, this system includes an air/ fuel heat exchanger (AFH), which transfers
heat from the fuel to a fraction of the aircraft inlet or nacelle airflow (NCA). It maintains the
fuel at a sufficiently low temperature to adequately cool the engine oil under different engine
operating conditions. This can be achieved because the design of the system is not compromised
by constrains imposed on the systems shown in Figure 4. However, the system may still not be
capable of handling all engine and aircraft operating conditions without exceeding either the fuel
or engine oil operating temperatures limits, resulting in operational limits on the aircraft.
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Figure 6 shows another TMS architecture which is particularly adapted for gas turbine engines
with separate gearing structures (“gearboxes”). It includes an air/oil heat exchanger (AOH) in
a gearbox lubricating oil line (GOL). In a fashion like that employed with the engine lubricating
oil, the gearbox oil re-circulates from a sump, through the AOH and then back to the gear box.
A separate heat transfer line (EOL) for the engine lubricating oil passes through an oil/fuel heat
exchanger (OFH), so that heat from the engine lubricating oil is transferred to the fuel, in a fashion
similar to that described in connection with the OFH in Figures 4 and 5.
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Another idea is to use a working fluid (e.g., water, Therminol, thermally neutral heat transfer
fluid (TNHTF)) to absorb heat from engine fluids (oil and fuel). Two schematics of this idea are
shown in Figure 7. A reversible heat pump is used in this embodiment to circulate a working
fluid through heat exchangers. By employing this pump, the performance of the TMS system
will improve operational flexibility that enables the heat transfer characteristics of the system
to be more precisely controlled and more readily tailored to a particular engine across a greater
range of operating conditions. The system will work in forward direction in normal operating
conditions. As soon as one of engine fluids (oil or fuel or both) exceeds the temperature limit,
the system will switch to reverse direction to protect the engine fluids from over-temperature
and other physical limitations (e.g., cocking, lacquering, varnishing, etc.). However, the design
and implementation of this system has its own complexity and considerations that should be
taken into account.
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In 2014, the von Karman institute for fluid dynamics in Belgium published an experimental study
on thermal analysis of surface heat exchanger operating in transonic regime in which an integrated
bypass-flow surface heat exchanger is modelled and tested to cope with the high cooling demands
from innovative engine architectures. Their results showed that the investigated concept may provide
up to 76% of the estimated lubrication cooling requirements during take-off of in a modern gas turbine
power plant [51].

The idea of using thermally neutral heat transfer fluid (TNHTF) like Therminol and DOWTHERM for
gas turbine engines TMS is becoming more widely focused in recent years. In 2016, United technologies
Corporation presented an embodiment containing a fuel/TNHTF heat exchanger, an oil/TNHTF heat
exchanger and an air/TNHTF heat exchanger to manage the excess thermal loads of GTEs [52]. The main
advantage of this idea (shown in Figure 8) is the high potential of TNHTFs as heat sink in comparison with
engine fluids (oil and fuel). However, the system should be designed precisely and the accurate flowrate
control should be considered in order to satisfy the stability criteria of the system. In Figure 8, the proposed
configuration of Fuel/TNHTF heat exchanger (1), oil/TNHTF heat exchanger (2) and air/TNHTF heat
exchanger (3) are shown schematically.
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Another idea, is to cool the compressor bleed air using a TNHTF in order to decrease the
required volume of airflow for cooling the high-pressure turbine and increase the engine efficiency [53].
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The schematic of this idea is shown in Figure 9. An accurate control system and a variable speed drive
design should be considered in this idea.
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Moreover, the fuel lacquering and other deposit formation is an important concern in thermal
management system design. To deal with this problem, the idea of controlling fuel temperature based
on the aircraft altitude is presented in 2016 by Teicholz and Stearns [54]. The control strategy was
proposed to manage fuel temperature by using the altitude sensor data. For instance, the controller
may schedule a decreased temperature for the conditioned fuel at lower altitudes (respect to high fuel
oxygen content at low altitudes) and an elevated temperature for conditioned fuel at higher altitudes
(e.g., during cruise and high-altitude climb).

In 2016, a comprehensive work on transient exergy analysis for thermal management of subsystem
components was demonstrated and discussed [55]. Using experimental results, this study formulated
a methodology for system level optimization to develop a dynamic air cycle machine (ACM) model
at the Air Force Research Laboratory’s Modelling, Simulation, Analysis and Testing (MSAT) lab.
The main outcome of this study was a “total efficiency parameter” defined by combining the exergy
analysis. This parameter would help future simulation studies to be implemented on various system
architectures to generate accurate models and predictive analysis.

In 2017, Rolls-Royce proposed different embodiments for high bypass geared turbofan engines
TMS. This patent, proposed a heat exchange system for a power gearbox in an aircraft engine in which
at least one heat transfer device is enclosed, embedded and/or attached with the casing of the power
gearbox, wherein at least one airflow is directed to the one heat transfer device for thermally controlling
the power gearbox. Different heat transfer devices can also be used in this idea for cooling/heating the
power gearbox in different operating conditions [56,57].

Finally, in 2018, Rolls Royce has presented a novel idea on a closed dynamic cooling circuit for
engine thermal management system. In this embodiment, a Thermal Energy Storage (TES) system is
designed with two cooling circuit to manage the dynamic thermal load of the engine. So, each circuit
has its own compressor and heat exchanger to be controlled to fully absorb thermal energy received
by the TES [58]. The idea is very promising as both steady state and transient situations are being
considered. However, the implementation considerations and stability issue should be considered
with more details before the embodiment could go for the practical application.
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The main ideas and milestones presented in the detailed design phase could be summarized
as follow:

(1) CCA thermal management system to increase the performance of the gas turbine engine by
cooling the bypass air

(2) Fuel cooled system with two different thermal management loops with different temperature
levels to deal with all flight points efficiently

(3) Using different coolants (e.g., water, Therminol and thermally neutral heat transfer fluid (TNHTF))
to manage the thermal loads in different points of the gas turbine engine.

5. TMS Design Challenges and Potential Solutions for the Next Generation of Aircraft Engines

From the historical review presented plus some general consideration of efficiency, energy
management and coolant properties, it is possible to identify four different systematic concepts
for the future of the TMS design and development as follows:

• Class I. Classic Development. This class of development would concentrate on the improvement
of conventional TMS structure (Figure 1) for GTEs. This improvement could be applied on minor
system structure changes in order to get better efficiency, replacement of the components with
more advanced and smart ones (e.g., new, effective heat exchangers [59,60]) and changing the
oil and fuel path to get better thermal management efficiency. The advantages of this approach
are that the theoretical fundamentals and the implementation infrastructures are well-developed
and these modifications would not dictate huge cost to manufacturers. However, the main
disadvantage of this approach is that probably it would just bring marginal improvement for the
TMS as this area is already well investigated.

• Class II. Centralized Development. This class would investigate the integrated TMS for the
engine and airframe. It results in a centralized system that manages the thermal loads of the
airframe and the engine simultaneously. So, the control algorithm and strategy would have more
degree of freedom to deal with thermal loads. However, the main disadvantage is that it would
be a high dimension multidisciplinary design problem with many parameters to select and tune
simultaneously. Especially, in new advanced aircraft and engines it could be hardly affordable.

• Class III. Revolutionary Development. This class of development would cover new ideas with
major changes in the TMS. Using new coolants for the engine ([50] and Figure 7) and ACC
system ([35] and Figure 2) are examples of this class. The positive points about this class of
development is that it may be possible to get a noticeable jump in TMS effectiveness. In other
words, a revolutionary approach may result in a revolutionary achievement. But, the problem
with this class of development is that implementation of these approaches requires a significant
change in the system manufacturing and infrastructures and it may not be interesting for the
airliners and manufacturers.

• Class IV. Cost-effective Development. This type of approaches will focus on the cost-effective
solutions to enhance the TMS behaviour in the GTEs. The driving idea is to keep the hardware
structure of the TMS unchanged (if possible) and to work on the solutions that could be
implemented easily and/or with minimum changes in the current working systems. Enhancement
of the control algorithms [61], splitters, valves and mixers [62] are some examples of cost-effective
solutions. The relative merits of this class to the other classes is clear as the cost consideration is
one of the most important issues in real-world applications. However, the correlation between
the complexity and impact is the matter that should be discussed in these methods.

With respect to the above systematic approaches, the main drawbacks of the TMS development
classes for the future aircraft engines are summarized in Table 2.
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Table 2. Drawbacks of the classes of TMS development for the future aero-engines.

Class of
Development Main Drawbacks

I Classic

• The new aircraft engines designs are being more complicated with
much more extra heat to be dissipated [59,62].

• Geared Turbofans have power gearbox which makes the extra heat
of the engine at least twice [59,62].

• Current TMS for aircraft engines are already working on their
limits and any modification would probably lead to just
marginal improvements.

II Centralized

• New architectures for airframe and engines are more compact and
have less space to accommodate conventional TMS components.

• A multidisciplinary design optimization problem with many
parameters should be solved in this approach.

• A centralized complicated control algorithm is required to satisfy
both engine and airframe TMS requirements simultaneously.

III Revolutionary

• The chance of successfulness of a new idea is not too much in
comparison with the time that should be spent on its development
and investigation.

• The industry is reluctant to change the infrastructure as it would
be expensive and time consuming.

• A new system requires its own certificates and reliability tests
before it can go into the production.

IV Cost-effective

• Keeping the main structure and architecture and achieving
noticeable improvement in the efficiency is not a simple
straightforward task.

• Detailed and probably complicated control algorithms should be
developed, simulated and tested in different scenarios to confirm
the effectiveness of these methods.

Considering that the above-listed drawbacks in some classes could be sorted out with using ideas
of other classes, the potential solutions for the improvement of the aircraft engine TMS for the future
could be proposed as follow:

(1) The first effective solution could be utilizing both class I and IV simultaneously. It means that
concentration of new studies should be on some minor modification on the hardware as well as
working on algorithms and strategies. The superposition of these classes of development would
enable the TMS designers to deal with several challenges in parallel. In one hand, the main
architecture of the TMS would be kept approximately unchanged as the manufacturers and
airliners prefer. On the other hand, minor changes in the components and cooling paths will
give a huge degree of freedom to the control structure designers to play with more parameters in
order to enhance the performance indices of the TMS and the engine noticeably. As an illustrative
example, change the circulation path of the oil in parallel with defining a smart control algorithm
for the variable valve positions may result in a noticeable enhancement in the TMS performance.

(2) Another solution could be defining the classes II and III as a unique approach in an engineering
optimization problem format. The main idea would be to define the structure of the integrated
TMS, the order of components, the oil and fuel paths, the air flowrate and path and so forth, as the
indices of a comprehensive objective function; then to use a powerful optimizer to deal with the
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defined objective function. By tuning the mutation operator probability, the potential evolutionary
developments would be investigated as well. However, definition of very smart constraints,
penalty functions, penalty factors and objective function indices coefficients is a very vital step
in successfulness of this approach. So, the main step in this solution is to define the problem
statement very clear and with high level of details and accuracy; and then to select a suitable
optimizer which can deal with such a big optimization problem with affordable run time.

Associated with this classification, it is helpful to consider some form of evaluation and ranking of
proposed solutions. For this purpose, it is worthwhile to analyse the complexity-impact (CI) correlation
which is a practical index in selecting the feasible approach for dealing with challenges [63–65]. It is
an assessment to value the effort that should be spend on a problem with respect to impacts of the
results. Based on whole review, analyses and discussion presented so far, Figure 10 summarizes the
development classes and proposed solutions with their CI index.

• Class I. Classic development is a straightforward approach with low complexity. However, it is
not expected that it could have a great impact on TMS efficiency for the future engines.

• Classes II and III. Centralized and revolutionary developments are complicated approaches
in formulation and implementation. If they are successful, they would impact the TMS
sector noticeably.

• Class IV. Cost-effective development is also directed towards design and implement and if the
basic idea has great potential, the impact would be noticeable as well.

Potential Solutions:

(1) Solution I will promote the effectiveness of class I by combining it with class II of development
(2) Solution II will promote classes II and III to achieve more impact to the TMS development in

aerospace sector.

Both solutions are lying on the diagonal direction of the CI matrix which makes sense from
computational effort and cost compensation points of view and introduce them as practical solutions
to deal with the TMS challenges of the future aircraft engines.
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6. Conclusions

A comprehensive historical review on design and development of thermal management systems
for aircraft engines has been covered to identify the future challenges, opportunities and potential
solutions for dealing with extra heats caused by advanced next generation of aircraft engines. The new
ideas and approaches to enhance the TMS performance have been categorized in four different classes:
classic, centralized, revolutionary and cost-effective developments. Each of these classes has its own
pros and cons and will be faced with practical challenges in the development phase. Future engines
involving more electric components will need the development of more sophisticated methods to deal
with the extra heat. Consequently, two potential solutions have been proposed to deal with these
challenges in the future:

(1) Combination of classes I (classic) and IV (cost-effective) to cope with much more extra heat
generated by new advanced and geared turbofan engines with power gearbox,

(2) Combination of classes II (centralized) and III (revolutionary) to deal with needs for energy
management in the system and focusing on new smart components for more advanced smart
thermal management systems.
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