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Abstract

This paper proposes an approach for the attitude control of directional drilling

tools for the oil and gas industry. A bilinear model of the directional drilling

tool is proposed and it characterises the nonlinear properties of the directional

drilling tool more accurately than the existing linear model, hence broadens the

range of adequate performance. The proposed bilinear model is used as the ba-

sis for the design of a Bilinear Proportional plus Integral (BPI) controller. The

stability of the proposed BPI control system is proven using stability notions for

LTI and LPV systems. The transient simulation results show that the proposed

BPI controller is more effective, robust and stable for the attitude control of

the directional drilling tool than the existing PI controller. The proposed BPI

controller provides improved invariant azimuth responses and significantly re-

duces the adverse effects of measurement delays and disturbances with respect

to stability and performance of the directional drilling tool.

Keywords: Directional drilling, Attitude control, Bilinear, Time delay,

Disturbances, Linear Parameter-Varying (LPV) systems

1. Introduction

In the oil and gas industry, directional drilling is the practice of creating a

geometric wellbore with a directional drilling tool along a predetermined target
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underneath the Earth’s surface for the extraction of petroleum hydrocarbons.

The application of directional drilling creates access to challenging petroleum5

reservoirs by allowing for the drilling of wells with complex geometries and longer

reaching wells (Pedersen et al., 2009). Directional drilling involves attitude,

that is, inclination and azimuth angles control of the directional drilling tool.

The automatic control of the attitude of the directional drilling tool plays an

important role in the maximisation of production as well as reduction of cost10

per foot of borehole. With the finite reserves of oil and gas resources, reduction

in the cost per barrel is desired to cost-effectively match the growing energy

requirements for the immediate future.

Figure 1: Main components of directional drilling system (Panchal, 2013)

A typical directional drilling system with its main components is shown in

Fig. 1. During the directional drilling, the drill string, which is the combination15

of the Bottom-Hole Assembly (BHA) and drill pipe, provides the transmission of

torque (from the top drive, located at the surface) and weight to the bit (located

downhole). The bit crushes the rock during the propagation of the wellbore.

The drilling mud is circulated from the surface to the bit via the drill string to
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lubricate and cool the rock cushing operation and to move the rock-cuttings to20

the surface via the annulus, that is, the gap between the wellbore and the drill

pipe. At the surface, the removal of the cuttings is done, and the recirculation

of the drilling fluid is carried out. The BHA comprises of Measurement While

Drilling (MWD) subsystem, Logging While Drilling (LWD) subsystem, Power

Generation Module (PGM), control unit, Direction and Inclination (D&I) sen-25

sor, steering unit and stabilisers. The LWD subsystem handles the surveys,

measurements and assessments of formation properties while a wellbore is prop-

agated, and sometimes shortly after the wellbore propagation, that is, during the

periodical stop of the directional drilling operation. The MWD subsystem han-

dles the surveys, measurements and assessments of physical parameters while30

a wellbore is propagated. The steering assembly (unit) allows for the direction

and curvature of the directional drilling tool to be changed as desired during

the propagation of the wellbore. Further details of directional drilling system

and its operations can be found in Short (1993); Devereux (1999); Baker (1996)

and Inyang (2017).35

The control unit implements the control algorithms to provide attitude and

trajectory control during the directional drilling operations. Note that there is

limited communication between the surface and downhole. For example, mud

pulse telemetry (Downton, 2012, 2014), which is a technique for the transmis-

sion of commands from the surface to downhole and vice versa, provides about40

1 bit/sec and about 100 bits/sec communication rates in the less and most

favourable of conditions, respectively (Downton, 2012). This technique is sig-

nificantly affected by measurement noise, the temporal and spatial sampling

frequency, and the variability and magnitude of the telemetry delays (Jijón

et al., 2010). Hence, the control algorithms must be implemented in the di-45

rectional drilling tool downhole. The borehole can be several kilometres deep,

and the environment is very harsh. The limited power supply and the harsh

environment necessitate that the control algorithms must be simple.

To measure the attitude of the directional drilling tool, the D&I sensor is

used, which senses the azimuth angle, θazi and inclination angle, θinc shown in50
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Fig. 2. The azimuth angle, θazi ∈ [0◦, 360◦) is evaluated relative to the Earth’s

magnetic field projection in the horizontal plane, where 0◦, 90◦, 180◦ and 270◦

correspond to due North, East, South and West, respectively. The inclination

angle, θinc ∈ [0◦, 180◦] is the angular deviation from the vertical with 0◦, 90◦

and 180◦ defined downward, horizontal and upward, respectively.55

incorporating it into a transient simulation using the plant model
in nonlinear form together with the necessary control architecture.
For reference, the control design and analysis were performed
using MATLAB and its associated Robust Control Toolbox com-
mands, and the subsequent transient simulations were performed
in SIMULINK.

2 Nominal Model

2.1 Tool Kinematics and Virtual Control Inputs. The
system is modeled by considering the tools attitude in terms of
the azimuth and inclination angles, hazi and hinc, respectively, as
shown in Fig. 2. This is the conventional representation used in the
industry. By assuming that the tool is rigid, and that the sensors are
located at the tool so there is no measurement delay, then the sys-
tems can be modeled by purely kinematic considerations as [6]

_hinc ¼ VropðUdls cos Utf � VdrÞ (1)

_hazi ¼
Vrop

sin hinc

Udls sin Utf � Vtrð Þ (2)

where Utf is the tool-face angle control input, Udls is the curvature
control input, Vdr is the drop-rate disturbance ðVdr ¼ a sin hincÞ,
Vtr is the turn-rate bias disturbance, and Vrop is the rate of penetra-
tion and is a time-varying parameter that is not controlled. Note
that there are singularities in Eq. (2) for hinc ¼ 0; p. In practice, a
different control algorithm is used for vertical drilling when the
inclination is small.

A (planar) model that takes into account the delay and the
bending of the tool can be found in Ref. [9]. However, in our
work, the high-frequency dynamics and delay are accounted for in
the model uncertainties described in Sec. 4.

Consider Eqs. (1) and (2) with the drop and turn disturbances
ignored

_hinc ¼ VropUdls cosðUtfÞ (3)

_hazi ¼
Vrop

sin hincð ÞUdls sin Utfð Þ (4)

We define the equivalent virtual control inputs

Uinc ¼
Udls

Kdls

cos Utf (5)

Uazi ¼
Udls

Kdls

sin Utf (6)

where Kdls represents the maximum Udls, that is, the
maximum curvature. We thus have the following control input
transformation:

Utf ¼ ATAN2ðUazi;UincÞ (7)

Udls ¼ Kdls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

azi þ U2
inc

q
(8)

which when applied to Eqs. (3) and (4) gives a realization of the
open-loop kinematics as

_hinc ¼ VropKdlsUinc (9)

_hazi ¼
Vrop

sin hincð ÞKdlsUazi (10)

Thus, the control input transformations given by Eqs. (7) and (8)
partially decouple and linearize the governing equations.

The nominal model does not include the various actuator and
sensor dynamics and delays. For example, the tool-face input Utf

is subject to first-order lag dynamics. In addition, to engineer a
variable curvature, Udls, the control input Utf is discretized into
duty cycles known as “drilling cycles” as detailed in Ref. [6] and
described in Sec. 5.2.1. The actuation drilling cycles can be
abstracted as pure delays. Additionally, the on-tool feedback
measurements of hinc and hazi are subject to pure delays dependent
on Vrop as a consequence of the relevant sensors being spatially
offset from the drill bit (the inertial datum). These effects are
accounted for in the structured uncertainty analysis in Sec. 4 and
included in the simulations presented in Sec. 5.2.

2.2 Linearized Plant. Linearizing the partially uncoupled
plant model given by Eqs. (9) and (10) about an operating point

ðĥ inc; ĥaziÞ gives the open-loop plant model

_xinc ¼ auinc (11)

_xazi ¼ cxinc þ buazi (12)

where a ¼ VropKdls; b ¼ aa1; c ¼ �aa1a2; a1 ¼ csc ĥinc, and
a2 ¼ cot ĥinc. Taking the output to be y ¼ ½xinc; xazi�T, the nominal
model Laplace transfer function matrix is

G0 sð Þ ¼

a

s
0

ac

s2

b

s

2
664

3
775 (13)

which can be factorized into

G0 ¼ Gi1G00Gi2 (14)

¼
1 0

0
1

s

2
4

3
5 a 0

�a2a1a2 aa1

" # 1

s
0

0 1

2
64

3
75 (15)

3 Control Design

For all design methodologies, the nominal plant G0 is used, and
the actuator and measurement dynamics are ignored.

3.1 Pole-Placement Design. The proposed scheme for the
pole-placement controller designs is shown in Fig. 3, where rinc

and razi represent the demand inclination and azimuth, respec-
tively. The PI controller for each channel is

Fig. 2 Attitude and steering parameters for the drilling tool [5]
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Figure 2: Typical steering and attitude parameters of directional drilling tool

This paper presents the design of a generic tool-independent attitude con-

trol algorithm for application to directional drilling tools. The significance of

attitude control of directional drilling tools is highlighted in Genevois et al.

(2003) and Yonezawa et al. (2002), where control techniques are proposed for

the orientation of the borehole propagation based on holding the toolface angle.60

Genevois et al. (2003) described the desire for closed-loop “shoot and forget

systems” and illustrated the azimuth control to be the major challenge. Most

of the attitude control techniques described in literature are elucidated based

on specific tool structures. Typical examples are by Yinghui and Yinao (2000),

Genevois et al. (2003) and Yonezawa et al. (2002). Another interesting example65

presented by Kuwana et al. (1994) is an attitude controlling system which uses

two-way telemetry communication links with the surface. The steering correc-

tion, calculated from the telemetry, is determined and then manually down-

linked to the tool. Other control strategies recently developed include a hybrid

approach consisting of two levels of automation for trajectory control of the tool70

(Matheus et al., 2014, 2012), a dynamic state-feedback controller design for 3D

directional drilling systems (van de Wouw et al., 2016), a model-based robust
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controller (Kremers et al., 2016), a robust Proportional plus Integral (PI) feed-

back controller (Panchal et al., 2010), an optimal H∞ controller (Bayliss and

Whidborne, 2015) and a linear quadratic Gaussian controller (Bayliss et al.,75

2015).

When modelling physical systems, the dynamics are often approximated as

being linear models obtained by a first-order Taylor series approximation of the

nonlinear model at a particular point of operation. It is clear that such linear

models might be inaccurate over a wider range of operation; hence, bilinear mod-

els have been proposed to more accurately describe the nonlinear systems (see

Bruni et al. (1974); Schwarz and Dorissen (1989)). Bilinear models can char-

acterise nonlinear properties over a wider range of operations, hence, broaden

the range of adequate performances and they are considered to be significantly

advantageous in applications to practical industrial systems (Martineau et al.,

2002). In this paper, a bilinear model of the directional drilling tool is de-

veloped by applying the Carleman bilinearisation technique (Ghasemi et al.,

2014; Krener, 1974; Rugh, 1981). The generalised state space representation of

a Multiple-Input Multiple-Output (MIMO) continuous-time bilinear system is

expressed as (Kim and Lim, 2003):

ẋ = Ax+

(
B +

N∑

i=1

xiMi

)
u (1)

where A,B and Mi are constant matrices of suitable dimensions, u ∈ Rm×1

denotes the control vector, x ∈ Rn×1 represents the vector of state variables

and N denotes the number of expansion terms and augmented states.

The PI controller proposed by Panchal et al. (2010) provides good perfor-80

mance for the attitude control of the directional drilling tool but is insufficiently

robust to cope with the disturbances and long time delay on the feedback mea-

surements. Furthermore, it is designed at a particular operating point, hence

leading to the inconsistency of the azimuth responses for different operating

points. These disturbances are as a result of varying rock formations, a procliv-85

ity for the tool to drift horizontally, and to drop towards a vertical orientation

due to gravity. While the long time delay arises because the D&I sensor which
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measures the attitude change is, by necessity, located some distance (sometimes

several tens of feet) behind the bit. The time delay increases with the dis-

tance of the D&I sensor from the bit, and inversely proportional to the Rate of90

Penetration (ROP).

To handle these disturbances, measurement delay and inconsistency of the

azimuth responses in the attitude control of the directional drilling tool, this

paper, with the extension of some of the works of Panchal et al. (2010) and

Inyang et al. (2016), presents the design of a Bilinear Proportional plus Integral95

(BPI) controller which automatically holds the attitude of directional drilling

tools at the desired attitude, and also significantly reduce the adverse effects of

disturbances and measurement delay on stability and performance of directional

drilling tools. The BPI controller is considered to provide more consistent az-

imuth responses over a wider range of directional drilling tool operations. The100

BPI controller, similar to the Bilinear Proportional-Integral-Derivative (BPID)

controllers presented in Martineau et al. (2002, 2004) and Burnham et al. (1999)

used in industrial furnace, is relatively simple compared to some of the existing

bilinear controllers presented in Lim et al. (2009), Park and Lee (2009), Kim

and Lim (2003), Goodhart et al. (1994), Chen et al. (2000), Qian and Zhang105

(2014), Kelman and Borrelli (2011) and Al-zahrani and Wali (1994) that are

used in other different applications. Hence, given the relative simplicity of the

BPI controller, it can easily be implemented in directional drilling tools to in-

crease the potential of accessing difficult reservoirs, drilling more effectively and

cost-effective field development.110

The main contributions of this paper include: (1) The development of a

bilinear model of the directional drilling tool which characterises the nonlinear

properties of the directional drilling tool more accurately than the existing linear

model, hence broadens the range of adequate performance. The proposed bi-

linear model of the directional tool is used for the design of the BPI controller.115

(2) The design of a BPI controller for the attitude control of the directional

drilling tool. The proposed BPI controller is able to hold the attitude of the

directional drilling tool at the desired inclination and azimuth angles and pro-
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vide more consistent azimuth responses over wider range of directional drilling

operations. Furthermore, it significantly reduces the adverse effects of time de-120

lay on the feedback measurements, disturbances and some other uncertainties

(such as drilling cycle and toolface actuator dynamics) in the attitude control

of the directional drilling tool.

The remainder of this paper is organised as follows: Section 2 summarises

some of the previous models of the directional drilling tool that are related to125

this paper; and also presents the development and the accuracy of a bilinear

model of the directional drilling tool. Section 3 presents the design of a BPI

controller for the attitude control of the directional drilling tool. In Section 4,

the stability of the proposed BPI control system is proven using stability notions

for Linear Time Invariant (LTI) and Linear Parameter-Varying (LPV) systems.130

Section 5 presents transient results based on Low-Fidelity Model (LFM) and

High-Fidelity Model (HFM) simulations.

2. Models of Directional Drilling Tool

2.1. Previous Models

The directional drilling tool model proposed by Panchal et al. (2010) is

derived from kinematic considerations and does not take into consideration the

torsional and lateral dynamics of the drillstem and BHA. The model proposed

by Panchal et al. (2010) is illustrated in Fig. 2 and it is given as:

θ̇inc = Vrop (Udls cosUtf − Vdr) (2)

θ̇azi =
Vrop

sin θinc
(Udls sinUtf − Vtr) (3)

where Vrop denotes the rate of penetration, a time-varying parameter, Vtr de-135

notes the turn rate bias disturbance, Vdr denotes the drop rate disturbance

(Vdr = α sin θinc), α is a constant, Udls denotes the curvature, also known as

“dogleg severity” which is the product of duty cycle and Kdls, Kdls denotes

the open-loop curvature capability of the tool, Utf denotes the toolface angle

control input, θazi denotes the azimuth angle and θinc denotes the inclination140
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angle. Note that in (3) there is a singularity when θinc = 0◦, hence, the model,

(2) and (3) is restricted to attitudes such that θinc is not close to 0◦.

The model, (2) and (3) has also been used in Matheus et al. (2014, 2012) (see

also Cockburn et al. (2011); Matheus and Naganathan (2010)) where field tested

results are presented that show the fidelity of the model with actual practice.145

The model, (2) and (3) is partially linearised and decoupled as follows (Pan-

chal et al., 2010):

θ̇inc = VropKdlsUinc (4)

θ̇azi =
Vrop

sin θinc
KdlsUazi (5)

where Uinc and Uazi represent the virtual controls for the inclination and az-

imuth, respectively, and the transformation is given as: Utf = ATAN2 (Uazi, Uinc)

and Udls = Kdls

√
(Uazi)

2
+ (Uinc)

2
. With the linearisation of (4) and (5) about

a nominal inclination angle, θ̂inc, a linearised model of the directional drilling

tool is obtained as follows (Panchal et al., 2010):

ẋinc = auinc (6)

ẋazi = cxinc + buazi (7)

where c = −b cot θ̂inc, b = a csc θ̂inc and a = VropKdls. Based on (6) and (7),

Panchal et al. (2010) designed a PI controller for the attitude control of the

directional drilling tool.

2.2. Proposed Bilinear Model

In this subsection, the Carleman bilinearisation technique (Ghasemi et al.,

2014; Krener, 1974; Rugh, 1981) is applied to the partially linearised and decou-

pled system, (4) and (5), to obtain a bilinear model of the directional drilling

tool. Equations (4) and (5) are rewritten as:

θ̇inc = aUinc (8)

θ̇azi =
a

sin θinc
Uazi (9)
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where a = VropKdls. Defining an augmented state vector for the Carleman

bilinearisation as:

x⊗ = [x1, x
(2)
1 , x

(3)
1 , x

(4)
1 , ..., x

(N)
1 , x2]T (10)

where x1 = θinc, x2 = θazi and ẋ
(i)
1 = d

dt

[
(x1)

i
]

= iẋ1x
(i−1)
1 leads to an extended

bilinear state space system:

ẋ1 = aUinc (11)

ẋ2 = aUazi csc (x1) = aUazi sec (β) = aUazi

∞∑

i=1

bix
(i)
1 (12)

where β = π/2−θinc and bi are the coefficients of the Taylor series expansion of

sec (β). The expansion of sec (β) is used instead of csc (x1) so that the required

powers of x
(i)
1 can be obtained from the θinc state equation. The Taylor series

expansion of sec (β) for −π2 < β < π
2 is obtained from

sec (β) = 1 +
1

2
β2 +

5

24
β4 +

61

720
β6 + · · ·+ (−1)nE2n(β)2n

(2n)!
+ . . . (13)

where E2n is the Euler number (Rade and Westergren, 1999, pp 81-99).150

In practice, the number of terms in the series expansion and the number

of augmented states is truncated to a finite value N (where N is equal to the

number of expansion terms and augmented states) to an arbitrary degree of

accuracy. Expanding (12), then (11) and (12) gives the bilinear system:

ẋ1 = aUinc (14)

ẋ
(2)
1 = 2x1ẋ1 = 2ax1Uinc

ẋ
(3)
1 = 3x

(2)
1 ẋ1 = 3ax

(2)
1 Uinc

...
...

ẋ
(N)
1 = Nx

(N−1)
1 ẋ1 = Nax

(N−1)
1 Uinc

ẋ2 = aUazi

N∑

i=1

bix
(i)
1

which is in the form of (1); where A = [ ], u = [Uinc, Uazi]
T

and x = x⊗. For
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example, where N = 3, the following is obtained:




x1

x
(2)
1

x
(3)
1

x2




=




0 0

2a 0

0 0

0 ab1





Uinc

Uazi


x1 +




0 0

0 0

3a 0

0 ab2





Uinc

Uazi


x(2)1 (15)

+




0 0

0 0

0 0

0 ab3





Uinc

Uazi


x(3)1 +




a 0

0 0

0 0

0 0





Uinc

Uazi




The accuracy of the proposed bilinear model of the directional drilling tool

is analysed in the remaining part of this section. Furthermore, the proposed

bilinear model is used as the basis for the BPI controller design as analysed in

Section 3.

2.2.1. Bilinear Model Accuracy155

To demonstrate the accuracy of the proposed bilinear model of the direc-

tional drilling tool, the transient azimuth responses for the open-loop systems

using the proposed bilinear model for N = 3, 4 and 10 are analysed and com-

pared with those from the nonlinear model, (2) and (3) (with Vdr and Vtr ig-

nored) and the linear model, (6) and (7) proposed by Panchal et al. (2010). It is160

expected that the inclination responses of the models are identical because there

is no nonlinearity in the inclination open-loops of the models. The parameters

used for the models comparison simulation are given in Table 1.

Table 1: Simulation Parameters for Models Comparison

Parameter Value

θazi 2.5 rad (143.24◦)

N 3, 4, 10

Parameter Value

Vrop 100 ft/hr (0.5079 m/min)

Kdls 10◦/100 ft (5.7264e-3 rad/m)
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Figure 3: Comparison of azimuth responses of nonlinear, linear and bilinear for N = 3, 4 and

10 models
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Figure 4: Relationship between the accuracy of bilinear azimuth responses and N

Based on the comparison shown in Fig. 3, the azimuth responses of the

proposed bilinear model for N = 3, 4 and 10, where the accuracy of the proposed165

bilinear model improves as N increases, converge more closely to the azimuth

response of the nonlinear model than that of the linear model. Hence, the

proposed bilinear model characterises the nonlinear model more accurately than

the linear model proposed by Panchal et al. (2010), thereby broadening the range

of adequate performances, and it is considered to be significantly advantageous170

in applications to directional drilling operations.

Furthermore, to demonstrate that the accuracy of the proposed bilinear

model increases with N , the norm error of the nonlinear and bilinear azimuth

responses given by ‖θNL − θBL(N)‖ as a function of N is shown in Fig. 4,
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where θNL is the nonlinear azimuth response and θBL(N) is the bilinear azimuth175

responses for N = 1, 2, 4, 6, 8, 10 and 18. Based on Fig. 4, it is analysed that

‖θNL − θBL(N)‖ decreases as N increases. Hence, the accuracy of the proposed

bilinear model improves as N increases.

3. BPI Controller Design

The proposed BPI controller design scheme, shown in Fig. 5, is based on180

the works of Martineau et al. (2002, 2004) and Burnham et al. (1999), and it

is a combination of a bilinear compensator and a standard linear PI controller.

The proposed bilinear compensator is only incorporated in the azimuth feedback

loop to account for the nonlinear 1/ sin θinc term in (3).

BPI Controller

PI

PI
Bilinear

Compensator

Control
Transfor-
mation

Tool
Dyna-
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+
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BPI System Delay
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Model

Delay
Model

F (s)
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+
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+

+

−
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Figure 5: BPI control scheme

3.1. PI Controller185

The PI control for the inclination and azimuth control channels are as follows,

respectively:

Uinc = kpieinc + kii

∫ t

0

eincdt (16)

Ũazi = kpaeazi + kia

∫ t

0

eazidt (17)

where Ũazi is the control input to the proposed bilinear compensator; einc =

rinc − θinc and eazi = razi − θazi; rinc and razi are the nominal operating points

for inclination and azimuth, respectively; kpi and kii are the proportional and

integral gains in the inclination feedback loop, respectively; kpa and kia are

the proportional and integral gains in the azimuth feedback loop, respectively.190
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The gains for the PI controllers in the inclination and azimuth feedback loops

are manually tuned to achieve desired performance in terms of zero steady

state error, fast settling time and minimal overshoot, with practical engineering

considerations.

3.2. Bilinear Compensator195

Assuming that in Fig. 5, Uazi = Ũazi, then only the PI controller is incorpo-

rated (see (17)), and the azimuth feedback loop is expressed based on (12) as

follows:

θ̇azi = a

∞∑

i=1

bix
(i)
1 (kpaeazi + kia

∫ t

0

eazidt) (18)

Based on (13) and (14), (18) can further be expressed as:

θ̇azi =a(1 +
1

2
β2 +

5

24
β4 +

61

720
β6 + · · ·+ (−1)nE2n(β)2n

(2n)!

+ . . . )(kpaeazi + kia

∫ t

0

eazidt) (19)

To account for the nonlinearity in (19), a bilinear compensator is proposed for

the azimuth feedback loop which is given as:

Uazi

Ũazi

=
1

1 + 1
2β

2 + 5
24β

4 + 61
720β

6 + · · ·+ (−1)nE2n(β)2n

(2n)! + . . .
(20)

Clearly, this has an infinite number of terms, hence, for practical implementa-

tion, (20) is truncated at β4, and it is given as:

Uazi

Ũazi

=
1

1 + 1
2β

2 + 5
24β

4
(21)

Note that, the simulation results of (20) truncated at degrees higher than β4,

have no significant improvement compared to those of (21).

The proposed bilinear compensator, (21) approximately cancels out the non-

linear 1/ sin θinc term in (3), thereby enhancing the performance of the PI con-

troller. The proposed bilinear compensator, (21), in combination with the PI200

controller, facilitates the ensuing BPI controller to sustain a required degree of

control throughout a broader scope of operation about the tuning point com-

pared with that obtained with the PI controller proposed by Panchal et al.
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(2010). Hence, the proposed BPI controller design provides improved invariant

azimuth responses, and also reduces the adverse effects of measurement delays205

and disturbances with respect to stability and performance when compared

with those obtained with the PI controller proposed by Panchal et al. (2010),

as analysed in Section 5. However, as earlier mentioned in Section 2.1, there

is a singularity in (3) when θinc = 0◦, hence, the proposed BPI controller is

restricted to attitudes such that θinc is not close to 0◦.210

The proposed BPI controller is relatively simple and it can easily be im-

plemented in the directional drilling tools to increase the potential of accessing

difficult reservoirs, drilling more effectively and cost-effective field development.

4. Stability Analysis of BPI Control System

The proposed BPI control system is shown in Fig. 6. From Fig. 6, it is215

clear that the stability of the proposed BPI control system can be analysed by

considering the stability of the two feedback loops (inclination and azimuth)

separately. With reference to Fig. 6, and based on (8) and (9), fazi(Uinc) =

aUinc = VropKdlsUinc and fazi(Uazi, β) = aUazi/ cosβ(t) (recall, β(t) = π/2 −
θinc(t)), and Kb(Ũazi, β) is given in (21).

Azimuth Feedback Loop

Inclination Feedback Loop

∫
kia Kb(Ũazi, β) fazi(Uazi, β)

∫

kpa

eazi + Ũazi Uazi θ̇azi θazi

− +

razi +

∫
kii finc(Uinc)

∫
kpi

einc +

Uinc θ̇inc

θinc

− +rinc

+

∫
kia Kb(Ũazi, β) fazi(Uazi, β)

∫

kpa

−1

β

eaa + Ũazi Uazi θ̇azi θazi

ėaa

+

1

Figure 6: BPI control system

220

With the introduction of an augmented state, eai, representing the accumu-

lated inclination error, and based on Fig. 7, the inclination feedback loop with

14



the PI controller is written as:

ėai(t) = −θinc(t) (22)

θ̇inc(t) = (kiieai(t)− kpiθinc(t))a

where eai(t), θinc(t) ∈ Rn and t ∈ R+.

t
0 rad

Utf

2π rad

Ûtf(k − 1)

Ûtf(k)

∆Ûtf

tneutral ∆tneutral

tcycle

Controller System Delay

System
Model

Delay
Model

Ref + Output

+

−

+

+

−

∫
kii finc(Uinc)

∫

kpi

−1

ėai eai + Uinc θ̇inc θinc

+

Azimuth Feedback Loop

Inclination Feedback Loop

∫
kia Kb(Ũazi, β) fazi(Uazi, β)

∫

kpa

eazi + Ũazi Uazi θ̇azi θazi

− +

razi +

∫
kii finc(Uinc)

∫
kpi

einc +

Uinc θ̇inc

θinc

− +rinc

+

5

Figure 7: Inclination feedback loop with PI controller

Note that (22) is an LTI system and it can be put in the form of:

ẋ(t) = Ax(t), t ≥ 0 (23)

x(0) = x0

where x ∈ Rn denotes the system state, A ∈ Rn×n denotes system matrix, with

x(t) = [eai(t), θinc(t)]
T

and

A =


 0 −1

kiia −kpia


 (24)

Clearly, the eigenvalues of A are left-half-plane for all positive a, kii and

kpi; hence the inclination feedback loop with the PI controller given in (24) is

exponentially stable.

The remaining part of this section focuses on the stability analysis of the

proposed BPI controller which is incorporated in the azimuth feedback loop

(see Fig. 8). With the introduction of an augmented state, eaa, representing

the accumulated azimuth error, and based on Fig. 8, the azimuth feedback loop

with the proposed BPI controller is written as:

ėaa(t) = −θazi(t) (25)

θ̇azi(t) = (kiaeaa(t)− kpaθazi(t))af(β(t))

15



where ea(t), θazi(t) ∈ Rn; t ∈ R+,

f(β(t)) =
1

cosβ(t)(1 + 1
2β

2(t) + 5
24β

4(t))
(26)

β(t) ∈ [β, β̄] rad, β and β̄ are the minimum and maximum values of β(t),225

respectively.
Azimuth Feedback Loop

Inclination Feedback Loop

∫
kia Kb(Ũazi, β) fazi(Uazi, β)

∫

kpa

eazi + Ũazi Uazi θ̇azi θazi

− +

razi +

∫
kii finc(Uinc)

∫
kpi

einc +

Uinc θ̇inc

θinc

− +rinc

+

∫
kia Kb(Ũazi, β) fazi(Uazi, β)

∫

kpa

−1

β

ėaa eaa + Ũazi Uazi θ̇azi θazi

+

1

Figure 8: Azimuth feedback loop with BPI controller

Note that (25) is an LPV system and it is rewritten in a generic LPV system

form (Briat, 2015, p. 10):

ẋ(t) = A(ρ(t))x(t), t ≥ 0 (27)

x(0) = x0

with: x(t) = [eaa(t), θazi(t)]
T

, ρ(t) = β(t), A(ρ(t)) = A(β(t)) and

A(β(t)) =


 0 −1

a1f(β(t)) −a2f(β(t))


 (28)

where ρ : R≥0 → ∆ρ, ∆ρ denotes the set of values of ρ, a1 = kiaa and a2 = kpaa.

Furthermore, (28) is rewritten in a polytopic LPV system form (Briat, 2015,

p. 56):

ẋ(t) = A(λ(t))x(t), t ≥ 0 (29)

x(0) = x0
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with:

A(β(t)) = λ1(t)A1 + λ2(t)A2 (30)

λ1(t) =
p(t)− p
p̄− p , λ2(t) =

p̄− p(t)
p̄− p , A1 =


 0 −1

a1p −a2p


 , A2 =


 0 −1

a1p̄ −a2p̄




(31)

where p(t) = f(β(t)), p(t) ∈ [p, p̄], p and p̄ are the minimum and maximum

values of p(t), respectively, A(λ(t)) =
∑M
i=1 λi(t)Ai, Ai ∈ Rn×n, λ(t) ∈ ΛM ,

ΛM = co{V}, V denotes a set of vertices, vi, that is, V := {v1, . . . , vM},230

V = vert{ΛM} and ΛM denotes a M -unit simplex which is defined as: ΛM :={
λ ∈ Rn≥0 :

∑M
i=1 λi = 1

}
.

Based on the fact that (28) is affinely dependent on p(t), (28) is rewritten

in an affine parameter-dependent system form (Briat, 2015, p. 10); (Gu et al.,

2013, p. 223); (Gahinet et al., 1994, 1996):

ẋ(t) =(Af0 + ρ1(t)Af1 + ρ2(t)Af2 + · · ·+ ρn(t)Afn)x(t), t ≥ 0 (32)

x(0) =x0

as:

ẋ(t) = (Af0 + p(t)Af1)x(t) (33)

where

Af0 =


0 −1

0 0


 , Af1 =


 0 0

a1 −a2


 (34)

Af0, Af1, Af2, . . . , Afn are known fixed matrices and ρ1(t), ρ2(t), . . . , ρn(t) are

time-varying parameters.

Note that in (26) when β(t) = π/2 rad, f(β(t)) =∞ which clearly leads to235

instability. To analyse the stability of the proposed BPI controller, β(t) is con-

sidered as a slowly time-varying parameter with β(t) ∈ [0, π/2) rad. Therefore,

in this section, the stability of the azimuth feedback loop with the proposed

BPI controller is analysed to determine the maximum value of β̄, β̄max such

17



that the azimuth feedback loop with the proposed BPI controller is stable for240

all β(t) ∈ [0, β̄max] rad.

For the resulting Linear Matrix Inequality (LMI) problems that are described

in this section, a bisection search is used to determine β̄max to an arbitrary

accuracy.

4.1. Quadratic Stability Analysis245

4.1.1. Quadratic Stability Analysis Based on Generic LPV System

A sufficient and necessary condition for the quadratic stability of generic

LPV systems is given as follows:

Theorem 1. (Briat, 2015, p. 51); (Amato, 2006, p. 31). The generic LPV

system (27) is quadratically stable if and only if there exist a matrix P = PT � 0

such that the LMI

A(ρ)TP + PA(ρ) ≺ 0 (35)

holds for all ρ ∈ ∆ρ.

Theorem 1 does not take into consideration the rate of variation of the250

parameters, hence, arbitrarily fast variations of the parameters are allowed.

This clearly leads to conservative stability conditions when considering systems

with slowly time-varying parameters.

Theorem 1 is used to analyse the quadratic stability of the azimuth feedback

loop with the proposed BPI controller given in (28), and the matrix, Pg is

defined as:

Pg =


Pg1 Pg2

Pg2 Pg3


 � 0 (36)

Then, the LMI (35) becomes A(β(t))TPg + PgA(β(t)) ≺ 0 and it is further

rewritten as:

2Pg2a1f(β(t)) Pg1 − Pg2a2f(β(t)) + Pg3a1f(β(t))

? −2Pg2 − 2Pg3a2f(β(t))


 ≺ 0 (37)

LMI (37) is an LMI feasibility problem. With a = VropKdls = 4.6533 × 10−3

rad/min, kia = 0.01, kpa = 0.13 and β(t) ∈ [0, β̄max] rad (with 0.01 increment
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from 0 rad to β̄max rad), and using a bisection search and the MATLAB LMI

Toolbox, β̄max = 1.14 rad is obtained and an admissible solution of the matrix,

Pg is obtained as:

Pg =


 1.8681× 10−6 −1.2247× 10−5

−1.2247× 10−5 3.6967× 10−2


 (38)

Based on (38), LMIs (36) and (37) satisfy Theorem 1 for all β(t) ∈ [0, 1.14]

rad. Therefore, the azimuth feedback loop with the proposed BPI controller255

given in (28) is quadratically stable for all β(t) ∈ [0, 1.14] rad.

4.1.2. Quadratic Stability Analysis Based on Polytopic LPV System

A sufficient and necessary condition for the quadratic stability of polytopic

LPV systems is given as follows:

Theorem 2. (Briat, 2015, p. 56). The polytopic LPV system (29) is quadrat-

ically stable if and only if there exist a matrix P = PT � 0 such that the LMIs

ATi P + PAi ≺ 0 (39)

hold for all i = 1, . . . , M.260

Similar to Theorem 1, Theorem 2 does not take into consideration the rate

of variation of the parameters, hence, arbitrarily fast variations of the param-

eters are allowed. This clearly leads to conservative stability conditions when

considering systems with slowly time-varying parameters.

Theorem 2 is used to analyse the quadratic stability of the azimuth feedback

loop with the proposed BPI controller given in (30) and (31), and the matrix,

Pp is defined as:

Pp =


Pp1 Pp2

Pp2 Pp3


 � 0 (40)

Then, LMIs (39) become: AT1 Pp +PpA1 ≺ 0 and AT2 Pp +PpA2 ≺ 0, and they

are further rewritten as:

−2Pp2a1p Pp1 − Pp2a2p+ Pp3a1p

? −2Pp2 − 2Pp3a2p


 ≺ 0 (41)
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−2Pp2a1p̄ Pp1 − Pp2a2p̄+ Pp3a1p̄

? −2Pp2 − 2Pp3a2p̄


 ≺ 0 (42)

LMIs (41) and (42) are LMI feasibility problems. With a = VropKdls = 4.6533×
10−3 rad/min, kia = 0.01, kpa = 0.13, β(t) ∈ [0, β̄max] rad and p(t) ∈ [1, p̄], and

using a bisection search and the MATLAB LMI Toolbox, β̄max = 1.1464 rad

and p̄ = 1.2041 are obtained and an admissible solution of the matrix, Pp is

obtained as:

Pp =


 17.1594 −1.11506× 102

−1.11506× 102 3.3751× 105


 (43)

Based on (43), LMIs (40), (41) and (42) satisfy Theorem 2 for all β(t) ∈265

[0, 1.1464] rad. Therefore, the azimuth feedback loop with the proposed BPI

controller given in (30) and (31) is quadratically stable for all β(t) ∈ [0, 1.1464]

rad.

4.1.3. Quadratic Stability Analysis Based on Affine Parameter-Dependent Sys-

tem270

The quadratic stability of the affine parameter-dependent system, (32) can

be analysed by the MATLAB function quadstab which takes into consideration

solution of various LMI while attempting to find a positive definite quadratic

Lyapunov function of the form:

V (x) = xTPx (44)

such that dV (x)/dt < 0 along all state trajectories (Gu et al., 2013, p. 229).

For the quadratic Lyapunov function given in (44), the stability condition

dV (x)/dt < 0 is equivalent to

(Af0 + ρ1(t)Af1 + · · ·+ ρn(t)Afn)TP + P(Af0 + ρ1(t)Af1 + · · ·+ ρn(t)Afn) ≺ 0

(45)

Nonetheless, owing to the fact that arbitrarily fast variations of parameters are

allowed by the MATLAB function quadstab, the MATLAB function quadstab
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provides conservative stability results when considering systems with slowly

time-varying parameters.

The MATLAB function quadstab is used to analyse the quadratic stability

of the azimuth feedback loop with the proposed BPI controller given in (33),

and the matrix Pa is defined as:

Pa =


Pa1 Pa2

Pa2 Pa3


 � 0 (46)

Then, the LMI (45) becomes:

(Af0 + p(t)Af1)TPa + Pa(Af0 + p(t)Af1) ≺ 0 (47)

and it is further rewritten as:

−2Pa2a1p(t) Pa1 − Pa2a2p(t) + Pa3a1p(t))

? −2Pa2 − 2Pa3a2p(t)


 ≺ 0 (48)

LMI (48) is an LMI feasibility problem. With a = VropKdls = 4.6533 × 10−3

rad/min, kia = 0.01, kpa = 0.13 and β(t) ∈ [0, β̄max] rad, and using a bisection

search and the MATLAB function quadstab, β̄max = 1.1464 rad is obtained

and an admissible solution of the matrix, Pa is obtained as:

Pa =


 3.9125× 10−6 −2.5457× 10−5

−2.5457× 10−5 7.6956× 10−2


 (49)

Based on (49), LMIs (46) and (48) satisfy LMI (45) for all β(t) ∈ [0, 1.1464] rad.275

Therefore, the azimuth feedback loop with the proposed BPI controller given in

(33) is quadratically stable for all β(t) ∈ [0, 1.1464] rad.

Comparing the quadratic stability results obtained from Theorems 1 and 2

and the MATLAB function quadstab, β̄max = 1.14 rad is obtained from The-

orem 1 and β̄max = 1.1464 rad is obtained from Theorem 2 and the MATLAB280

function quadstab (also see Table 2). Hence, a more conservative stability re-

sult is obtained from Theorem 1 than that obtained from Theorem 2 and the

MATLAB function quadstab.

The stability notions for the generic LPV, polytopic LPV and affine parameter-

dependent systems to be quadratically stable considered in this subsection does285
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not take into consideration the rate of variation of the parameters, hence, arbi-

trarily fast variations of the parameters are allowed. As expected, this clearly

leads to conservative stability conditions while considering systems with slowly

time-varying parameters, such as (25). To reduce the conservatism of the

quadratic stability, the subsequent subsection presents the analysis of robust290

stability which takes into consideration the rate of variation of the parameters.

4.2. Robust Stability Analysis

4.2.1. Robust Stability Analysis Based on Affine Parameter-Dependent System

The robust stability of the affine parameter-dependent system, (32) can be

analysed by the MATLAB function pdlstab which takes into consideration

solution of various LMIs while attempting to find a positive definite parameter-

dependent Lyapunov function of the form:

V (x, ρ) = xTQ(ρ)−1x (50)

where Q(ρ) = Q0 + ρ1Q1 + ρ2Q2 + · · · + ρnQn and Q0, Q1, Q2, . . . , Qn are

symmetric matrices, such that dV (x, ρ)/dt < 0 along all admissible trajectories

(Gu et al., 2013, p. 229). For the parameter-dependent Lyapunov function

given in (50), the stability condition dV (x, ρ)/dt < 0 is equivalent to

Q(ρ)(Af0 + ρ1(t)Af1 + · · ·+ ρn(t)Afn)T (51)

+ (Af0 + ρ1(t)Af1 + · · ·+ ρn(t)Afn)Q(ρ)− dQ(ρ)

dt
≺ 0

In the case of systems with slowly varying or constant parameters, less conser-

vative stability results could be obtained by the MATLAB function pdlstab295

(Gu et al., 2013, p. 229).

The MATLAB function pdlstab is used to analyse the robust stability of

the azimuth feedback loop with the proposed BPI controller given in (33), and

the matrix Q(p(t)) is defined as:

Q(p(t)) = Q0 + p(t)Q1 � 0 (52)
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Then, the LMI (51) becomes:

Q(p(t))(Af0 + p(t)Af1)T + (Af0 + p(t)Af1)Q(p(t))− dQ(p(t))

dt
≺ 0 (53)

LMI (53) is an LMI feasibility problem. With a = VropKdls = 4.6533 × 10−3

rad/min, kia = 0.01, kpa = 0.13 and β(t) ∈ [0, β̄max] rad, and using a bisection

search and the MATLAB function pdlstab, β̄max = 1.1464 rad is obtained and

an admissible solution of the matrices, Q0 and Q1 are obtained as:

Q0 =


9.5986× 106 3.1746× 103

3.1746× 103 4.88× 102


 , Q1 =


−7.1775 0.0929

0.0929 0.0019


 (54)

Based on (54), LMIs (52) and (53) are satisfied for all β(t) ∈ [0, 1.1464]. There-

fore, the azimuth feedback loop with the proposed BPI controller given in (33)

is robustly stable for all β(t) ∈ [0, 1.1464] rad.

4.2.2. Robust Stability Analysis Based on Polytopic LPV System300

The rate of variation of the parameters is captured in the term λ̇. To de-

fine a set that contains the trajectories of λ̇, it is assumed that the polytopic

LPV system, (29) approximates the generic LPV system, (27) with Mp param-

eters, given by ρ, where the bounds of the derivative are known (Briat, 2015,

p. 57). Hence, a polytope where λ̇ evolves within is defined from the following305

proposition:

Proposition 1. (Briat, 2015, p. 58). Assume that ρ̇ ∈ ∆ν = co{Vν},Vν =

{d1, . . . , dM},M = 2Mp and that the decomposition

ρ(t) =

M∑

i=1

λi(t)vi (55)

holds with Vρ = {v1, . . . , vM}. Then, the set of all λ̇’s is given by

Λ̇M :=








V

1TM

0M




+ 


D

0M

1TM


 ζ : ζ ∈ ΛM





(56)
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where 1M denotes a column vector of dimension M containing 1 entries, 0M

denotes a row vector of dimension M containing 0 entries, D denotes a set of

vertices, di, that is, D = [d1, . . . , dM ], V = [v1, . . . , vM ] and ζ(t) ∈ ΛM . In

addition, the following identity is obtained:

ρ̇(t) =

M∑

i=1

λ̇i(t)vi =

M∑

i=1

ζi(t)di (57)

From Proposition 1, a matrix of vertex points, vert{Λ̇M} can be defined as:

L =




V

1TM

0M




+ 


D

0M

1TM


 (58)

The robust stability of the polytopic system, (29) can be analysed by the

following theorem:

Theorem 3. (Briat, 2015, p. 61). The polytopic LPV system (29) is robustly

stable if there exist matrices Pi = PT
i � 0, i = 1, . . . ,M , a matrix X ∈ Rn×n

and a sufficiently large scalar ξ > 0 such that the matrix inequalities



−(X + XT ) Pi + XTAi XT

? −ξPi +
∑M
j=1 Pj lji 0

? ? −Pi/ξ


 ≺ 0 (59)

hold for all i = 1, . . . ,M , where lji are the elements of L.

Theorem 3 takes into consideration the rate of variation of the parameters,310

hence, provides less conservative stability results.

Theorem 3 is used to analyse the robust stability of the polytopic LPV

system given in (30) and (31). Based on Theorem 3, the rate of variation of

the parameters is captured in the term λ̇. To define a set that contains the

trajectories of λ̇, it is assumed that the polytopic LPV system, (30) and (31)315

approximates the generic LPV system, (28) with Mp parameters, given by ρ,

where the bounds of the derivative are known. Hence, a polytope where λ̇

evolves within is defined from Proposition 1.
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In this case, and with reference to Proposition 1 and (58), V = p(t) = [p, p̄],

D = ṗ(t) = [ṗ, ¯̇p], ¯̇p = (dp/dβ)
¯̇
β and ṗ = −(dp/dβ)

¯̇
β; where dp/dβ is the

maximum value of dp/dβ and
¯̇
β is the maximum value of β̇ and it is considered

as the maximum possible build rate, that is,
¯̇
β = VropKdls. Furthermore, for

a time-varying single parameter system such as (30) and (31), Mp = 1 and

M = 2Mp = 2, the resulting form of (58) evaluation is:

L =


l11 l12

l21 l22


 (60)

where l11, l12, l21 and l22 are the elements of L.

Based on Theorem 3 and the azimuth feedback loop with the proposed BPI

controller given in (30) and (31), and given the matrices, P1, P2 and X, the

LMIs (59) become:




−(X + XT ) P1 + XTA1 XT

? −ξP1 + P1l11 + P2l21 0

? ? −P1/ξ


 ≺ 0 (61)




−(X + XT ) P2 + XTA2 XT

? −ξP2 + P1l12 + P2l22 0

? ? −P2/ξ


 ≺ 0 (62)

LMIs (61) - (62) are LMI feasibility problems. With a =
¯̇
β = VropKdls =

4.6533 × 10−3 rad/min, kia = 0.01, kpa = 0.13, β(t) ∈ [0, β̄max] rad and p(t) ∈
[1, p̄], and using a line-search algorithm1, a bisection search and the MATLAB

LMI Toolbox, the following are obtained: ξ = 0.9, β̄max = 1.5707 rad, p̄ =

2964.8, ṗ = −143200, ¯̇p = 143200, l11 = l22 = 48.3171 and l12 = l21 = −48.3171.

1A line-search algorithm continuously increases the value of ξ until the problem becomes

feasible, or terminates when the value of ξ exceeds a particular limit value.
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Also, admissible solutions of the matrices, P1, P2 and X are obtained as follows:

P1 =


 86.2156 −60.6632

−60.6632 317.9908


 , P2 =


 86.4084 −62.1581

−62.1581 322.5416


 , (63)

X =


 89.7116 11.7048

−92.0640 175.3409


 (64)

The matrices, P1, P2 and X given in (63) and (64), and ξ = 0.9 satisfy320

Theorem 3 for all β(t) ∈ [0, 1.5707] rad. Therefore, the azimuth feedback loop

with the proposed BPI controller given in (30) and (31) is robustly stable for

all β(t) ∈ [0, 1.5707] rad.

Comparing the robust stability results obtained from the MATLAB func-

tion pdlstab and Theorem 3, β̄max = 1.1464 rad is obtained from the MAT-325

LAB function pdlstab and β̄max = 1.5707 rad is obtained from Theorem 3.

Unexpectedly, for this particular case, the MATLAB function pdlstab gives

a conservative stability result as against an expected less conservative stability

result and it is the same result as those obtained from Theorem 2 and the MAT-

LAB function quadstab (in Subsection 4.1) as shown in Table 2. Expectedly,330

Theorem 3 gives a less conservative stability result as the stability result proves

that the azimuth feedback loop with the proposed BPI controller is robustly sta-

ble for nearly the whole range of operations, β(t) ∈ [0, π/2) rad, within practical

engineering accuracy.

Table 2: β̄max for Different LPV Stability Notions

LPV Stability Notion β̄max

Theorem 2.2 1.1400 rad

Theorem 2.3 1.1464 rad

MATLAB function quadstab 1.1464 rad

MATLAB function pdlstab 1.1464 rad

Theorem 2.4 1.5707 rad

Based on the fact that the inclination feedback loop with the PI controller is335

shown to be exponentially stable and the azimuth feedback loop with the pro-
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posed BPI controller is proven to be quadratically and robustly stable, therefore,

the proposed BPI control system is proven to be stable.

5. Simulation Results

In this section, the transient simulations are carried out using MATLAB/Simulink.

The system delays are implemented as e−τds, where τd is the time delay. The

τd is dependent on the Vrop and the distance of the D&I sensor from the bit, dt

which is given by

τd =
dt
Vrop

(65)

5.1. Low-Fidelity Model Simulation340

Using the nonlinear system given by (2) and (3), the proposed BPI con-

troller and the systems delays, MATLAB/Simulink transient simulations are

created based on the LFM scheme, shown in Fig. 9, to analyse the effectiveness,

robustness and stability of the proposed BPI controller over the PI controller

proposed by Panchal et al. (2010). The parameters used for the LFM simula-345

tions are given in Table 3. In the interest of viewing the dynamic responses, the

saturation effect is removed. A reference change of 0.015 rad for a set of various

azimuth angles of π/18 rad, π/9 rad, π/6 rad, π/3 rad and π/2 rad are imple-

mented to investigate the invariance of the azimuth responses of the proposed

BPI controller and the PI controller proposed by Panchal et al. (2010).350
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Figure 9: Simulink diagram of LFM simulation scheme for BPI controller

Based on the LFM simulation, the PI controller proposed by Panchal et al.

(2010) and the proposed BPI controller azimuth responses for a reference change
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Table 3: Simulation Parameters for BPI Controller with LFM

Parameter Value

θinc π/6 rad (30◦)

θazi π/6 rad (30◦)

Vrop 200 ft/hr (1.0158 m/min)

Kdls 8◦/100 ft (4.5809e-3 rad/m)

Vdr 1◦/100 ft (5.7261e-4 rad/m)

Vtr 0.5◦/100 ft (2.8631e-4 rad/m)

dt 14.997 ft (4.5711 m)

Parameter Value

kii 0.01

kpa 0.13

kia 0.01

kpi 0.15

rinc π/6 + 0.015 rad

razi π/6 + 0.015 rad

τd 4.5 min

of 0.015 rad for a set of various azimuth angles are shown in Figs. 10 and 11,

respectively, where ∆θazi(t) = θazi(t)− θazi(0) and τd = 0 min. Comparing the

azimuth responses of the PI controller proposed by Panchal et al. (2010) and the355

proposed BPI controller, the proposed BPI controller azimuth responses tend

to converge more closely to the nominal operating point of π/2 rad, than the

PI controller proposed by Panchal et al. (2010) azimuth responses. Hence, the

proposed BPI controller provides more consistent azimuth responses over wider

range of the directional drilling tool operations, than the PI controller proposed360

by Panchal et al. (2010).
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Figure 10: PI controller (proposed by Panchal et al. (2010)) azimuth response with LFM
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Figure 11: BPI controller azimuth response with LFM
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Figure 12: PI controller (proposed by Panchal et al. (2010)) attitude response with LFM

To investigate the adverse effects of disturbances and time delay on the feed-

back measurements with respect to the stability and performance of the direc-

tional drilling tool, the inclination and azimuth responses to step changes of the

PI controller proposed by Panchal et al. (2010) and the proposed BPI controller365

based on the LFM simulation are shown in Figs. 12 and 13, respectively.

The inclination and azimuth responses to step changes, from π/6 rad to

π/6 + 0.015 rad and from π/6 to π/6 + 0.015 rad, respectively, of the PI con-

troller proposed by Panchal et al. (2010) are shown in Fig. 12. The attitude

response of the PI controller proposed by Panchal et al. (2010) exhibits os-370

cillatory characteristics. Hence, the inclination and azimuth responses of the
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Figure 13: BPI controller attitude response with LFM
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Figure 14: Attitude error for BPI controller with LFM

directional drilling tool do not converge to the desired angles of π/6 + 0.015 rad

and π/6+0.015 rad, respectively, as the PI controller proposed by Panchal et al.

(2010) is unable to handle the adverse effects of the drop rate disturbance of up

to 1◦/100 ft, turn rate bias disturbance of up to 0.5◦/100 ft and time delay of375

up to 4.5 min on the feedback measurements.

The inclination and azimuth responses to step changes, from π/6 rad to

π/6+0.015 rad and from π/6 rad to π/6+0.015 rad, respectively, of the proposed

BPI controller are shown in Fig. 13. The inclination and azimuth responses of

the directional drilling tool converges to the desired angles of π/6 + 0.015 rad380

and π/6 + 0.015 rad, respectively. Hence, the proposed BPI controller reduces
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the adverse effects of the drop rate disturbance of up to 1◦/100 ft, turn rate

bias disturbance of up to 0.5◦/100 ft and time delay of up to 4.5 min on the

feedback measurements with respect to the stability and performance, than the

PI controller proposed by Panchal et al. (2010).385

The inclination and azimuth errors for the proposed BPI controller are shown

in Fig. 14. The proposed BPI controller is able to converge the inclination and

azimuth errors directly to zero within 62 min.

5.2. High-Fidelity Model Simulation

Using the nonlinear system given by (2) and (3), the proposed BPI controller,390

the systems delays and the drilling cycle scheme presented in Inyang (2017),

MATLAB/Simulink transient simulations are created based on the HFM simu-

lation scheme, shown in Fig. 15, to further analyse the effectiveness, robustness

and stability of the proposed BPI controller. The parameters used for the HFM

simulations are given in Table 4. The values of τd, kia, kpa, kii, kpi, Vdr, Vtr and395

dt are the same as those for the LFM simulation (see Table 3).

Table 4: Simulation Parameters for BPI Controller with HFM

Parameter Value

Vrop 200 ft/hr (1.0158 m/min)

Kdls 8◦/100 ft (4.5809e-3 rad/m)

Ta 0.05 s (8.333e-4 min)

kvi 6 s−1 (360 min−1)

ω̂tf 2π rad/s (376.991 rad/min)

tcycle 10 s (0.1667 min)

Parameter Value

θinc π/2 rad (90◦)

θazi π/2 rad (90◦)

rinc π/2 + 0.015 rad

razi π/2 + 0.015 rad

kp 1 s−1 (60 min−1)

kvp 0.5

Based on the HFM simulation, the inclination and azimuth responses to step

changes, from π/2 rad to π/2 + 0.015 rad and from π/2 rad to π/2 + 0.015 rad,

respectively, of the proposed BPI controller are shown in Fig. 16. The proposed

BPI controller still holds the inclination and azimuth of the directional drilling400
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Figure 15: Simulink diagram of HFM simulation scheme for BPI controller
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Figure 16: BPI controller attitude response with HFM
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Figure 17: Attitude error for BPI controller with HFM

tool at the desired angles of π/2 + 0.015 rad and π/2 + 0.015 rad, respectively.

Hence, the proposed BPI controller is effective, stable and robust to handle the

adverse effects of the drop rate disturbance of up to 1◦/100 ft, turn rate bias

disturbance of up to 0.5◦/100 ft, time delay of up to 4.5 min on the feedback

measurements and some other uncertainties (such as drilling cycle and toolface405
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actuator dynamics) in the attitude control of the directional drilling tool.

The inclination and azimuth errors for the proposed BPI controller with the

HFM are shown in Fig. 17. The proposed BPI controller is able to converge

the inclination and azimuth errors directly to zero within 150 min.

6. Conclusions410

This paper proposes a bilinear model of directional drilling tool. The pro-

posed bilinear model characterises the nonlinear properties of directional drilling

tool more accurately than the existing linear model. Hence, it broadens the

range of adequate performance and it is considered to be significantly advan-

tageous in application to directional drilling operations. The proposed bilinear415

model is used as the basis for the design of a Bilinear Proportional plus Integral

(BPI) controller for the attitude control of directional drilling tool.

The proposed BPI control system is proven to be stable using stability no-

tions for LTI and LPV systems. The proposed BPI controller is able hold the

attitude of the directional drilling tool at the desired inclination and azimuth420

angles, provide more consistent azimuth responses over wider range of direc-

tional drilling operations and significantly reduces the adverse effects of time

delay of up to 4.5 min on the feedback measurements, drop rate disturbance

of up to 1◦/100 ft, turn rate bias disturbance of up to 0.5◦/100 ft, and some

other uncertainties (such as drilling cycle and toolface actuator dynamics) in425

the attitude control of the directional drilling tool. However, the proposed BPI

controller is restricted to attitudes such that θinc is not close to 0◦, and also,

the performance of the proposed BPI controller reduces as the time delay, drop

rate disturbance and turn rate bias disturbance increases above 4.5 min, 1◦/100

ft and 0.5◦/100 ft, respectively.430

The proposed BPI controller is relatively simple and it can easily be im-

plemented in the directional drilling tools to increase the potential of accessing

difficult reservoirs, drilling more effectively and cost-effective field development.

The implementation of the proposed BPI controller should reduce the workload
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of the directional driller because with the significant reduction of the adverse435

effects of measurement delay and disturbances during directional drilling op-

erations, the directional drilling tool will drill more effectively, hence a less

intervention is required from the directional driller.

Stability proof of the proposed BPI controller with time delay remains an

open problem.440
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