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Abstract

This experimental study explores the burning characteristics of single pellets made of wood

and coal mixtures for co-firing. Three types of pellets were prepared with different wood to

coal ratios (100:0, 80:20% and 50:50%). Experiments were carried out in a laboratory reactor

at rapid heating rates and under oxygen concentrations between 10% and 40%. To investigate

their combustion behaviour, a single pellet was suspended on a wire injected into a hot gas

stream at 1340 K, and flame and char combustion were recorded through an observation

window by means of a high-resolution (4K) camera. The sequential combustion time, volatile

flame characteristics and mass reduction rate were obtained over a time profile by carefully

controlled particle injection. The results demonstrated that the char combustion time increased

significantly compared with the volatile combustion time, which only varied a little, when the

pellets contained coal in the mixture. Partially detached flames were also predominantly

observed on pure biomass pellets at oxygen concentrations between 21% and 40%. During the

homogeneous combustion period, the cross-sectional area of a pellet shrunk by 26.3%–37.5%,

depending on the type of pellet.



1. Introduction

Biomass is a carbon-neutral fuel that replaces traditional fossil fuels and increases the share of

renewable energy available to meet the rising electricity demand.1,2 Several economic benefits,

such as fuel price stabilisation and low capital costs, are also expected.3,4 Biomass contains

highly volatile matter and low levels of fixed carbon with different organic composition (lignin,

hemicellulose and cellulose), resulting in rapid devolatilisation, short burning times, a low

sooty flame and flame instability.5–7 Currently, the efficiency of biomass power generation is

lower (16%–25%) than that of coal-fired plants (33%–38%) 8, owing to the radiative heat

transfer energy during the formation of soot.9,10 Consequently, a fundamental understanding of

the behaviour of biomass combustion plays an important role in furnace operation and in the

design of furnaces.

Co-firing biomass with coal can be a feasible option to increase flame stability and give longer

combustion times. Several studies of co-firing have been performed, generally to understand

its environmental and economic benefits.11–13 Studies on thermal decomposition, flue gas

emission and flame structure have also been reported.14–17 Mock et al.17 reported the

combustion characteristics of a pulverised single particle with coal and wood mixtures. They

showed that the apparent flame size and intensity increased by increasing the coal-blending

ratio.

Biomass pelletisation is also one solution to improve fuel quality, energy density, transportation

and storage.18,19 Solid pellets can be burned in relatively large-sized grate -fired boilers or a

fluidised bed furnace.20–23 Shan et al.22 examined the ignition and combustion modes of

biomass pellets under N2/O2 and CO2/O2 environments. The hetero–homogeneous combustion

was observed under 50% oxygen concentration, and the length of the flame became shorter

when the oxygen concentration increased. Isemin et al.23 investigated the calorific value of



sludge pellets blended with coal, and their carbon dioxide emission. Previous researchers

introduced the biomass pellet blended with coal to investigate the combustion feasibility.24,25

Fundamental studies on co-firing characteristics are mainly based on thermogravimetric

analysis.26–28 The method is limited to explain combustion characteristics, including ignition

time, homogeneous and heterogeneous combustion, and physical changes in volatile flames

and char particles. A number of experiments were carried out on the combustion of single

biomass particles around 1 mm in size.29–31 Single pellets of wood and coal mixtures have not

been investigated for sequential co-combustion processes or for burning characteristics at rapid

heating rates.

In this paper, an experimental investigation was carried out on the impact of single biomass

pellets with coal blends for co-firing. Their combustion behaviours were analysed by direct

observation over time. To understand any quantitative differences, 20:80%, 50:50% and 0:100%

coal–wood pellets were burned under well-controlled conditions. Images of the burning pellets

presented the change in flame luminosity, flame size and char reduction from apparent ignition

to char extinction. The results, obtained from the images of the burning pellets, provided

sufficient detail of the flame characteristics and combustion times, and further understanding

the co-firing characteristics via a modelling description of the pellet combustion would be

helpful.



2. Experimental Section

2.1. Single Pellets of Biomass and Coal Mixtures

Three different types of pellets, 100:0%, 80:20% and 50:50% wood–subbituminous coal, were

prepared. The biomass pellets with coal (Adaro) particle mixtures were made by the

pelletisation process introduced by Mock.32 Before pelletisation, milling and mixing of the two

solid fuels were carried out sequentially. To bond the two different materials, 2 kg of water per

1 m2 of particles were added as an adhesive source. The particle lengths were 5, 10 and 15 mm,

and their length-to-diameter ratio (L/D) was 1 to 3, as shown in Table 1. The weight of the

prepared pellet particles were 40, 27 and 13 mg, the difference in the size of particles of the

same weight was small, and it did not noticeably affect their combustion behavior.

Spherical- and cylindrical-shaped particles were prepared to study the role of shape on ignition,

overlap combustion and burning time. Proximate and ultimate analyses were obtained on an

as-received basis using a TGA-701, a TruSpec elemental analyser and AC600 calorimeter, as

shown in Table 2. The results showed that the pure biomass pellet contained the highest mass

fraction of volatile matter (81.5%), compared with the 20:80 and 50:50% blended pellets,

whereas the 50:50% pellet had the highest nitrogen content (0.9%) because of the high coal

blends.



Table 1. Physical properties of the pellets

Name Mixing rate Weight, mg (L/D) Shape

Pelletised

wood
100%

40 (3)
Cylindrical

27 (2)

13 (1)
Cylindrical

Spherical

Pelletised

wood–coal
80:20%

40 (3)
Cylindrical

27 (2)

13 (1)
Cylindrical

Spherical

Pelletised

wood–coal
50:50%

40 (3)
Cylindrical

27 (2)

13 (1)
Cylindrical

Spherical

Table 2. Proximate and ultimate analysis of the three types of pellets

Sample

Proximate analysis

(wt.% ar)
1

Ultimate analysis

(wt.% daf)
2

LHV
3

(MJ/kg)
V.M F.C Ash M C H O N S

Wood 81.5 9.7 0.1 8.5 48.5 6.5 43.2 0.2 0.1 18.28

Wood–coal (80:20) 68.7 18.4 1.25 11.7 52.3 6.4 35.4 0.4 0.1 19.83

Wood–coal (50:50) 57.0 29.5 0.56 13.0 58.6 6.2 28.1 0.6 0.1 20.82

1
as received,

2
dry, ash free,

3
lower heating value

2.2. Experimental Set-up for Rapid Heating Rates

The study was performed in a laboratory-scale entrained flow reactor with a fitted measurement

system and an observation device, as shown in Fig. 1. The reactor consists of a rectangular



quartz tube for the burning pellet with an optical window, a honeycomb burner, a guard heater

and a well-controlled particle feeder. The rectangular quartz tube is 45 (L) mm × 45 (W) mm

× 500 (H) mm. The honeycomb burner is positioned at the bottom of the quartz tube to generate

an upward-flowing hot gas stream. To minimise the temperature drop, the guard heater shields

the quartz outer wall. The well-controlled particle feeder is installed to insert a pellet

systematically into the hot gas stream. The feeder includes a linear-motor-driven pump, a

controller, a ceramic injector with a wire, and an insulation tube. The injection speed can be

controlled by the linear pump in 1 s intervals. The ceramic insulation tube protects the

possibility of moisture evaporation from the particle. The tungsten wire (0.3 t) is used to

suspend a pellet in the hot gas flow.

The measurement of pellet weight during the combustion process in the entrained flow reactor

is illustrated in Fig.1 (b). The equipment used is comprised of a water vessel, a hot plate and

an electronic scale to record the pellet weight after each test. The following procedure was used:

(i) the burning pellet was ejected every 2 seconds, (ii) the burning particle was introduced into

a water vessel immediately after ejection, and (iii) the moisture content was eliminated by

placing the pellet on a hot plate at 150 ºC until it no longer changing weight. Finally, the weight

of dry particle was measured by means of an electronic scale.

A commercial camera (Nikon J5) with a micro lens (Nikon Micro-NIKKOR 105mm f/2.8) was

used for direct observation. The observation height (maximum 100 mm) was adjusted for the

lens. For quantitative and qualitative analysis, the sequential combustion was recorded at 4K

resolution. During pellet combustion, a high-speed camera is not necessary, because the

burning time took a few min. To maintain an identical background, the photographs were taken

in a dark room, and a light-emitting diode backlight with uniform luminescence was installed

at the rear of the observation window.



(a)

(b)

Fig. 1. Schematic diagram of the laboratory-scale entrained flow reactor using the wire method

for single-pellet combustion: (a) Observation of a burning pellet, (b) Measurement of a pellet

weight. This shows the process of direct observation and measurement of a single pellet during

combustion and explains how the single pellet is injected into the hot gas flow.



2.3. Environmental Conditions

A range of gases, such as C3H8, O2 and air, were supplied to the burner as a surrounding hot

gas stream. The post-combustion gases contained N2 (43.27%–73.27%), O2 (10%–40%), H2O

(9.56%) and CO2 (7.17%) depending on the composition of the product gases, as shown in

Table 3. The volume fractions of oxygen were controlled from 10% to 40% to study the effect

of oxygen concentration, whereas the flow rate was kept constant at 25 L/min in all the

experiments. The honeycomb flow straightener is positioned above the burner to generate a

laminar gas flow. The temperature difference in the adiabatic flame between the 10% and 40%

oxygen concentration samples was approximately 140 K. The post-combustion gas was at 1340

K, after ~1 m/s, and contained under 21% oxygen, and the gas temperature profile was reported

experimentally from previous work by Mock.33 The high temperature and rapid heating rate

(104–105 K/s) allow the suspended single particle to ignite within a few s after injection.

Table 3. Burner inlet flow rates and the equilibrium composition of the combustion gases

Burner gas input [L/min]

O2 [%]
Equivalence

ratio
C3H8 Air O2

10 0.54

0.6

23.38 0.62

21 0.36 19.79 4.11

30 0.28 16.93 6.97

40 0.23 13.75 10.15



Equilibrium post-flame (mole fraction)

O2 [%] XN
2

XO
2

XH
2
O XCO

2

10 73.27 10

9.56 7.17
21 62.27 21

30 53.27 30

40 43.27 40

2.4. Characterisation of the Thermal Decomposition of Biomass

Biomass consists of starch, triglycerides and lignocellulose, and coal contains hemicellulose,

cellulose and lignin. The lignocellulosic materials have significant thermal decomposition as a

fuel, whereas the other organic components have a negligible impact on thermal decomposition.

The different physical structure and chemical composition affect the characteristics of physical

degradation, the gas eruption profile and mass reduction. There are a number of studies on the

thermal decomposition behaviours of hemicellulose, cellulose and lignin. Yan et al.34 reported

that hemicellulose, which has a less stable structure, starts thermal degradation below 473 K

and degrades rapidly from 493 K to 588 K. Cellulose has an even more stable and stronger

bond structure because of its long polymer chains, with the thermal decomposition a little

higher at 588–673 K. Lignin acts as a binding agent for the lignocellulosic fibres and contains

aromatic rings, which results in slow degradation over a wide temperature range, 433–1173 K.

2.5. Formation of a Volatile Flame and Char Particle

The distinct features of a volatile flame are determined by fuel species, surrounding gas

temperature, and the physical composition, size and shape of the particle. In a hot gas flow, a

single pellet is burned rapidly after the release of any volatile matter, when volatile combustion



starts immediately with the formation of a sooty flame. Fig. 2 shows the different flame and

char modes, obtained from pure wood and 50:50 wood–coal pellets. The pure wood pellet has

two boundaries of the flame: separate rich and poor incandescent regions. This type of flame

is called a partially detached flame, whereas the 50:50 wood–coal pellets have a diffusion flame,

which includes the rich incandescent region of the flame. The partially detached flame is

associated with the release and oxidation rates of any volatile matter. The oxygen supplied by

diffusion cannot be consumed because of the fast eruption of gaseous and solid phases on the

solid fuel particle. Nevertheless, the high oxygen diffusion rate detaches the flame sheet from

the particle surface and forms a very thin flame, where char combustion occurs at the edge of

the particle surface at the beginning of homogeneous combustion. Scattering layers are

observed at the beginning of char combustion on the biomass char surface, because the high

volume of lignin in the pure biomass pellet can still be degraded after volatile combustion. The

three pellets were burned under the same condition to explain the flame characteristics of the

different solid fuel mixtures. The resulting images shown in Fig. 3 illustrate the physical

changes in the volatile flame at 1340 K and at oxygen concentrations between 10% and 40%.

The flames of all the pellets appear as long rod-like structures at under 10% oxygen, where the

soot particles coalesce and agglomerate with each other in the vicinity of the pellet surface.

The intensities of their flames varied with the mixture ratio, which is attributed to the different

volume fraction of soot particles. The jet-like tails were only observed on the biomass pellet

with coal particles.



Fig. 2. Greyscale images of two different flames and char modes of wood and 50:50 wood–

biomass. The shape and luminosity of the flame depend on the type of solid fuel.

Fig. 3. Soot flames of the three pellets under 10%–40% oxygen concentrations at 1340 K. The

images illustrate the physical change in the volatile flame, which is attributed to the coal

mixtures and oxygen concentrations.



3. Results and Discussion

3.1. Thermal Decomposition of Pellets at Slow and Rapid Heating Rates

The decomposition of the pure biomass pellet was analysed by thermogravimetric (TG) and

derivative thermogravimetric (DTG) curves, using TG/DTA 92-18, where the biomass sample

was heated at a rate of 20 K/min. The results gave two curves, as shown in Fig. 4(a). In the TG

and DTG curves at a low heating rate, three peaks were plotted during the whole process. The

first peak is associated with the evaporation of water content in the particle and occurs at 300–

400 K. The second peak occurs at approximately 620 K, when the hemicellulose and cellulose

contents undergo high mass reduction.35 The last peak is at approximately 750 K and is

attributed to the degradation of lignin.36,37 To compare the degradation of biomass at slow and

rapid heating rates, the single pellets were burned at 1340 K in the laboratory entrained flow

reactor. Fig. 4(b) shows the mass reduction and the DTG curves of the pure wood pellets under

the rapid heating rates. The overlapping combustion starts after approximately 6.5 s, and the

hemicellulose begins to degrade after heating from the bottom. The ignition temperature was

assumed to start at 493 K, based on the degradation temperature of hemicellulose (493–588 K).

The first peak occurs after 6.5–23 s. In this first period, hemicellulose and cellulose degrade

rapidly, and the largest volatile flame can be observed just above this peak owing to the release

of the solid phase, such as carbonaceous particles. The second trough occurs at 673 K, where

the cellulose breaks down completely, and the volatile flame exists at around 39 s owing to

degradation of the lignin. The graph comparing the slow and rapid heating rates can help to

explain burning characteristics such as ignition and burning times.
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Fig. 4. Comparative thermal decompositions of a pure wood pellet obtained from

thermogravimetric analysis (TGA) and a laboratory entrained flow reactor (EFR) at a heating

rate of 20 K/min and rapid heating rates, respectively: (a) TG and DTG, obtained from TGA,

and (b) TG and DTG, obtained from EFR. Plotted graphs illustrate the distinction of mass



reduction, associated with volatile and char combustions under slow and rapid heating rates.

The mass reduction of the pellets, suspended on a tungsten wire, was measured every 2 s under

a 21% oxygen atmosphere and at 1340 K. TG and DTG curves were derived from the particle

heat-up (t0 = 0) from injection to extinction of char combustion; see Fig. 5. The injection time

takes only 1 s owing to linear -motor-driven pump operation. As shown in Fig. 5(a), the volatile

matter and moisture content of wood, wood–coal 80:20% and wood–coal 50:50% were roughly

90%, 80% and 70%, respectively, assuming that the curves for mass reduction of fixed carbon

and ash are linear. This is in agreement with the proximate analysis as shown in Table 2. The

plotted results show that the increase in fixed carbon, obtained from coal mixtures, increased

significantly at burn-out time, whereas the volatile combustion time varied over a small interval

because volatile oxidation is fast enough for the erupted volatile matter on the particle surface

to burn. Fig. 5(b) shows the peaks of the pellet mass reduction, followed by fluctuations

between the three pellets. The first peak is associated with the degradation of hemicellulose

and cellulose, where the pure biomass has the highest peak because of the high volume of

hemicellulose and cellulose.38
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(a)

(b)

Fig. 5. Thermal decomposition of wood and the combustion processes of biomass

100 %), %, wood–coal 80:20% and wood–coal 50:50% pellets under an atmosphere

containing 21% oxygen and at 1340 K: (a) mass reduction of particles and (b) particle

weight loss rate.

3.2. Observation of Burning Pellets

3.2.1. Image of a Burning Particle (0.4 g) under 21% Oxygen

The mass of pellet sample for each experiment was ~0.27 g and contained more than 20

particles. The beginning of volatile combustion takes a few seconds in the large pellets,

compared with the ignition time (maximum a few hundred milliseconds) of a pulverised

particle, which has a negligible particle temperature gradient. As shown in Fig. 6, char burning

was observed at the edge of the pellet in the early combustion stage and developed slowly from

the edge during volatile combustion. This was called overlapping combustion and was seen in
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a pulverised particle with an irregular shape under high oxygen concentration39. The char

temperature increased rapidly after the flame was extinguished following volatile combustion.

The burn-out time was variable between the three pellets and was attributed to the difference

in the volume fraction of fixed carbon. Interestingly, the soot flame was observed away from

the particle surface and had a different intensity and shape in each of the three pellets. A poor

incandescent region of the flame from the 100% biomass pellet was observed from the

beginning of the overlapping combustion, whereas the wood–coal 50:50% pellet appeared to

have the brightest flame.

Fig. 6. Photographs of three pelletised particles under 21% oxygen: (a) a 100% wood pellet (b)

a mixed wood and coal (80:20%) pellet and (c) a mixed wood and coal (50:50%) pellet. The

figure illustrates the different flame structures and heterogeneous combustion times.



3.2.2. Volatile Combustion

Volatile matter is released with a certain amount of soot particles when the particle ignites on

the surface, thereby forming a volatile flame.40,41 The physical structure of the flame is

determined by the type of fuel, the heating rates and the hot gas temperature.42,43 An increase

in the oxygen concentration also accelerates the gas-phase combustion, with a thin volatile

cloud and a high flame intensity. From these observations of the three pellets, there was no

significant difference in the flame size (approximately 110–125 mm2). However, the flame

colour could be distinguished under 10% oxygen concentration: it was light yellow for the 100%

wood pellet, moderately dark yellow for the 80:20 wood–coal pellets and very dark yellow for

the 50:50 wood/–coal pellet. The dark yellow flames changed to a light yellow relatively thin

flame when under a high oxygen concentration. During volatile combustion, a weight loss of

the burning pellet is expected, because char oxidation at the edge of the pellets occurs along

with volatile oxidation in the pellets. Particle volume shrinkage was observed in the direction

of particle mass reduction and varied in moisture evaporation, volatile release and carbon

oxidation. Fig. 7 shows the reduction rates of the particle cross-sectional size in the burning

pellets under 10 % oxygen concentration: 37.5% (100% wood), 32.4% (80:20 wood–coal) and

26.3% (50:50 wood–coal).

Fig. 7. Images showing the reduction in size during volatile combustion for the 100% wood,

80:20% wood–coal and 50:20% wood–coal pellets under a 21% oxygen atmosphere.



3.2.3. Char Combustion

Biomass char particles are highly reactive, compared with the reactivity of coal char.44 To

compare the char combustion behaviours between the three pellets, the char particles were

ejected every 2 seconds after the end of volatile combustion. To prevent any oxidation, the

burning char particles were cooled immediately in a cold vessel. Fig. 8(a–d) shows the plots of

how the char particle volume changed during the char combustion process. The rapid heating

rates caused most of the particles to be at considerably high particle temperatures, but the extent

of particle mass loss was different between the three pellets. Particle shrinkage was in the same

direction as char particle mass loss, which is in agreement with previous research.45 The

measurement of particle temperature has not been reported here. On the basis of direct

observation, the pure biomass char particle presented a little bright flame among the three

pellets, which is associated with its high char reactivity and a more active overlapping

combustion during the early stage. Physical deformations, such as melting, bubbles and cracks,

were also observed in all three pellets, but a high volume of bubbles occurred in the 80:20

wood–coal and 50:50 wood–coal pellets.



(a)

(b)

(c)



(d)

Fig. 8. Mass reduction of char particles under 21% oxygen atmosphere. An image (a–c) show

physical deformations such as swelling, melting and bubbles of the three char particles: (a) 100%

wood pellet, (b) wood and coal (80:20%) and (c) wood and coal (50:50%). (d) Weight loss

curves of the three pellets.

3.3. Combustion Time Profiles

The gas-phase and solid-phase combustion duration was measured under rapid heating rates

and a 21% oxygen atmosphere. The combustion duration was averaged over 20 particle

samples (0.27 g) to give a quantitative comparison. Fig. 9 illustrates the average volatile

combustion and char combustion time for each tested sample containing 20 pellet particles.

The standard deviation was calculated to be less than 5% of the mean values. The plotted graph

shows that the duration of the gas-phase combustion of the three pellets was not different, but
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the burn-out time of the solid-phase combustion of the 80:20 wood–coal pellets was over

double that of the pure biomass pellets. It should be noted that a moderate period, for so called

“overlapping combustion”, existed in the early combustion stage, and it was considered as a

part of volatile combustion process because of the presence of a flame and it was of a short

duration. Consequently, the coal-blending ratio dramatically increases the duration of char

combustion owing to the increase in the fixed carbon volume fraction. In fact, the intra-particle

temperature appears in large particles where the temperature difference was also induced by

particle shape and char reactivity.

Fig. 9. Average duration of volatile and char combustion for the three pellets (0.27 g) at 1340 K.

3.4. Effect of Pellet Size and Shape

Fig. 10(a) shows the images of the physical changes in the volatile flame of cylindrical pellets

of different weights and aspect ratios: 14 g & 1 (L/D), 27 g & 2 (L/D), 40 g & 3 (L/D). All the

pellets were burned from the heat-up stage after injection to the end of the volatile combustion
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stage under a 10% oxygen atmosphere. Particles (14 g) with a spherical shape were also tested

to investigate the effect of particle shape. It is accepted that a particle with a large aspect ratio

can be heated by external convection and radiation, resulting in an overlapping combustion and

a fast conversion rate.30,33 The figure also represents the ignition delay from the pellet with the

different aspect ratios. The ignition time was faster as the aspect ratio increased in particles

with identical diameters, whereas the maximum size of the volatile flame of all the pellets

occurred at around 20 s. The fast ignition occurs because of the dramatic increase in

temperature at a particle edge where char oxidation and volatile release start simultaneously on

the particle surface. This tendency is also clearly observed in increased particle sizes and in the

cylindrical shape. These results indicate that the volatile flames have an elongated shape with

yellow luminosity and a jet-like long tail.46 The long tails are not immediately burned and are

oxidised far from the flame cloud when large pellets were burned, which are obviously affected

by their temperatures. The full structure of the tail was not observed in the images, because the

field of observation was limited in the experiment. It appeared that the conical flame might

result in a significant soot breakthrough for the long tails. The graphs in Fig. 10(b–d) show the

flame area from the images taken for the three particles, 100% wood, 80:20 wood–coal and

50:50 wood–coal, under a 21% oxygen atmosphere. For quantitative analysis, the weight of

each pellet had a standard deviation less than 1%. The spherical-shaped pellet had a slightly

smaller volatile flame area than the cylindrical pellet of identical particle size. There were no

significant changes in volatile flame and ignition time, because the particle diameter and aspect

ratio are similar between the two different shapes.
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(c)

(d)

Fig. 10. Physical changes in the volatile flames between the cylindrical and spherical shapes

of pellets: (a) images of volatile flames under a 10% oxygen atmosphere, (b) flame area of
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100% wood, (c) flame area of 80:20% wood–coal and (d) flame area of 50:50% wood–coal.

3.5. Effect of Oxygen Concentration on Different Particles

The soot flame of each pellet (0.27 g) had comparable burning characteristics such as type of

flame, intensity and duration of char combustion under a range of oxygen concentrations, 10%–

40%. Fig. 11(a–c) shows the development of the enveloped flame between 100% wood, 80:20%

wood–coal and 50:50% wood–coal pellets. The partially detached flame was observed above

the surface of the 100% biomass pellet over 21% oxygen, whereas pellets of the coal and

biomass mixtures had only this type of flame when the oxygen concentration was over 40%.

This phenomenon is attributed to the relatively oxidation of the gaseous and solid phase during

combustion. The fuel-rich incandescent flame boundary was shown on all pellets with different

luminosity under 10% oxygen, as they were affected by the soot volume fraction. The ejected

pellets were collected after the quenching and drying processes in order to measure the particle

mass loss during combustion. Fig. 12 presents the change in the volume of the pellets every 3

seconds, at 10% oxygen, and shows how they shrunk owing to the release of volatile

combustion at the end of char combustion. Dramatic particle mass loss was observed in

increased oxygen diffusion rate, especially during char combustion. Particle fragmentation also

occurred dominantly at an atmosphere under 40% oxygen. Pellets with mixtures were prepared

for the measurement of their mass reduction over the range of 21%–40% oxygen concentrations.

Fig. 13 illustrates the curves of the particle mass loss of 80:20 biomass–coal and 50:50

biomass–coal pellets by the end of char combustion. The mass reduction for both pellets was



not significantly different under 40% oxygen. The difference in their mass reduction between

21% and 30% oxygen was clear when the coal-blending ratio increased. Compared with 80:20,

the burn-out time of 50:50 increased by about 40 seconds, because of the increase in the fixed

carbon volume fraction.

(a)



(b)

(c)



Fig. 11. Captured images obtained from burning pellets of 40 g over time: (a) 100% wood, (b)

80:20% wood–coal and (c) 50:50% wood–coal. The figure shows the ignition and the flame

and char characteristics from the coal and wood mixtures under oxygen concentrations of 10%–

40%.

(a) 21% O2 (b) 30% O2

(c) 40% O2

Fig. 12. Particle volume change from heating to char combustion under different oxygen

concentrations: these particles are 50:50% of biomass and coal where the mass was kept

identical at 0.27 g. The figure shows that the volume of the particle also decreased during

volatile combustion.



(a) 80:20

(b) 50:50

Fig. 13. Reduction of particle weight for 80:20 biomass–coal and 50:50 biomass–coal pellets

at rapid heating rates and under 21%–40% oxygen concentrations. The results present the

tendency for different mass reduction from a mixture of fuels.
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4. Conclusions

The combustion characteristics of single pellets of different coal and wood mixtures were

experimentally investigated for co-firing in a laboratory EFR. Comparisons of combustion

times and physical changes in the volatile flame and char particle were analysed over time. To

approach the feasible burning behaviours in a realistic furnace, all the pellets were ignited at

rapid heating rates, which affected the fast thermal decomposition of hemicellulose, cellulose

and lignin. The reduction of the pellet weight and particle shrinkage were also measured. From

direct observation methods, the modes of the volatile flame and overlapping combustion were

discussed for the different biomass–coal mixture pellets for co-firing. The conclusions of this

experimental study are as follows:

1. The volatile combustion times between the three pellets were not significantly different,

but the char burn-out times increased noticeably as the coal mixture increased because

of the increase in the fixed carbon content and the relatively slower coal char oxidation

2. Two types of volatile flame, i.e. partially detached and diffusion flame, were clearly

distinguished during homogeneous combustion. The partially detached flame was

observed on the pure biomass pellet at over 21% oxygen concentration and on the

biomass pellets with coal mixtures at 40% oxygen concentration. This was attributed

to the fast devolatilisation rate in biomass materials or the high oxygen diffusion rate.

3. During volatile combustion, the pellets shrank by 26.3%–37.5% because of the char

oxidation in the early stage and the rapid release of volatile matter. The biomass char

particle had the highest luminosity owing it to high char reactivity.

4. The ignition time was shorter as the aspect ratio of the burning pellets with identical

diameter increased, which can result in a dramatic increase of the temperature at the



particle surface, where overlapping combustion was more pronounced.

5. The pellet mass reduction rate of 50:50 biomass–coal pellets increased with increasing

oxygen concentration, but the weight loss of different size pellets was similar for 40%

oxygen, where fragmentation occurred primarily at the particle surface.
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