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Abstract

Empirical data from a 6-month mesocosms experiment were used to assess the ability and

performance of two machine learning (ML) models, including artificial neural network (NN)

and random forest (RF), to predict temporal bioavailability changes of complex chemical

mixtures in contaminated soils amended with compost or biochar. From the predicted

bioavailability data, toxicity response for relevant ecological receptors was then forecasted to

establish environmental risk implications and determine acceptable end-point remediation. The

dataset corresponds to replicate samples collected over 180 days and analysed for total and

bioavailable petroleum hydrocarbons and heavy metals/metalloids content. Further to this, a

range of biological indicators including bacteria count, soil respiration, microbial community

fingerprint, seeds germination, earthworm’s lethality, and bioluminescent bacteria were

evaluated to inform the environmental risk assessment. Parameters such as soil type,

amendment (biochar and compost), initial concentration of individual compounds, and

incubation time were used as inputs of the ML models. The relative importance of the input

variables was also analysed to better understand the drivers of temporal changes in

bioavailability and toxicity. It showed that toxicity changes can be driven by multiple factors

(combined effects), which may not be accounted for in classical linear regression analysis
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(correlation). The use of ML models could improve our understanding of rate-limiting

processes affecting the freely available fraction (bioavailable) of contaminants in soil, therefore

contributing to mitigate potential risks and to inform appropriate response and recovery

methods.

Keywords: Risk assessment; Machine learning; Bioavailability; Complex chemical mixtures;

Compost; Biochar

1. Introduction

Contaminants in the environment are found as a combination of multiple chemicals, often

including both organic and inorganic compounds, such as petroleum hydrocarbons and heavy

metals/metalloids (EEA, 2012). The contaminants’ fraction potentially available to receptors

(bioavailable fraction) depends on both chemical properties of pollutants and soil properties

(Semple et al., 2003), and is a better proxy than the total concentration of contaminant (Guo et

al., 2016) when predicting the actual exposure to organisms and the ecosystem (Gourlay-

Francé and Tusseau-Vuillemin, 2013). Bioavailability provides a basis to make robust decision

regarding appropriate risk assessment, predicting contaminants’ fate, transport, and potential

environmental impact (Lehmann and Joseph, 2015). While greater attention has been given to

the role of bioavailability of complex contaminants in regard to remediation end points (Brand

et al., 2012; Harmsen and Naidu, 2013; Kördel et al., 2013; Ortega-Calvo et al., 2015) as well

as its implication for regulatory frameworks (Umeh et al., 2017), its recognition and effective

application by European-based environmental regulators is still limited (Harmsen and Naidu,

2013).

The recent shift toward sustainable remediation approaches are spawning a growing interest

towards biological amendment such as composting, land farming, bioventing, and biopiling

(Bardos et al., 2011). Biochar and compost amendments have been largely applied as effective



3

bioremediation approaches for enhancing recovery of soil contaminated with petroleum

hydrocarbons and heavy metals (Lyu et al., 2016; Wu et al., 2014). Even though bioremediation

is regarded as a sustainable and economical approach, with minimal disruption on site (often

applicable in situ) and great public acceptance, it has some limitations (Boopathy, 2000). For

instance, some chemicals may not be degradable, or their degradation may yield by-products,

such as oxy-PAHs, which can exhibit greater toxicity than the parent compounds (Hu et al.,

2012) and therefore slow down the degradation and reduce remediation efficiency. Because of

these challenges, our mechanistic understanding of complex chemical mixtures degradation,

the associated toxicity, and the subsequent implication for risk assessment and remediation

end-point are still limited.

Accurately monitoring the bioremediation process and supporting risk evaluation and

degradation assessment often involve long-term experiments with multiple soil sampling which

are labour intensive, time consuming, and expensive. Therefore, the use of Machine Learning

(ML) methods trained on empirical data could be advantageous to make predictions on the

potential degradation and reduction in toxicity occurring during remediation. ML models are

able to learn the relationships between input variables (e.g. soil amendment, soil type) and

output variables (e.g. long term changes in contaminants’ bioavailability) from a training

dataset, these relationships can then be generalised to make informed decisions in new cases

(Wu et al., 2013). The application of ML to environmental issues, such as waste recovery and

degradation studies, have been widely investigated in the literature (Abbasi and El Hanandeh,

2016; Heshmati et al., 2014; Khamforoush et al., 2011; Mason, 2006; Petric and Selimbašić, 

2008; Wu et al., 2013), however their implementation is still limited as often these methods are

data-specific, or even variable-specific and their performance depends on many factors (Li et

al., 2011). In particular, previous research highlighted the potential of ML to determine

remediation end-points based on bioavailability predictions (Wu et al., 2013) and showed that



4

a better understanding of the impacts of bioavailability is necessary to fully comprehend the

extent of efficacy of bioremediation and manage the associated risks. Therefore, in this study,

we use ML to predict bioavailability but also the actual toxicity of tar-contaminated soils from

two former manufactured-gas plant sites before and after lab-based bioremediation with

biochar and compost amendments. Specifically, the objectives were to use empirical data from

a bioremediation experiment to predict (1) change of complex chemical mixtures

bioavailability, (2) change in the associated toxicity, and (3) to assess the input variables which

are the most important for the estimation of toxicity.

2. Material and methods

2.1. Mesocosms setup ad data collection

A 6-month mesocosms experiment was carried out using two contaminated soils collected from

two former gasworks sites (Soil 1 and 2) located in the UK. The soil physicochemical

properties of the two samples used in this study are summarised in Table S1 (supplementary

material). Briefly, the soils were amended in duplicate with either 5% w/w biochar (Soil +

Biochar) or 15% w/w compost (Soil + Compost). A set of duplicate samples were also left with

no physical remedial action (Soil). All samples were stored outdoor for 180 days. Soil samples

were collected at day 0, 30, 90, and 180 and subsequently processed for chemical,

microbiological, and toxicological analysis. For the chemical analysis, total and bioavailable

petroleum hydrocarbons and heavy metals were extracted and analysed for both soil samples

at the 4 sampling times. For the estimation of the bioavailable concentration of organic

compounds soil subsamples were extracted with mild solvent (methanol) as this has been

previously found to be a good representation of the bioavailable fraction, and has been

correlated with both the accessibility to earth-worms and bacterial mineralization assays



5

(Kelsey et al., 1997; Reichenberg and Mayer, 2006Yu et al., 2011; Wu and Zhu, 2016;) (details

of extraction technique are provided in Supplementary Material).

Moreover, to derive information on the partitioning and bioavailable concentrations of HM and

metalloids in soil, a sequential extraction (Cave et al., 2004) with increasing concentration of

nitric acid was used. Details of the technique used are summarised in the Supplementary

Materials and relevant descriptive statistics are presented in Table S3. A battery of biological

and eco-toxicological indicators representing different trophic levels have been used to assess

the ecological health change of the soils undergoing bioremediation treatments (Coulon et al.,

2004). The indicators included soil respiration as described previously by Paton et al., (2006),

phospholipid fatty acids analysis (PLFA) as per Frostegård et al., (1993) , seeds germination

(mustard, rye grass, and pea), earthworm’s lethality as described by Dawson et al., (2007) and

Coulon et al., (2010), and Microtox® basic soil phase assay as described by Coulon et al.,

(2004). Information on the determination of the toxicological responses of the model organisms

are summarised in Table S4 of the Supplementary Materials.

2.2. Modelling methods and variables input

The ML prediction of soil toxicity for a given time t is done in two stages (Figure 1): (a) first

we use ML to predict the bioavailable concentration of some hydrocarbons at time t, then (b)

we use these predictions to estimate the toxicity at time t. Our implementation relies on scikit-

learn, a machine learning library for Python (Pedregosa et al., 2011). We tested Neural

Network (NN) and Random Forest (RF) which are two ML techniques often used to model

complex and nonlinear environmental problems (Rajaee et al., 2009; Sahoo et al., 2006; Wu et

al., 2013).
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Figure 1: Two-stage approach to predict soil toxicity. (a) A machine learning (ML) algorithm is

used to predict the bioavailable concentration of hydrocarbons and heavy metals/metalloids at

time t. (b) The predicted concentrations are used as inputs of a second ML algorithm to predict

soil toxicity.

For both the NN and RF methods, each input feature was first scaled by removing its average

value and dividing by its standard deviation. This was done to avoid features with large values

to dominate in the training phase. For the NN, we used a Multi-Layer Perceptron (MLP) which

is a category of NN with at least three layers of neurons fully connected (an input layer, an

output layer, and one or more hidden layers). NN models require several hyper-parameters to

be tuned (Table 1), and are often criticised for being black boxes, as their behaviour cannot

easily be explained by inspecting their internal structure (Sturm et al., 2016). That is why RF

is also used in this study. RF can be considered as a grey box (Prasad et al., 2006), because it

allows exploring the relative importance of the different input features . RF also has fewer

hyper-parameters than NN (mainly the number of trees and the maximum depth of a tree; see
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Table 1). More information on the behaviour of NN and RF can be found in the Supplementary

Materials

Table 1: Hyper-parameters of the artificial neural network (NN) and random forest (RF) models.

NN model RF model

Hyper-parameters Values
Hyper-

parameters
Values

Activation function Identity, Relu
Number of

trees
20,30,40

Number of hidden layers
and neurons

3 layers with 100 neurons,
Maximum

depth
20,30,40

4 layers with 100 neurons,

5 layers with 100 neurons

Regularisation term 0.0001, 0.001, 0.01, 0.1, 1, 10

Learning rate (constant) 0.001,0.01,0.1

Relu: rectified linear unit

2.3. Hyper-parameters optimisation of ML models

For both models, the tuning of the hyper-parameters was done automatically using an

exhaustive grid search where all the combinations of hyper-parameters are tested to find the

best combination. The best combination is found through a 4-fold cross-validation. The dataset

is split into 4 subsets. Then for each of the 4 folds, the model is trained using 3 of the folds and

tested on the 4th fold. The performance of the regression is measured as the mean r2 value

obtained across the 4 folds. After finding the best set of hyper-parameters, the model is

retrained on the whole dataset.

2.4. Estimation of bioavailable concentrations and toxicity

ML algorithms were trained and tested for each metal (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn)

and each of the following hydrocarbon: (1) aliphatic fraction including all individual

compounds in the range of EC10 to EC40, (2) aromatic fraction including: Acenapthene (AE),

Fluorene (F), Anthracene (A), Phenantrene (P), Pyrene (PY), Chrysene (C),
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Benzo(a)anthracene (BA), Benzo(a)pyrene (BaP), Benzo(b)fluoranthrene (BB),

Benzo(k)fluoranthrene (BK), Dibenzo(a,h)anthracene (DA), Benzo[g,h,i]perylene (BP),

Indeno[1,2,3-c,d]pyrene (IP). To estimate the concentration of a hydrocarbon/metal at time t,

the inputs of the ML models were the soil type (Soil 1 or Soil 2), the amendment (un-amended,

biochar, or compost), and the initial (t=0) total concentration of the hydrocarbon/metal. After

training/testing via the 4-fold cross-validation, the NN models with r2 > 0.7 (good model

fitting) were selected to generate the inputs for the estimation of the toxicity (Figure 1 b). Using

models with a lower r2 may generate inaccurate inputs which would confuse the estimation of

the toxicity.

NN was used instead of RF, because RF provides a discrete output dictated by the finite number

of split points in each tree as explained in section 2.2. Since measurements are only available

at time t=0, 30, 60, and 180 days, the RF output does not vary continuously in between these

data points which may lead to unrealistic variations in bioavailable concentrations. Here, RF is

mainly used (i) as a benchmark against NN for which finding an appropriate combination of

hyper-parameters is less straightforward, and (ii) because it provides access to the relative

importance of the input variables.

2.5. Estimation of toxicity

NN and RF algorithms were then trained and tested for each biological and eco-toxicological

indicators listed in Table S4 of the Supplementary Materials. To estimate a given indicator at

time t, the ML models take again as inputs the soil type (Soil 1 or Soil 2), the amendment (un-

amended, biochar, or compost), but also the bioavailable concentration of the

hydrocarbons/metals predicted with NN having r2>0.7. The latter is anticipated to be a valuable

input for the toxicity estimation, as bioavailable concentration is reported to be a good proxy

for toxicity estimation (Gourlay-Francé and Tusseau-Vuillemin, 2013).
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2.6. Drivers of bioavailability and toxicity

To investigate which of the input features are driving the estimation of the

bioavailability/toxicity variables, we rely on the RF model which can output the relative

importance of each input feature. To do so, the Skicit-learn library implements the method

based on the Mean Decrease in Impurity (MDI) described by Breiman (1984). In a decision

tree, every node corresponds to a logical if-then condition on a single input feature, which splits

the input dataset into 2 subsets. The choice of the feature and its splitting condition is based on

a measure called impurity. For regression trees, the impurity in the data is quantified by the

variance, and the training phase corresponds to finding the splits which lead to the greatest

reduction in variance. To reflect the feature importance, the MDI accounts for the number of

times a feature is selected to split the data and how many data samples it splits (i.e. the

importance of the splits). In practice, an input feature is important if it is often used by the trees

to make decisions and if these decisions are concerning many data samples.

3. Results and discussion

3.1. Prediction of the bioavailable concentration of hydrocarbons and metals

The accuracy of the ML models (r2 value) for the prediction of bioavailability is shown in

Figure 2. A thorough inspection of the data revealed that noisy measurements, i.e. when two

replicates are different from each other, are one of the main reasons for the lower r2 values

obtained for some hydrocarbons and elements. The corresponding combinations of hyper-

parameters returned by the grid search are shown in Table S5 of the Supplementary Materials.

The models with high r2 can be used to estimate bioavailability at any time step. For example,

Figure 3 shows the predicted bioavailable concentration of Fluorene (F) (Figure 3a and b),

benzo[a]anthracene (BA) (Figure 3c and d), benzo[a]pyrene (BaP) (Figure 3e and f), and

Copper (Cu) (Figure 3g and h) with RF and NN, respectively. The corresponding r2 values
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were r2 =0.93 (RF) and r2 =0.89 (NN) for F, r2 =0.97 (RF) and r2 =0.91 (NN) for BA, r2 =0.96

(RF) and r2 =0.90 (NN) for BaP, and values of r2 = 0.96 (both RF and NN) for Cu.

Figure 2: Prediction accuracy (r2) for the bioavailable concentration of hydrocarbons and heavy

metals/metalloids using Neural Network (black) and Random Forest (grey).

As explained in the methodology section, RF generates an output with discrete values which

may lead to unrealistic variations due to the measurements being available only at a few time

steps. In comparison, NN generates a continuous output which can be used to estimate the

concentration at intermediate time steps, but also to forecast the potential evolution of the

concentration for time steps beyond 180 days. Therefore, in the next section, we use NN, and

not RF, to generate the estimated bioavailable concentrations used as inputs of the toxicity

models. The selected hydrocarbons are EC12, EC14, EC16, EC17, EC19, EC21, EC23, EC25, EC26

, AE, F, A, P, PY, C, BA, BaP, BB, BK, BP, DA, IP, P, and the selected elements are As, Cd,

Cr, Cu, Hg, Ni, Se, Pb, and Zn. (Figure 2; NN r2>0.7).

In this mesocosms experimental setup the decrease in hydrocarbons bioavailable concentration

was 2 times higher in Soil 1 (high contamination) than in Soil 2 (low contamination). The most

significant changes were observed for the aromatics EC16-21 and aliphatic EC16-35 fractions;

where readily available /bioavailable (methanol extracted) concentration decreased by 71, 58%
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(Soil 1 + Compost) and by 11, 91% (Soil 2 + Compost). Fewer changes in bioavailable

concentration were observed in Soil 2, which overall had lower concentrations of contaminants.

This is clearly highlighted in Figure 3, where Fluorene (F) was plotted as representative

aromatic compound for the EC16-EC21 fraction. The concentration of F significantly decreased

after 180 days incubation for Soil 1 + Compost. It was also clear that the soils amended with

compost had F concentration 10 times lower than the non-treated (Soil 1) soil at the end of the

simulation period.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 3: Prediction of the bioavailable concentration (mg/kg) of Fluorene (F),

benzo[a]anthracene (BA), benzo[a]pyrene (BaP), and Copper (Cu) using random forest (left) and

neural network (right). The continuous lines are the predicted concentrations for the different

soils (Soil 1 and Soil 2), amendments (biochar, compost) and un-amended. The dots are the

available measurements after averaging the replicates (the error bars are the standard deviation

across the replicates).

The relative feature importance when estimating bioavailability with RF for compounds

modelled with r2 > 0.7 is presented in Figure S1 of the Supplementary Materials. The bar chart

shows that for each compound different features (time, soil, or amendment) dominate. For

example, the prediction of the AE, P, PY, BA, BaP, and DA were mainly driven by soil

properties and the total concentration of the compounds at onset. The importance of the soil

feature reflects the differences observed in bioavailable concentrations between Soil 1 (heavily

contaminated) and Soil 2 (low contamination). For most of the HMs/metalloids (As, Cd, Cr,

Cu, Ni, Zn) time (ageing) and amendment (compost or biochar) were not important variables

influencing bioavailability prediction (Figure S1 of the Supplementary Materials). Indeed

HMs/metalloids bioavailable concentration did not change significantly over incubation time.



13

3.2. Prediction of the toxicity

Overall, RF performed slightly better than NN to predict the toxicity (Figure 4), and was

particularly good at predicting seed germination, condition index, and EC50. Lower r2 values

were obtained for the PLFA, which can be explained by different factors including: (1) the use

of quantitative data (concentrations) over qualitative data (relative abundance of individual

PLFA) could have provided a better input for r2 estimation; (2) it was not possible to

conclusively attribute these PLFA changes based on the input parameters of this model as there

are multiple factors (or additional factors) affecting community composition. Further to this,

we did not evaluate the effects of other chemicals (e.g metabolites) which may have impacted

the microbial community at early experimental stages (e.g 2, 5, 10, 20 days), thus sampling

regime established (30, 90, 180 days) was not significant for assessing smaller but significant

toxic effects on the microbial community. The corresponding combinations of hyper-

parameters returned by the grid search are shown in Table S6 of the Supplementary Materials.
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Figure 4: Prediction accuracy for the toxicity using Neural Network (NN) (black) and Random

Forest (RF) (grey). Germ: germination, CI: condition index, EC50: Half maximal effective

concentration, resp: soil respiration (mg CO2/g soil).

As done for the hydrocarbons, metals and metalloids, ML models with r2 >0.7 were

successfully used to predict the toxicity at intermediate time step (e.g. Figure 5 shows the NN

prediction obtained for mustard germination and the earthworm toxicity assay (14-day

condition index)). Good predictions were obtained for CI 3 days (r2 = 0.95), CI 7 days (r2 =

0.83), CI 14 days (r2 = 0.76), mustard germination (r2 = 0.91), ryegrass germination (r2 = 0.95),

and soil respiration (r2 = 0.77).

(a) (b)

Figure 5: Prediction of (a) mustard seeds germination (r2=0.91) and (b) earthworms 14-day

condition index (r2=0.75) using Neural Network. The continuous lines are the predicted values for

the different soils and amendments, the dots are the available measurements after averaging the

replicates (the error bars are the standard deviation across the replicates). The minimum value

allowed is 0, and the maximum values allowed are 100 and 2 for mustard germination and

condition index, respectively.

Empirical data, obtained from the mesocosms experimental setup showed that Soil 1 had a

greater toxic effect on mustard seed germination than Soil 2, likely because concentration of

contaminants was 4 times lower in Soil 2 (TPH > 2000 mg/kg) compared to Soil 1 (TPH >
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8000 mg/kg). Interestingly, seed germination showed a good ecological recovery for Soil 1 +

Compost and even for Soil 1 which reached similar recovery after 180 days. The model

predictions highlighted the potential for all soil samples to achieve 100% germination after 250

days (Figure 5a).

Similar ecological recovery for Soil 1 were observed from empirical data obtained for

earthworm lethality assay (E fetida); while the CI was similar at the onset of the experiment

(CI = 0, mortality), and only Soil 1 + Compost showed greater ecological recovery (CI was 2

times higher than biochar and un-amended conditions). The predicted ecotoxicity of Soil

1+Biochar and Soil 1 significantly decreased after 250 days (CI = 0.4 - 1) (Figure 5b). The

progressive positive effect of Soil 1 + Compost was also reflected by the prediction where at

250 days the sample ceased to be lethal (CI = 2) to earthworms assay. For the less contaminated

samples, a higher CI was recorded during the experimental setup for both Soil 2 + Biochar and

Soil 2 + Compost compared with Soil 2 (Figure 5b). The earthworms in Soil 2 + Compost and

Soil 2+ Biochar remained in the healthiest condition throughout the 14 days assay as no

significant differences were observed in the empirical data which was also reflected by the

model.

3.3. Drivers for toxicity

The most important input features for the estimation of the toxicity are shown in Figure 6. They

were identified by looking at the relative feature importance from the RF modelwith r2 >0.7.

This allows assessing the influence of each feature on the prediction.
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Figure 6: Relative feature importance when estimating toxicity with Random Forest. The

heatmap shows the relative feature importance for all the toxicity variables which were modelled

with an r2 value above 0.7. The top graph shows the relative feature importance averaged across

the toxicity variables.

The heatmap shows that, for each toxicity variable, different features dominate. For example,

the prediction of the CI (earthworm acute toxicity index) was mainly driven by EC17-EC19, AE,

F, A, P, and PY. A previous study highlighted the key role of the mid-chain length aliphatic

compounds in toxicity to earthworms (Dorn and Salanitro, 2000). In particular, these

compounds are the most volatile, soluble, and biodegradable constituents of the tar fraction

remaining after the initial removal of the more soluble/volatile components (e.g low molecular

weight compounds). Thus, mid-chain length aliphatic compounds can be a valuable indicator

of acute toxicity to soil dwelling organisms (e.g., earthworms). Furthermore, this fraction,

along with small aromatic compounds such as phenanthrene and acenaphtene, represented the

least aged fraction (more bioavailable) with the highest toxicity potential, and should therefore

be of special concern with respect to remediation/natural attenuation monitoring (Yang et al.,

2016).
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In comparison, the heatmap suggests that respiration was mainly related to arsenic (As) and

soil amendment (biochar or compost). Toxicity to As is caused by its ability toinhibit basic

cellular functions, and disrupt microbial metabolism (Walker et al., 2000). A number of studies

previously highlighted the adverse effects of As contamination on microbial biomass C and

respiration rates (Edvantoro et al., 2003; Van Zwieten et al., 2003) and in particular

bioavailable arsenic exerted greater inhibitory effect rather than to total arsenic concentration

(Ghosh et al., 2004). On the opposite, the model showed that EC15-EC20, Cd, Cr, Cu, Ni, Se,

and Zn ranked among the least important features for respiration.

Overall, Time, soil type, amendment (biochar and compost) were not identified as important

features. This is probably because these features were already used as inputs of the ML models

to estimate the bioavailable compounds, thus their effects may be embedded in the variations

of bioavailable hydrocarbons and metals. In summary, these findings reinforce the idea that the

bioavailability of multiple hydrocarbons and metals drives the soil toxicity.

3.4. Implications and limitations of ML for risk assessment and remediation end-

point evaluation

The two ML models used in this study were trained using a limited dataset. The models are a

priory only valid for the values of the input variables which are captured by the training dataset.

For example, the models may not accurately predict the toxicity for soils which are too different

from Soil 1 and Soil 2. Similarly, the accuracy of the models may decrease when predicting

toxicity at time steps larger than 180 days. This remark also applies to the analysis of feature

importance. For example, our results suggest that the bioavailable concentration of arsenic is

important to predict respiration. Although, this is true for our dataset, applying our method to

a different soil type and contamination may suggest that other variables are also driving

changes in respiration. Nonetheless, our study indicates that ML models can help us understand
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complex mixtures fate, and identify the key variables affecting their behaviour and the

environmental risks posed by the various pools of contaminants. Future studies should indeed

investigate the importance of other input variables such as pH, soil organic matter and dissolved

organic carbon on contaminant bioavailability and toxicity changes. Recovery of contaminated

soils in urban areas is nowadays a priority because of the increased urbanization which requires

suitable and safe land for construction. At several stages, relative costs and benefits must be

considered when evaluating potential remedial actions. Field-scale studies are often

implemented in real-case scenario to provide relevant empirical evidence to support the design

of a full-scale remediation strategy.

4. Conclusions

Empirical data from a 6-month mesocosms experiment were used to assess the ability and

performance of two ML models to predict temporal bioavailability changes of polycyclic

aromatic hydrocarbons, aliphatic hydrocarbons, and heavy metals/metalloids in contaminated

soils amended with compost or biochar. In addition, ML was used to predict the toxicity

changes, mainly based on the knowledge of some of the bioavailable concentrations. Results

obtained showed that both NN and RF were able to model the bioavailability of various

contaminants and should be used in combination as: NN model provides a realistic continuous

output, while RF can explain which input measurements are actually important to predict the

toxicity. This study suggests that ML models are good candidate tools to support remediation

monitoring of multi-contaminated sites, in a cost-effective manner. ML capabilities should be

further investigated with larger datasets encompassing a representative range of soil types and

contaminations.
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