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Abstract
Blocks of gelatine are used in both lethality and survivability studies for broadly the same reason, i.e. comparison of ammunition
effects using a material that it is assumed represents (some part of) the human body. The gelatine is used to visualise the
temporary and permanent wound profiles; elements of which are recognised as providing a reasonable approximation to
wounding in humans. One set of researchers aim to improve the lethality of the projectile, and the other to understand the effects
of the projectile on the body to improve survivability. Research areas that use gelatine blocks are diverse and include ammunition
designers, the medical and forensics communities and designers of ballistic protective equipment (including body armour). This
paper aims to provide an overarching review of the use of gelatine for wound ballistics studies; it is not intended to provide an
extensive review of wound ballistics as that already exists, e.g. Legal Med 23:21–29, 2016. Key messages are that test variables,
projectile type (bullet, fragmentation), impact site on the body and intermediate layers (e.g. clothing, personal protective equip-
ment (PPE)) can affect the resulting wound profiles.
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Why are gelatine blocks used for wound
ballistics studies?

Use of gelatine blocks can result in similar projectile depth of
penetration (DoP) and permanent damage to that observed in
soft tissue (living and cadaveric) [1–4]. In modern wound
ballistics studies, either 10 or 20% gelatine (by mass) blocks
conditioned to 4 and 10 °C respectively are used. Gelatine
blocks of 10% concentration by mass (conditioned to 4 °C)
resulted in DoP to within 3% for selected bullets compared to
those in living swine thigh tissue [4, 5] and similar DoP to
swine torso [6]. A recent comparison of wounds caused by
4.8 mm diameter ball bearings (1150 ± 5 m/s) in 10% (by
mass) gelatine and the legs of anesthetised swine reported
similar trajectories in both targets, DoP within 1% and the

pattern of temporary cavity formation and collapse being sim-
ilar, but the maximum size and duration larger (12%) and
longer (24%) in gelatine [7]. Gelatine blocks of 20% (bymass,
usually conditioned to 10 °C) are used by some in the wound
ballistic testing community and are often referred to as
BNATO gelatine^ [8–11]. However, there is no NATO stan-
dard for gelatine and therefore B20% gelatine (by mass)^
should be used. That 20% gelatine is stiffer than 10% gelatine
and that DoPs are shorter in 20% gelatine is clear, although
few people compare the two [6, 12].

Irrespective of concentration, type A gelatine1 with 250 to
300 Bloom is usually used [13, 14]. The resulting block is
translucent allowing the interaction between the projectile
and block to be imaged using high-speed video to view the
formation and collapse of the temporary cavity. X-rays, CT
scans and the use of dyes can aid the viewing of the permanent
cavity [13, 15, 16]. Physical dissection, measurement and still
photography can aid in the measurement of the depth of the

1 Type A gelatine is produced from acid-treated collagen. The gel (or jelly)
strength of gelatine is traditionally referred to by Bloom number. To test the
Bloom number, a 112 g sample of 6.67% w/w gelatine is prepared following a
standardised time and temperature system. The sample is then brought to
10 °C before a plunger (12.5 mm in diameter) is pushed 4mm into the gelatine.
This is done by dropping shot into a cup until the plunger reaches the 4 mm
depth required. The mass (in grams) of the shot required to achieve the 4 mm
depth is the Bloom number.
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penetration of the projectiles or fragmented projectiles and the
analysis of the permanent cavity, which is typically in the form
of the wound tract and fissures [6, 15, 17–20].

Alternative synthetic materials have been used and report-
edly produce similar results as gelatine without the need to
condition at a particular temperature (e.g. PermaGel™, Clear
Ballistics Gel®). Claimed advantages include the ability to
melt and re-use these materials without detrimental effect to
the physical and mechanical properties (within limits).
However, literature has reported that these materials produce
different DoP and damage when compared to gelatine blocks
[21, 22]. Evidence of ageing after one re-melt has also been
reported, and burningwithin the blocks (which is not observed
in gelatine blocks) is observed post-testing due to the compo-
sition of the material [21, 23].

Several researchers have commented on the method to
manufacture gelatine blocks and the variables that affect con-
sistency within and among blocks. Issues discussed include
water temperature [13, 24], water acidity [24, 25], batch [21,
24] and longevity [13, 24–26]. Consistency of individual gel-
atine blocks can be assessed after temperature conditioning.
This typically involves shooting a steel ball bearing (BB) into
the block and measuring the DoP. Some researchers use
4.5 mm diameter BBs at relatively slow velocities [24–27]
and others use 5.5 mm diameter BBs at faster velocities [21,
23, 28]. Based on DoP data of such non-deforming and non-
yawing projectiles, one might expect that minimal variation
would be seen in DoP measurements for deforming and/or
fragmenting and/or yawing projectiles and other measures of
damage in the gelatine block, but this is not the case.

Although researchers have considered the variability of
gelatine manufacture, few consider the variability of the pro-
jectiles used. That bullets’ physical, mechanical and ballistic
properties can vary is widely recognised within the ballistics
community, but is rarely discussed in the literature [29, 30].
Use of a single batch (quarantined if necessary) and identifi-
cation of composition (using SEM-EDS) and microhardness
are recommended [21, 23, 28].

Incorporating bone and bone simulants

Many researchers have recognised that not all ballistic impacts
on the human body interact only with soft tissue such as mus-
cle. Human and animal bones are often combined with gela-
tine to produce a target with improved biofidelity. Examples
include the use of femurs (e.g. human, swine, deer) embedded
in gelatine to represent human lower extremities, e.g. [31–34],
combinations of thoracic sections with gelatine, e.g. [27, 35],
use of human skulls, e.g. [36, 37] or use of flat bones to
represent the skull, e.g. [19]. A number of polymeric bone
simulants exist and have been used to represent skulls, e.g.

[19, 38–40], and other bones [41–43]; these may be anatom-
ically accurate or a simple geometric representation.

Projectiles

Two types of projectiles are usually considered (i) bullets and
(ii) fragmentation (typically ball bearings).

Bullets

Understanding how different types of bullets interact with a
target is critical to understanding wound ballistics, and there-
fore understanding bullet construction is important [44]. A
round of ammunition comprises of four basic component
parts: (i) the cartridge case, (ii) the primer, (iii) the propellant
and (iv) the bullet which is the part that leaves the gun and
enters the target (Fig. 1a). Bullets may be fired from a handgun
(pistol) or a rifle. Pistol bullets are usually slower than rifle
bullets (e.g. 9 mmLuger bullet from aGLOCK pistol 350m/s,
7.62 mm bullet from an AK47 rifle 730 m/s). Bullets that
contain central cores covered by a layer of material are
jacketed bullets. The jackets of full metal jacket (FMJ) bullets
typically cover the bullet from the tip down to the base, leav-
ing part of the core at the base exposed (Fig. 1a, b). FMJ
bullets tend not to deform greatly during impact through soft
tissues, often resulting in the complete perforation of targets;
however, some FMJ bullets deform and/or fragment (Fig. 1c).
If FMJ bullets interact with a relatively harder material (such
as body armour) before entering soft tissues they may deform,
the jacket may be stripped off and they may fragment.
Partially jacketed bullets are typically jacketed from the base
up, with part of the core left exposed (i.e. unjacketed) at the
tip. This design encourages the expansion (deformed into a
Bmushroom^ shape by the impact force) of bullets on impact,
resulting in kinetic energy being dissipated sooner in a soft
tissue penetration event as well as penetration depths shorter
than those typical for FMJ bullets.

Fragmentation

Fragmentation originates from a device such as a grenade or
an improvised explosive device (IED). Typically, a metallic
container is filled with explosive or a container is filled with
metallic objects (such as nails, nuts and/or ball bearings) and
explosive. On initiation, the explosive accelerates the frag-
mentation towards a target which typically suffers multiple
impacts of varying DoPs. The injuries may combine the ef-
fects of blast and impacts from fragmentation [45].
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Wound ballistics

How a projectile interacts with, penetrates into and perforates
through (if it does) the human body depends on many factors
including (i) the type of projectile and (ii) where on the body
the projectile impacts. Wounding patterns are impossible to
predict without knowing the full details of the incident, and
even then, variability will exist. It is not the intention of this
paper to provide an in-depth discussion of the physics of
wound ballistics; that topic is covered in Kneubuehl’s classic
text on the subject [44]; however, a short summary is required.
Wounding occurs because kinetic energy is dissipated in the
body due to the projectile interacting with it. When a bullet
leaves a gun, it is spinning; on impacting the target, it de-
accelerates. Depending on the bullet design and materials
used, it may yaw in the body (tumble end over end), or it
may expand; the bullet may also break-up (Fig. 1c). A tem-
porary cavity is formed which collapses to leave permanent
damage; the size of the temporary cavity is influenced by the
elastic properties of the soft tissue type in which it forms and
whether the bullet expands, fragments or tumbles (Fig. 2). If
the bullet remains in the body then all of the kinetic energy of
the impact event is transferred to the tissues (Fig. 2b).

It is generally assumed there will be a small round entry
hole and large irregular exit hole; numerous examples exist in
medical and forensic case study journal articles and within
experimental studies. A small round entry hole may be seen,
but if the bullet hits the body side-on rather than front-on the
entry hole will look very different. The appearance will also
vary with the area of the body impacted. Figure 3, a modified
version of which is used in the 2018 NHS Trauma Guidelines,
demonstrates the differences that might be seen when the
same bullet impacts the body on the lateral or anterior aspects.

That fragments (e.g. ball bearings which do not typically
deform nor yaw) form a temporary cavity (albeit quite small in
volume) as well as a permanent tract surprises some re-
searchers not familiar with the field (Fig. 4).

What to measure in wound ballistics studies?

Bullet muzzle velocity is often quoted, but it is arguable that
the impact velocity at the target is more useful especially when
considering the development or overmatching of PPE. Impact
velocity can be equated to an estimated engagement distance.

a) b) c)

cj

Fig. 1 Ammunition. a Ammunition components: bullet, propellant and
cartridge case which contains the primer in the base (left to right). b 7.62 x
39 mm bullet (fired from an AK47 rifle) cut in half lengthwise, mounted

in Bakelite and polished; the core (c) and jacket (j) can be seen. c 5.56mm
NATO bullet (fired from a military rifle) fragments recovered from a
block of gelatine; note the tip of bullet (arrowed)

a) b) c)
Fig. 2 Typical stills from high-speed video footage illustrating extent of
temporary cavitation in a 250 mm× 250 mm× 500 mm 10% (by mass)
gelatine blocks conditioned to 4 °C (bullets circled). a 9 mm Luger FMJ
[21]—a bullet fired from a pistol that tumbles through gelatine. b 0.223

Remington [6]—a non-military bullet fired from a rifle. This bullet ex-
pands, does not tumble and remains in the block. c 7.62 × 39 mm [23]—a
military bullet fired from a rifle that tumbles; the bullet captured in a
second block
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With respect to damage in the gelatine blocks, re-
searchers have used the DoP of the bullet as a key
indicator of injury [6, 46]. However, the bullet is not
always retained in a single block [6, 19, 20]. That the
damage in the block should be considered within the
context of the body segment of interest seems reason-
able, but few actually discuss this [19, 21, 44]. Also of
interest is the extent of the temporary cavity, the dis-
tance at which a yawing bullet yaws to maximum, a
measure of fissure damage and any fragmentation of
the bullet [5, 6, 15, 18–20, 47, 48]. Some researchers
consider the amount of tissue removed during a surgi-
cal procedure; Jussila provided an interesting analysis
of prior published data [49]. Wound profiles of tempo-
rary cavities allow different ammunition types to be
compared, but it is always important to remember
those profiles are in blocks of gelatine not in the hu-
man body; however, wound profiles from blocks can
be mapped onto the body (Fig. 3) [15]. Rarely does
anyone comment on the variability of such wound pro-
files [12, 21, 23, 28].

Effect of intermediate layers such as clothing
and personal ballistic protection

The effect of intermediate layers such as clothing has been
considered in the context of increasing the possibility of in-
fection in a wound [50–52], but also in the context of how
such intermediate layers might affect wounding [19, 53, 54].
Thick, stiff clothing layers can affect the deformation of the

a)

b)

c)

Fig. 3 Typical temporary cavities
in 10% (by mass) gelatine blocks
and mapped onto the human
body. a 9 mm FMJ with reference
to [21]. b 0.233 Remington with
reference to [6]. c 7.62 × 39 mm
mild steel core (MSC) with refer-
ence to [19]

Fig. 4 Example of a 5.5 mm diameter steel ball bearing (impact
velocity = 654 m/s) penetrating a 250 mm× 250 mm× 500 mm gelatine
block (10% bymass, conditioned to 4 °C). Maximum temporary cavity is
shown and the final position of the ball bearing is circled.
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bullet. This in turn can affect the formation of the temporary
cavity and may result in more extensive bone fractures [53],
larger wound sizes [55] and an increased quantity of
fragmented ribs being pushed into the lungs [54]. Thin cloth-
ing layers do not appear to cause such issues [20].

Wounding behind PPE such as body armour and helmets is
rarely discussed in the literature; this research area is at the
interface of lethality and survivability studies. Published data
suggests that some aspects of the wound profile can be affect-
ed by such PPE [19, 21, 35].

Conclusions

Researchers that use gelatine blocks for lethality and
survivabili ty studies should minimise variabil ity
through sound experimental design and planning. The
academic published literature in this area is in diverse
journals, and practitioners within one discipline (e.g.
medical science) should seek literature outside of their
area (e.g. forensic science). Gelatine blocks should be
validated for use, and that gelatine has strain rate sensi-
tive properties should be considered. However, users
should still expect variability in the measures used in
wound profiles; thus, a suitable number of replicates
are recommended. Different bullets result in different
wound profiles due to how the bullet interacts with the
target. Ammunition should be batch quarantined for ex-
periments and the variability of the composition, micro-
hardness and impact velocity considered. If the bullets
within or between batches are of variable quality with
respect to the materials and manufacturing standards
used, this will only add to the variability reported in
wound ballistics studies. The researcher must therefore
cons ide r bu l l e t des ign and qua l i t y a s su rance .
Intermediate layers may change the wound profile ob-
served, and researchers in both the lethality and surviv-
ability areas should consider this.
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