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Impact Time Control Based on Time-to-Go Prediction for
Sea-Skimming Anti-Ship Missiles

Min-Jea Tahk, Sang-Wook Shim, Seong-Min Hong, Chang-Hun
Lee and Han-Lim Choi

Abstract—This paper proposes a novel approach for guidance law
design to satisfy the impact-time constraints for a certain class of
homing missiles. The proposed guidance law provides proper lateral
acceleration commands that make the impact time error converge to
zero by the time of impact. This scheme can be applied to any existing
guidance law for which a formula of predicted time to go is available.
Convergence of time-to-go errors is supported by Lyapunov stability.
The optimal guidance law (OGL) and the impact angle control guidance
(IACG) law are extended by the proposed method for impact-time-
control guidance (ITCG) and impact-time-and-angle-control guidance
(ITACG), respectively. The performance of the extended guidance laws
is demonstrated by numerical simulation.

Index Terms—Homing Missiles, Impact-Time-Control Guidance,
Impact-Angle-Control Guidance, Time-to-Go Prediction.

I. INTRODUCTION

Recently advanced guidance laws have been developed by many
researchers for specific mission objectives and flexibility. Among
them, various impact-time-control guidance (ITCG) laws have been
devised for salvo attack against naval defense systems such as close-in
weapon systems in many-to-one engagement scenarios. Simultaneous
attack or cooperative attack of multiple anti-ship missiles can be
accomplished in two ways: by specifying the impact time of each
missile or synchronizing their impact times through the communica-
tion between them. The former requires reliable ITCG laws, which
has been the topic of previous studies found in [1], [2], [4]–[19].

Jeon et al. [1] have first proposed an ITCG law based on optimal
control theory with linearized formulation, resulting in a guidance
law which combines the conventional optimal guidance law (OGL)
and a feedback loop for reducing the impact time error. In [2], Lee
et al. have taken a similar approach to extend the optimal impact-
angle-control guidance (IACG) law [3] for impact time control. To
provide additional freedom for the simultaneous control of impact
angle and impact time, the jerk (time derivative of the acceleration)
command is chosen as the control input. The authors of [4] have
proposed a guidance law based on the differential game theory in
order to control impact angle and time. Recently, Zhang et al. [5]
have suggested an impact-time-and-angle-control guidance (ITACG)
law which considers not only small heading/impact angles but the
case of large angles. In [6], a nonlinear closed form of guidance
law is introduced as quad segment polynomial trajectory guidance.
The guidance law provides a minimum curvature trajectory and exact
prediction of time to go.

ITCG has also been studied from the perspective of nonlinear
control theory as found in [7]–[11]. Harl and Balakrishnan [7] have
applied a second-order sliding mode control law for which the sliding
surface is chosen to satisfy the desired line-of-sight angle profile. This
is a shaping method of the line-of-sight rate to realize the desired
line-of-sight angle profile, which is given as a polynomial function
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of downrange. The impact time can be determined by selecting the co-
efficients of the profile. In the study of Kumar and Ghose [8], sliding
mode control is employed to derive an ITCG law based on time-to-
go estimates. The ITCG law is applicable against constant-velocity
targets but impact angle constraints are not considered. Lyapunov-
based ITCG laws developed by Kim et al. [9] are applicable for three-
dimensional engagement scenarios. The singularity issue associated
with impact time control has been extensively discussed in this study.
Cho et al. [10] suggest a nonsingular ITCG law composed by three
components: the first term to make the time derivative of the sliding
surface zero, the second term to provide Lyapunov stability, and the
third term to avoid singularity. Saleem and Ratnoo [11] divide the
homing guidance phase into two parts: In the first phase, the missile
is injected into a straight collision course while the range is being
controlled to meet the impact-time requirement. The length of the
straight course is updated iteratively during the first phase.

It is noted that the Lyapunov functions used in [8]–[10] are
quadratic functions of the impact time error, or precisely speaking,
of the impact time error predicted on-line. This approach guarantees
that the impact time error decreases monotonically if the impact
time prediction is accurate. However, it does not guarantee that the
impact time error converges to zero by the specified impact time.
On the other hand, the guidance law proposed by [7] provides the
property of finite-time convergence although the guidance law design
is somewhat complicated.

Other studies on impact time control can be found in [12]–[19].
In the study of Kim et al. [12], polynomial guidance is extended to
propose an ITACG law for which three coefficients of the polynomial
function describing the guidance command are determined to satisfy
the terminal constraints. Jung and Kim have presented an IACG law
using a back-stepping method and ITCG law based on PNG in order
to enhance the survivability and kill probability in [13]. An earlier
work on ITACG is the study of Shin et al. [14] which adds a bias
term to an IACG law to control the impact time. To accommodate
the changes in the flight conditions along the path, a neural-network
approximation method is proposed for real-time calculation of the
bias term. In [15], a closed form of ITACG law is developed by
adjusting coefficients of BPNG. In [16], an ITCG law considering
seekers field-of-view constraints as well as uncertain system lag is
proposed. As applications of ITCG, cooperative guidance for salvo
attack is presented in [17], [18]. Recently, in [19], a vector guidance
approach is proposed for a moving nonmaneuvering target. The
guidance law provides a total acceleration vector which is composed
of two components: perpendicular to the LOS and along the LOS.
The acceleration vector is obtained by the sense of differential games
to minimize a miss-distance at the desired impact time.

On the other hand, [20] and [21] have utilized geometric relation-
ship to investigate the achievable maximum and minimum impact
times in the presence of limits on maximum acceleration and field-
of-view.

This paper proposes a novel approach which utilizes a class of
existing guidance laws for impact time control against stationary
targets. This approach can be applied to any guidance law if a
prediction formula of the time to go is provided. Specifically, the
conventional optimal guidance laws, which are written in terms of
the time to go, can be easily converted to an ITCG or ITACG law
since reliable time-to-go prediction formulae are given for them. In
this approach, a desired error dynamics of the impact time is chosen,
for which the finite-time convergence of the impact time error at
the target intercept can be proved through the judicious choice of
the Lyapunov function as will be shown here. Thus, the impact time
error is predicted from the time-to-go prediction formula, and the
control input to reduce this error to zero is found from the desired
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Fig. 1. Planar engagement geometry

error dynamics of the impact time. For implementation, the guidance
algorithm requires the time derivative of the predicted impact time,
which can be easily derived from the time-to-go prediction formula.
It turns out that the resulting ITCG law is the combination of the
original guidance law and an additional term for impact time control.
A simple method is also proposed to circumvent inherent singularities
associated with impact time control. Unless the initial condition is
singular, the singularity problem can occur only for a finite number of
times. Therefore, the convergence property of the proposed method
is not lost as long as the lateral acceleration of the missile is not
bounded. The accuracy of time-to-go prediction is important but the
proposed method is found to be effective even for the case of large
initial heading errors.

This paper is organized as follows: section II describes the def-
inition of system kinematics, principal notations, and the proposed
approach for impact time control. In section III, the proposed guid-
ance law design method is applied to two optimal guidance laws, the
optimal guidance law (OGL) and the optimal IACG law treated in
[3], to obtain a new ITCG law and a new ITACG law, respectively. In
section IV, numerical simulations are conducted with various terminal
constraints to demonstrate the effectiveness of the new guidance laws.

II. IMPACT TIME CONTROL BASED ON TIME-TO-GO PREDICTION

In this section, the system kinematics and principal notations of
this paper are described, and the proposed concept for impact time
control is discussed. Before introducing the system kinematics and
the proposed method, we make four basic assumptions as follows:

A1. The target is stationary.
A2. The missile speed is constant.
A3. The engagement occurs in a 2-D horizontal plane.
A4. The desired impact time is achievable.

Note that these assumptions are widely accepted for guidance law
design for impact time control of anti-ship missiles: (A1) If the target
is moving, then the predicted position at the desired impact time can
be used as a virtual target to attack. (A2) Most of sea-skimming
anti-ship missiles maintain a constant cruising speed for the sake
of engine control and autopilot performance. (A3) Anti-ship missile
engagement against naval targets can be treated as a 2-D problem
during the sea-skimming phase. (A4) To make the problem well
posed, we need this assumption.

Under these assumptions, the planar engagement geometry is
depicted as shown in Fig. 1, where (XI , YI) and (x, y) represent
the inertial reference frame and the line-of-sight (LOS) frame, re-
spectively, while σ and γ represent the LOS angle and the missile
flight path angle with respect to the inertial reference frame. The
variable λ denotes the lead angle, which is the angle between the

velocity vector and the LOS. From Fig. 1, the relationships between
these angles are expressed as

λ = γ − σ, λf = γf − σ (1)

λ̇ = γ̇ − σ̇, λ̇f = −σ̇ (2)

where the subscript f represents the final time and γf may be
prescribed for impact angle control if necessary.

For a stationary target, we can obtain the engagement kinematics
as follows:

Ṙ = −V cosλ

σ̇ = (−V sinλ) /R (3)

γ̇ = u/V

where V , R and u represent the missile speed, the relative distance
between the missile and the target, and the lateral acceleration of
the missile for maneuver, respectively. Table I explains the principal
symbols used in this paper.

Hereafter, we provide the proposed idea for impact time control
using existing guidance laws. Suppose that a guidance law Λ is
given with a formula for the predicted time to go, denoted as
P . The guidance law Λ will be extended to ΛITC which has an
additional capability of impact time control while keeping the original
capabilities of Λ. Since the true time to go of Λ, denoted a T , is
unknown, P will be used for impact time control instead. Roughly
speaking, P is said to provide reliable time-to-go predictions if P
converges to T as T goes to 0. In this paper, P is assumed to be
reliable as was in the previous impact-time-control guidance laws
based on time-to-go prediction. Then, the guidance law Λ will be
modified for impact time control by making P converge to D , which
is the desired time to go.

For the guidance law Λ, the formula of predicted time to go is
generally determined by the length of the missile’s future trajectory
over the speed (calculated in the current LOS frame) as

P =

∫ R

0

√
1 + [γ (x)− σ]2dx

V
(4)

where the missile’s future flight path angle with respect to the current
LOS frame (i.e., γ (x) − σ) is assumed small. Therefore, above
equation can be approximated as

P ≈
∫ R

0

[
1 + 1

2
(γ(x)− σ)2

]
dx

V
=

R

V
(1 + η) (5)

where

η
∆
=

1

2R

∫ R

0

[γ (x)− σ]2dx (6)

TABLE I
LIST OF SYMBOLS

Symbol Definition
σ Line-of-sight angle
γ Flight path angle
γf Flight path angle at impact
λ Lead angle
t Current time
tf True impact time
t̂f Predicted impact time
td Desired impact time

T = tf − t True time to go
P = t̂f − t Predicted time to go
D = td − t Desired time to go
E = D − T Impact time error
Ê = D − P Predicted impact time error
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In Eq. (5), η represents a parameter related with the trajectory shape
characterized by the guidance law Λ. In general, η can be obtained
as a function of the LOS angle and the flight path angle. Therefore,
the time-derivative of the predicted time to go is calculated as

Ṗ = ˙̂tf − 1 =
Ṙ

V
(1 + η) +

R

V

(
∂η

∂σ
σ̇ +

∂η

∂γ
γ̇

)
(7)

Substituting Eq. (3) into Eq. (7) and rearranging of the result, we can
express the rate of the predicted impact time as

˙̂tf = a+ bu (8)

where

a
∆
= 1− cosλ (1 + η)− ∂η

∂σ
sinλ, b

∆
=

∂η

∂γ

R

V 2
(9)

Since the control input u appears in Eq. (8), the predicted impact
time is controllable if b ̸= 0 . To achieve the desired impact time,
we need to find a proper control logic using Eq. (8). Suppose that
the control input u is composed of two parts as

u = u0 + u1 (10)

where u0 is the control input to keep the original predicted impact
time (i.e., ˙̂tf = 0 ) and u1 is an additional control input to attain the
desired impact time. With u1 = 0, u0 is determined by imposing the
condition of ˙̂tf = 0 to Eq. (8);

u0 = −a

b
(11)

By assumption, the predicted time to go (or the predicted impact
time) given by Eq. (5) is already available for the guidance law Λ.
Observe that the control input u0 of Eq. (11) should provide the same
t̂f if u1 = 0 . This observation implies an interesting feature that
u0 is identical to the guidance command produced by the guidance
law Λ and produces the same characteristics of Λ . Namely, from the
time-to-go prediction formula of Λ , we can readily reconstruct the
original guidance law Λ using Eq. (11).

Next, applying the control input u to Eq. (8) yields

˙̂tf = bu1 (12)

As shown in Eq. (12), the control input u1 is used to control the
predicted impact time. Note that the impact-time-control requirement
is met if Ê = D − P , the predicted time-to-go error, is 0 when D
is 0. In order for that, we suggest that the desired error dynamics of
Ê takes the form of

˙̂
E + k

(
Ê

D

)
= 0 (13)

where k is some constant value. Lemma 1 provides the convergence
condition of Ê in Eq. (13).

Lemma 1. For k ≥ 1 , the predicted impact time error Ê in Eq.
(13) converges to zero as D goes to zero and its convergence speed
depends on the choice of k.

proof The proof is given in Appendix A.

Since the time-derivative of Ê is given by ˙̂
E = − ˙̂tf from its

definition, Eq. (13) can be rewritten as

˙̂tf = k

(
Ê

D

)
(14)

Then, forcing the rate of the predicted impact time shown in Eq. (12)
to follow the desired one given by Eq. (14), we have

u1 =
k

b

(
Ê

D

)
(15)

Combining Eq. (11) and (15) provides the guidance law extended for
impact time control as

u = −a

b
+

k

b

(
Ê

D

)
(16)

The scheme proposed above is effective if tf of the given guidance
law can be altered properly to meet the impact-time constraint and
t̂f is a reliable prediction of tf . In the next section, singularities
associated with the control of tf will be discussed in details. The
potential importance of the proposed method is that any existing
guidance law can be modified for impact time control if it has a
formula for the predicted time to go as shown in Eq. (5).

III. APPLICATIONS TO EXISTING GUIDANCE LAWS

In this section, the two well-known guidance laws, OGL [1] and
IACG [11], are modified by using the proposed approach for impact
time control as illustrative examples.

A. Extension of Optimal Guidance Law(OGL)

According to reference [1], the predicted time to go of OGL is
given by

P =
R

V

(
1 +

λ2

10

)
(17)

In that case, the parameter η is given by

η =
λ2

10
(18)

Then, substituting Eq. (18) into Eq. (9) gives

a = 1−
(
1 +

λ2

10

)
cosλ+

λ

5
sinλ

b =
Rλ

5V 2

(19)

Under the small angle assumption, sinλ and cosλ are approximated
as λ and 1 − λ2/2, respectively. Neglecting the high order term of
λ, we have

a =
3

5
λ2, b =

Rλ

5V 2
(20)

Then, substituting Eq. (20) into Eq. (16) provides a new guidance
law for impact time control written as

u = −3V 2

R
λ+

5kV 2

Rλ

(
Ê

D

)
(21)

Note that the first term of Eq. (21) is an alternative form of OGL,
which is equivalent to proportional navigation guidance (PNG) with a
navigation constant of 3. The second term is an additional command
to achieve the desired impact time. For convenience, the guidance law
of Eq. (21) is called as ITCG from now on. As Ê converges to 0, the
second term also goes to 0, implying that the guidance law of (21)
recovers OGL. That is, ITCG maintains the intercept performance of
OGL while satisfying the impact-time requirement.

From Eq. (21), we observe that the singularity associated with
impact time control occurs when λ = 0. For example, if the missile
is heading to the target (λ = 0) and D > P , the missile should turn
either to the right or left. In fact, this singularity is trivial since for
non-zero initial λ it does not occur before the final time.
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B. Extension of Impact-Angle-Control Guidance(IACG)

In a similar way, the impact angle control guidance in [3] can be
extended to its impact-time-control version by applying the proposed
approach. The formula of the predicted time to go of IACG is given
as

P =
R

V

[
1 +

1

15

(
λ2 + λ2

f − 1

2
λλf

)]
(22)

Therefore, the parameter regarding the trajectory curvature is given
by

η =
1

15

(
λ2 + λ2

f − 1

2
λλf

)
(23)

Substituting Eq. (23) into Eq. (9) and imposing the small angle
approximation of λ , we obtain

a =
1

15
(8λ2 − λ2

f + 2λλf )

+
1

30

(
λ4 + λ2λ2

f − 1

2
λ3λf

)
(24)

b =
R

30V 2
(4λ− λf )

Neglecting the high-order terms of Eq. (24) gives

a =
1

15
(2λ+ λf ) (4λ− λf )

b =
R

30V 2
(4λ− λf )

(25)

Finally, substituting Eq. (25) into Eq. (16) provides an IACG law
with the added capability of impact time control:

u = −V 2

R
(4λ+ 2λf ) +

30V 2

R (4λ− λf )
k

(
Ê

D

)
(26)

For convenience, we call it ITACG hereafter. From Eq. (26), the
first term is an alternative form of IACG. The second term is a bias
input shaping the missile’s trajectory for impact time control. The
bias term disappears when the predicted impact time error converges
to zero (i.e., Ê = 0). In that case, ITACG returns to the original
IACG, satisfying the impact angle constraint as well as the impact
time constraint.

From Eq. (26), we observe that u1 of Eq. (26) has (4λ−λf ) in its
denominator. Hence, the singularity problem associated with impact
time control arises if λf = 4λ holds during the flight. Suppose that
the missile and the target are placed on the engagement geometry
satisfying λf = 4λ. At this moment, the sensitivity of t̂f to u is zero
and the second term of Eq. (26), u1, goes to the infinity. However,
the first term, u0, still produces guidance commands to control the
impact angle and the engagement geometry of λf = 4λ will hold
only momentarily. Nonetheless, the singularity produces an abrupt
jump of the guidance command, which can be detrimental to the
guidance performance. To circumvent this difficulty, we suggest a
modified form of Eq. (26) as

u = −V 2

R
(4λ+ 2λf ) +

30V 2 (4λ− λf )

R
[
(4λ− λf )

2 + δ
]k( Ê

D

)
(27)

where δ > 0 is a relaxation parameter to avoid the singularity. From
the comparison of Eq.s (26) and (27), we can easily show that the con-
vergence condition of Ê is satisfied as long as (4λ− λf )

2 (k − 1) >
δ. With a small value of δ, the proposed ITACG can control both
the impact time and the impact angle efficiently without introducing
abrupt changes of the guidance command, as will be demonstrated
in the next section.

IV. SIMULATION RESULTS

In this section, the performance of the proposed guidance laws
(ITCG and ITACG) is investigated through numerical simulations
under various conditions. The missile is initially located at the origin
of the reference frame and the stationary target is located at (10000
m, 0 m). In the first and second subsection, a point-mass missile
model with a lag-free acceleration dynamics and a maneuver limit of
10G (G=9.8 m/s2) are used. It is also assumed that the missile has a
constant speed of 300 m/s. In the third subsection, the performance of
the proposed ITACG law is investigated in terms of robustness to the
speed variations produced by the induced drag related to missile’s
lateral maneuvers. In this study, the lateral maneuver is assumed
sustainable up to 5G.

A. Performance analysis of ITCG

The first simulation is performed to verify the performance of
ITCG with various impact time constraints td =33.6, 40, and 50 sec.
In this simulation, the initial flight path angle is fixed as γ0 = 30◦

and the design parameter of ITCG is chosen as k = 20.
Fig. 2a compares the missile trajectory of ITCG with that of OGL

for the three impact time constraints, showing that OGL and ITCG
successfully intercept the target. The impact time of OGL is recorded
as tf = 34.27 sec while ITCG satisfies the impact time constraints
precisely. The impact time error of ITCG turns out to be less than
0.001 sec for the three cases of td. Fig. 2a clearly shows that the
missile takes a longer path if a larger value of td is chosen. If the
designated impact time of ITCG is smaller than the impact time
of OGL, the missile takes a short-cut path to meet an impact-time
constraint. Fig. 2b shows the lateral acceleration commands produced
by the guidance laws. Obviously, the more missile maneuver is
required during the initial phase for a larger td. For the same reason,
the duration of initial acceleration saturation of td = 50 sec is longer
than that of td = 40 sec as shown in this figure.

B. Performance analysis of ITACG

In the second simulation, the performance of the proposed ITACG
law is investigated. The design parameters k and δ are selected as 20
and 3, respectively. Fig. 3a shows the intercept trajectory of ITACG
for γ0 = 30◦ and td = 45 sec with impact angles selected as γf =
−45◦, 0◦, 45◦, 90◦. The simulation results show that the proposed
ITACG law works well even for the case of large impact angles.
Fig. 3b shows the time history of the flight path angle. In all cases,
we observe that the proposed ITACG law successfully achieves the
specified impact angle at the designated impact time. For the four
cases of γf , the impact time errors are less than 0.001 sec and the
impact angle errors are less than 0.01 degree.

Fig. 4a shows the trajectory produced by the original IACG law and
the proposed ITACG law for various impact times. The initial flight
path angle and the designated impact angle are chosen as γ0 = 30◦

and γf = 90◦. Again, the missile takes a detour to spend time to
meet the large value of designated impact time and a short-cut path
for small value of designated impact time for each case of ITACG.
The time history of the acceleration command is shown in Fig. 4b
where we observe that ITACG needs more missile maneuvers than
IACG in the initial phase for impact time control.

To study the performance sensitivity of ITACG to the design
parameter k, the same engagement scenario is simulated with four
different values of k selected as k =4, 6, 20, and 40. Fig. 5a shows
the trajectory of ITACG for the four different values of k. For all
cases, ITACG provides impact time errors smaller than 0.001 sec.
Also, Fig. 5b shows the history of predicted impact time error, Ê,
for each cases. According to lemma 1, the convergence speed of the



5

Downrange (m)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
ro

ss
ra

n
g

e 
(m

)

-1000

0

1000

2000

3000

4000

5000

6000

Intercept Trajectories
OGL(t

f
 = 34.27 sec)

ITCG(t
d
 = 33.6 sec)

ITCG(t
d
 = 40 sec)

ITCG(t
d
 = 50 sec)

(a)

Time (sec)
0 5 10 15 20 25 30 35 40 45 50

A
cc

. C
o

m
m

an
d

 u
 (

g
)

-6

-4

-2

0

2

4

6

8

10

Guidance Commands

OGL(t
f
 = 34.27 sec)

ITCG(t
d
 = 33.6 sec)

ITCG(t
d
 = 40 sec)

ITCG(t
d
 = 50 sec)

(b)

Fig. 2. Comparison of OGL and ITCG for various impact times : (a) Intercept Trajectories, (b) Guidance Commands

Downrange (m)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
ro

ss
ra

n
g

e 
(m

)

-2000

-1000

0

1000

2000

3000

4000

5000
Intercept Trajectories

γ
f
 = -45 deg

γ
f
 = 0 deg

γ
f
 = 45 deg

γ
f
 = 90 deg

(a)

Time (sec)
0 5 10 15 20 25 30 35 40 45

F
lig

h
t 

P
at

h
 A

n
g

le
 γ

 (
d

eg
)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90
Flight Path Angle

γ
f
 = -45 deg

γ
f
 = 0 deg

γ
f
 = 45 deg

γ
f
 = 90 deg

(b)

Fig. 3. Performance of ITACG for various impact angles with designated impact time of td = 45sec: (a) Intercept Trajectories, (b) Flight Path Angles

Downrange (m)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
ro

ss
ra

n
g

e 
(m

)

-3000

-2000

-1000

0

1000

2000

3000

4000

Intercept Trajectories

IACG(t
f
 = 39.13)

ITACG(t
d
 = 38 sec)

ITACG(t
d
 = 45 sec)

ITACG(t
d
 = 50 sec)

(a)

Time (sec)
0 5 10 15 20 25 30 35 40 45 50

A
cc

. C
o

m
m

an
d

 u
 (

g
)

-8

-6

-4

-2

0

2

4

6

8

10

Guidance Commands

IACG(t
f
 = 39.13)

ITACG(t
d
 = 38 sec)

ITACG(t
d
 = 45 sec)

ITACG(t
d
 = 50 sec)

(b)

Fig. 4. Comparison of IACG and ITACG laws for various impact times with designated impact angle of γf = 90◦: (a) Intercept Trajectories, (b) Guidance
Commands

impact time error increases with a larger k since the correction of the
impact time error occurs at the earlier stage of the engagement. The
prescribed impact angle is also accurately achieved as 89.298, 89.977,
89.991 and 89.997 deg for k =4, 6, 20, and 40, respectively. Observe
that ITACG with a larger k reduces the impact time error earlier, and
consequently, recovers the original IACG law earlier, producing a

smaller impact angle error. The simulation study indicates that the
parameter k can be utilized for the trade-off between the control
energy during the initial phase and the impact angle accuracy.
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Fig. 6. Performance of ITACG with speed-varying missiles : (a) Intercept Trajectories, (b) Guidance Commands, (c) Speed Profiles, (d) Thrust Profiles

C. Effects of missile’s speed variations

Although we assume that the anti-ship missile maintains a constant
speed during the sea-skimming phase by employing thrust control, the
missile experiences fluctuations in speed during lateral manuevers due
to the momentary imbalance between the drag and thrust. Consider
the equations of motion for the speed and the lateral acceleration
written as

V̇ =
(F cosβ −D)

m

a =
Y + F sinβ

m

(28)

where F is the thrust, Y is the lateral force, D is the drag, and β is
sideslip angle of the missile. A PI-controller assumed for calculation
of the thrust command, Fcmd. Then, the mathematical models for



7

Fcmd, Y , and D are given as

Fcmd = Fcr +Kp(Vref − V ) +KI

∫
(Vref − V )

Y = CYββqS

D =
[
CD0 + κ

{
(CLααcr)

2 +
(
CYββ

)2}]
qS

(29)

where CD0 is a zero-lift drag coefficient, which is modeled as
constant for M < 0.8 but linearly increasing in the Mach number
range of [0.8, 0.9], to reflect general transonic characteristics. CLα

is the lift derivative and αcr is the trim angle of attack for sea-
skimming without maneuver. CYβ is the lateral force derivative with
respect to the sideslip angle, β, κ is the induced drag correction
factor, q is dynamic pressure, and S is the reference area. Table II
lists the values of the parameters used in the simulation. In addition,
the dynamic lag of the engine thrust is modeled as a 1st-order system;
F (s)/Fcmd(s) = KF /(s+KF ). The performance of the proposed
ITACG law is then investigated in terms of robustness to the speed
variations produced by lateral maneuvers. The parameters of ITACG,
k and δ, are selected as 20 and 3, respectively, and the current speed
is used for the time-to-go prediction.

Fig. 6a shows the missile trajectory produced by ITACG for the
desired impact angle of γf = −30◦. The initial flight path angle is
γ0 = 30◦ and the desired impact time is chosen as td = 40, 45, 50
and 60 seconds, respectively. Fig. 6b shows the time history of the
acceleration command. The speed and thrust profiles of each case
are depicted in Fig. 6c and Fig. 6d, respectively. Since the maximum
thrust of the engine is limited to four times that in the cruise condition
and the PI controller has a first-order system lag, the missile loses its
speed rapidly right after the initiation of ITACG due to significantly
large induced drag. The maximum speed drop is about 27 m/s, which
is 9 percent of the cruising speed. Thereafter, the cruising speed is
recovered when the required thrust is smaller than its limits, as shown
in Fig. 6d. Improvement of the speed control performance is possible
by adding a feedforward loop but not attempted in this study.

In spite of large speed variations in the initial phase, the simulation
study shows that the desired impact times are achieved within 0.01 sec
for all cases. However, noticeable impact angle errors are observed for
the cases of longer impact times. The impact angle errors are 0.06,
0.20, 0.29 and 0.27 deg for td = 40, 45, 50 and 60, respectively.
These errors can be reduced if the impact time control is turned
off near the end to avoid the divergence of the lateral acceleration.
A proper turn-off time could be determined by a trade-off between
impact time error and impact angle error.

V. CONCLUSION

This paper proposes a novel approach for extending a certain class
of existing homing guidance laws to satisfy the impact time constraint
while keeping their original capabilities. An interesting feature of the
proposed approach is that it can be applied to any homing guidance
law if a reliable formula for the predicted time to go is provided. In
this paper, we first reveal that the prediction formula of the time to go
contains the information on how the predicted impact time changes

TABLE II
SIMULATION PARAMETERS

Symbol value(unit) Symbol value(unit)
κ 0.06 CLα , CYβ

20 (-)
CD0 From 0.4 to 0.8 S 0.091 (m2)
KI 400 (kg/s2) m 700 (kg)
KP 2000 (kg/s) Vref 300 (m/s)
KF 5 (1/s)

when applying the control input. Based on this result, a guidance law
for impact time control can be easily derived by forcing the rate of
the predicted impact time to follow the desired error dynamics of the
predicted impact time. Each guidance law developed by the proposed
approach has two command terms: the first term, surprisingly, turns
out to be the original guidance law keeping the predicted time to go
constant and the second term forcing the impact time error converge
to zero by the time of impact. The convergence of the impact time
error under the proposed method is proved by the Lyapunov stability
theory.

As illustrative examples, the two well-known optimal homing
guidance laws are extended for impact time control by using the
proposed approach. The singularity issue associated with impact time
control is also discussed, and a remedy to avoid abrupt changes
in the guidance command history is introduced. Through numerical
simulations, the performance of the guidance laws based on the
proposed approach is investigated. Simulation results show that the
proposed guidance laws accurately meet the impact time constraints
while maintaining the properties of the original guidance laws.

The proposed approach is believed to have an academic signif-
icance since it suggests a new direction for the study of impact-
time-control guidance laws. Furthermore, the proposed method has
a practical importance as demonstrated in the simulation study con-
sidering speed variations due to induced drag. Various new impact-
time-control guidance laws are expected to be developed by applying
the proposed approach to practical problems. For further study, a
generalized form of impact-time-control guidance laws will be sought
in the context of the approach described in this paper.

APPENDIX A
PROOF OF LEMMA 1

Define a Lyapunov function W , which is a function of Ê and D,
as

W =
1

2

(
Ê

D

)2

(A.1)

Observe that a D smaller than T or P does not make sense since
the target cannot be reached before tf . Therefore, D > 0 is the
domain of the interest.

It is noted that Ê converges to 0 if W remains finite until D goes
to 0. That is, Ẇ ≤ 0 is a sufficient condition to achieve the desired
impact time td. Note that if W is alternatively chosen as W = Ê2/2,
the finite-time convergence of Ê is not guaranteed even if Ẇ < 0.
Taking the time-derivative (A.1) gives

Ẇ =
Ê

D

(
˙̂
E

D
− ÊḊ

D2

)
(A.2)

Since the desired impact time, td, is a prescribed constant, the time-
derivative of the desired time to go is given as Ḋ = −1. Substituting
this value and Eq. (13) into Eq. (A.2) yields

Ẇ =
Ê2 (1− k)

D3
(A.3)

Hence, if k ≥ 1 , then Ẇ ≤ 0 implying that t̂f converges to td as t
goes to td.
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