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A B S T R A C T

This study investigates the effects of uncertainties in the prediction of creep-fatigue crack pro-
pagation in 316L(N) austenitic stainless steel plates containing a semi-elliptical surface defect.
Different parameters in geometry, material behavior and test condition are considered as random
variables in probabilistic assessments. Monte-Carlo sampling method is employed to estimate the
probability distribution of desired outputs such as propagated crack sizes, stress intensity factors
and creep rupture life. It is shown that, the standard deviation of the predicted crack sizes in both
through-wall direction and along the surface of the plate will be increased by increasing the time
(hence the crack size). It is observed also that, the uncertainty in the prediction of the half-surface
crack lengths, ci, is significantly more than that of crack depths, ai. Furthermore, probabilistic
evaluations are performed using different reliability methods to calculate the probabilities of
exceedance of available experimental results. These evaluations clarified the importance of
consideration of uncertainties in creep-fatigue crack growth prediction. Sensitivity analyses are
carried out to provide useful information about the order of importance of random variables
associated to the different limit state functions. It is found that, the CoV (Coefficient of Variation)
of the initial crack size, a0 and c0/a0 has a significant role on the importance of these parameters;
and therefore they may be important random variables in such probabilistic assessments, based
on their CoV and defined limit state functions.

1. Introduction

For defective components, which operate under the combination of static and cyclic loading at elevated temperatures, an as-
sessment of creep-fatigue crack growth may be necessary in order to demonstrate the integrity of these components. Various de-
terministic studies carried out to investigate the behavior of creep-fatigue crack propagation [1–6]. Li et al. [1] employed the
Cohesive Zone Model (CZM) to numerically simulate the crack growth. A trinomial superposition model has been proposed by Liu
et al. [2] to predict creep-fatigue crack growth rates. Mehmanparast et al. analyzed the creep and creep-fatigue crack growth results
for a range of steels taken from the HIDA collaborative project, and identified the interactive creep-fatigue behavior of these steels.
They used ASTM E2760-10 creep-fatigue crack growth testing standard, as guideline to analyze the results [3]. A presentation has
been published by Nikbin [4] about testing, modeling and component life assessment of welds under creep-fatigue crack growth
condition. Saxena [5] presented the progress made in the field of time-dependent fracture mechanics. A creep-fatigue interaction
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damage model has been proposed by Xu et al. [6] in order to evaluate damage evolution and crack growth behavior in creep-fatigue
regime. Although these studies provide valuable information, they do not address the issue of the effect of uncertainties on the
response of defective components. In reality, there are different sources of uncertainty in the areas of “material behavior”, “operating
(test) conditions”, “geometry parameters”, “evaluation models” and “inspection methods and data”, which considering them in
probabilistic assessments leads to a more comprehensive understanding of the remaining life of a cracked component.

Probabilistic investigations and reliability analysis of creep-fatigue behavior, have been performed by other researchers on either
crack initiation (damage accumulation) or crack growth. Mao and Mahadevan [7] proposed a probabilistic approach for creep-fatigue
reliability analysis, which consists of a failure function that models the effects of creep-fatigue interaction without symmetry as-
sumptions. Uncertainties in creep and fatigue life, creep and fatigue loading cycles, and limitation of test data are included in this
study. A method has been outlined by Harlow and Delph [8] in order to incorporate the scatter bands in fatigue cycles-to-failure and
creep rupture times-to-failure into a probabilistic creep-fatigue failure model. Their study has been conducted in the context of the
well-known damage fraction summation rule for creep and fatigue damage. Probabilistic life models have been derived by Ibisoglu
and Modarres [9] based on the creep rupture behavior of 316FR austenitic stainless steel. A standard Bayesian regression approach
was used to estimate the parameters of the proposed creep-fatigue model. Hu et al. [10] conducted experimental study on a nickel-
based super alloy in order to investigate the effects of dwell times on the creep-fatigue behavior. Also, they established a probabilistic
model based on the applied mechanical work density (AMWD) method, to describe the scattering in creep-fatigue life-times.

Relatively few studies performed on statistical and probabilistic assessment of creep-fatigue crack growth. A study reported by
Dogan et al. [11] has been focused on the life assessment approaches and the sources of scatter in creep-fatigue crack growth data.
Different sources of scatter due to test equipment, testing procedures, data analysis method and creep-fatigue interaction, are ex-
plained in this work. Furthermore, they describe sensitivity analysis of high-temperature crack growth data, including probabilistic
and deterministic methods. Probabilistic analysis of crack growth, based on the damage accumulation mechanisms have been done in
the research of Wei et al. [12]. In this paper, a deterministic creep-fatigue accumulation model has been developed, and Monte-Carlo
simulation method is used to investigate the probabilistic behavior of the derived deterministic model. In the study performed by Wei
et al. [13], a linear superposition theory is proposed to model the creep-fatigue-oxidation crack growth. Monte-Carlo simulation has
been implemented into creep-fatigue-oxidation model, by introducing the uncertainties of parameters in creep, fatigue and oxidation
crack growth laws.

Several experimental and deterministic investigations have been carried out to describe the behavior of semi-elliptical defect in
austenitic stainless steel plates subjected to creep-fatigue loading condition [14–20]. Although, deterministic studies provide worthy
information about the creep-fatigue crack propagation in the cracked plates, they do not address the effects of the indeterminacy of
the various input parameters, on the prediction of creep-fatigue crack growth. The present study evaluates the probabilistic behavior
of such specimens, considering the sources of uncertainty in “test condition”, “material behavior”, and “geometry parameters”. The
areas covered in this study are as follows:

I. Estimation of probability distribution of the results: in this phase, Monte-Carlo sampling method has been applied in order to estimate
the probability distribution of desired outputs, i.e. propagated crack sizes, initial and final stress intensity factors, and creep
rupture life.

II. Calculation of probabilities of exceedance of experimental results: in the second phase, probabilistic assessments have been performed
in conjunction with experimental results [20] utilizing different reliability methods (e.g. FORM, Sampling, etc.). Assessments
have been carried out with two aims: first, for understanding the influence of uncertainties on the creep-fatigue crack growth
prediction, in comparison with available experimental data; and second, for investigating the importance of random variables
corresponding to each of the defined limit state functions.

III. Sensitivity analysis: in the last phase, the order of importance of the random variables corresponds to the different limit state
functions have been extracted as a by-product of the previously performed FORM analysis. The γ importance vector has been used
to investigate the relative importance of the random variables.

2. Deterministic assessment

Probabilistic investigations in present study have been implemented on a benchmark problem, which its experimental back-
ground is reported by Poussard and Moulin [20] (see Section 2.1). It should be noted that deterministic calculations are at the heart of
the probabilistic assessments. The deterministic approach used in the present study for prediction of the creep-fatigue crack pro-
pagation of the benchmark problem, is adapted from the procedures employed by Baker et al. [14], based on the R5, Volume 4/5
procedure [21] (see Section 2.2).

2.1. Overview of experiment

The benchmark problem consists of a 316 L(N) austenitic stainless steel plate containing a semi-elliptical surface crack, subjected
to a set of fatigue and creep-fatigue loadings at 650 °C [20]. Plate geometry, test configuration, and location of the defect are shown in
Fig. 1. The plate has a thickness of t=24.5mm, and a width of w=350mm, loaded through an arm with a length of l=350mm.
Initial surface crack of depth, a0= 7.9mm and width, 2c0= 87.2mm, is achieved after high temperature fatigue pre-cracking
(Fig. 2).

Loading conditions, along with the experimental results are summarized in Table 1. Creep-fatigue cycles consist of a dwell of one

A. Vojdani et al. Engineering Fracture Mechanics 200 (2018) 50–63

51



hour at the maximum load (−14 KN) of each cycle. Note that the setup of the experiment was such that applying a negative
(compressive) load would result in a primary positive bending stress and secondary negative membrane stress on the cracked side of
the plate.

2.2. Deterministic assessment procedure

Several deterministic evaluations performed to predict the behavior of creep-fatigue crack growth in semi-elliptical cracked plates
[14–19]. A16 [22], R5 [21] and JNC [23] procedures may be used to investigate creep-fatigue crack growth in defective components.
As noted earlier, deterministic assessment in present study is adapted from an approach utilized by Baker et al. [14] based on the R5,
Volume 4/5 procedure [21]. The employed approach is summarized below.

2.2.1. Input parameters and desired outputs
The input parameters required for calculations are as follows:

Fig. 1. Geometry and test configuration (adapted from [20]).

Fig. 2. Shape and dimension of initial semi-elliptical defect.

Table 1
Loading history and experimental crack growth results [20].

Loading sequence Number of cycles Cumulative creep-fatigue
cycles

Max. load
(kN)

Min. load
(kN)

Exp. crack
depth
a (mm)

Exp. crack surface
2c (mm)

Fatigue pre-cracking at 650 °C 68,271 – −13.5 3.5 7.9 87.2
1st creep-fatigue loading 474 474 −14 14 8.75 89.05
1st fatigue loading 2100 – −10 10 9.2 90.35
2nd creep-fatigue loading 781 1255 −14 14 10.35 92.9
2nd fatigue loading 1500 – −10 10 10.85 94.45
3rd creep-fatigue loading 1356 2611 −14 14 12.65 103.15
3rd fatigue loading 1200 – −10 10 12.75 106.45
4th creep-fatigue loading 518 3129 −14 14 13.35 109.95
Fatigue post cracking at room

temperature
8578 – – – – –
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• Geometry parameters consist of plate dimensions, arm length, and initial crack size (see Section 2.1)

• Test condition, involving temperature, creep dwell time, and loading configurations (see Section 2.1)

• Various material properties of 316 L(N) austenitic stainless steel, which represented in Table 2.

The desired outputs of deterministic calculations in present study are:

• Estimation of the crack depth (a) and crack surface size (c) after each four creep-fatigue loading (Table 1)

• Estimation of creep rupture life at the end of the last creep-fatigue loading

2.2.2. Creep-fatigue crack growth calculations
Selection of an appropriate method to evaluate the creep-fatigue crack growth rate, depends on the cyclic plastic zone size at the

surface of the component and current crack length [21]. In this study (based on the [14]), a simple sum of the contributions due to
creep and fatigue crack growth rates, has been used to calculate the total crack growth rate.

= ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

da
dN

da
dN

da
dNf cr (1)

where a is the crack depth and N is the number of cycles. Subscripts “f” and “cr” represent the fatigue and creep terms, respectively.
For half-surface crack length (c) a similar equation has been used. The contribution of each part (creep and fatigue) can be de-
termined as follows.

2.2.2.1. Fatigue crack growth. The rate of fatigue crack growth is given by,

⎛
⎝

⎞
⎠

=da
dN

C K(Δ )f
m

f
eff

(2)

where material constants Cf and m are temperature dependent and are obtained from Table 2, in which, da/dN is in (mm/cycle) and
KΔ eff is in (MPa m1/2). KΔ eff is effective stress intensity factor range that is related to the total stress intensity factor range, KΔ .

=K q KΔ Δeff 0 (3)

where,

= −K K KΔ max min (4)
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= ⩾
= − − <
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q R R R
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(1 0.5 )/(1 ), 0

0

0 (5)

In above equations, R= Kmin/Kmax, and Kmax and Kmin are the maximum and minimum stress intensity factors during a loading
cycle, respectively. Stress intensity factors at crack depth, a, and crack surface, c, are calculated based on the solutions derived by
Newman and Raju [24], for a semi-elliptical surface defect in a finite width plate under bending and tension. The parameter q0, is the
fraction of the total load range for which a crack is judged to be open [21]. In the present work in which R=−1, crack closure
parameter, q0, is obtained from Eq. (5) for crack depth. However, this parameter is considered equal to unity for crack surface,
according to the justification explained by Baker et al. [14].

2.2.2.2. Creep crack growth. Creep crack growth per cycle, is calculated by the following equation.

∫⎛
⎝

⎞
⎠

=da
dN

a dṫ
t

cr 0 cr
dwell

(6)

where tdwell is the creep dwell time per cycle, and a ̇cr is the creep crack growth rate that is given by [14]:

Table 2
Material properties.

Related equation Ref. Parameters

Fatigue crack growth (2) [14,18] Cf

4.662× 10−7
m
2.339

Creep crack growth (7) [18] A
1.117× 10−2

q
0.673

Creep strain (10) [14,18,21] C1

5.863× 10−11
C2

0.565
C
1.018×10−25

n1
4.233

n
9.407
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where material and temperature dependent parameters, A and q are obtained from Table 2, in which, a ̇cr is in (mm/h) and ∗C is in (N/
mm/h). tred is redistribution time that can be determined from [14,21]. The parameter ∗C characterizes the crack tip stress and strain
rate fields, for steady state creep conditions. This is the creep equivalent of the J-contour integral used to describe elastic-plastic
fracture [25]. ∗C parameter may be expressed in terms of reference stress, σref, creep strain rate at the current reference stress, εṙef

cr and
characteristic length, R′, as:

= ′∗C σ ε Ṙref ref
cr (8)

where parameter R′ is defined as follows.

⎜ ⎟′ = ⎛
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R K
σref

2

(9)

In above equation, K is stress intensity factor. Creep deformation behavior follows the equation given by,

= ⩽

= + − >
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where C, C1, C2, n and n1 are temperature dependent constants that given in Table 2. In Eq. (10), t is time in hours, σ is the applied
stress in MPa, and εcr is the percentage of creep strain. Parameter, Fd, is a scaling factor with a value of unity. This parameter will be
considered as a random variable in next section, in order to address the uncertainty in the creep strain parameter. tfp is primary-
secondary transient time that can be obtained by equating the rates of above equations.
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The solution developed by Goodall and Webster [26] has been used to determine the reference stress. Defining geometry para-
meters α = a/t and γ = 2ac/wt, the reference stress is given by,

=
+ + + + − + −

− + −
σ

σ γσ σ γσ σ γ γ α γ
γ γ α γ
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3{(1 ) 2 ( )}

b m b m m
ref
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2 (12)

where σb and σm are the bending stress and the membrane stress, respectively. These stresses with opposite signs that are considered
in the present study (i.e. one positive and one negative), are defined as

=σ L
wtm (13)

= −

( )
σ Ll

w

3

2
b t

2

2

(14)

where L is the applied load and w, t and l are geometry parameters that defined in Section 2.1. Note that a negative load leads to a
positive bending stress and vice versa (see Fig. 1). For deep crack where a/t > (1+ σm/σref)/(2− 2c/w), an extended expression of
reference stress is used by Baker et al. [14]. However, preliminary deterministic and probabilistic assessments showed that this
extension of reference stress equation for deep cracks, had no significant effect on the results of this study and therefore it is not
employed here.

Creep rupture time is considered as follows [21].

=
⎛
⎝

− + −
×

⎞
⎠t 10

σ θ

r
13.72 [ 353.1][ 227]

21.13 103 (15)

where tr is the rupture life in hours, σ is the applied stress in MPa and θ is the temperature in °C.

2.2.3. Deterministic results
Based on the procedure described earlier, estimations of crack growth in the through-wall direction, a, and along the surface of

the plate, c, as a function of time are shown in Figs. 3 and 4, respectively. The crack growth increments due to the pure fatigue loading
(benchmarking) during the test are shown by step changes in these figures. The time-dependent crack growth trends were occurred as
a result of the creep-fatigue loading condition during the test.

3. Probabilistic assessment

3.1. Sources of uncertainty

The uncertainties considered in the current research can be distinguished in the following categories,
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• Material behavior

• Geometry parameters

• Test condition

Random variables that represent the uncertainties in “material behavior”, consist of fatigue crack growth equation parameter, Cf

(Eq. (2)), creep crack growth rate equation parameter, A (Eq. (7)), and scaling factor, Fd, with mean value of unity, which is a
multiplication factor in both primary and secondary creep strain relationships (Eq. (10)). It should be noted that, there is a negative
correlation between creep strain rate scaling factor, Fd, and constant A in creep crack growth rate equation [21]. Therefore, a
correlation factor of −0.5 has been assumed between these two parameters.

Uncertainties in “geometry parameters” include the thickness, t, and width, w, of the plate, arm length, l, initial crack depth, a0,
and initial crack aspect ratio, c0/a0. Generally, uncertainty in initial crack size is an important issue, which has been discussed in the
literature [25,27,28].

Various random variables, i.e. Maximum load in pure fatigue cycles, Lf, Maximum load in creep-fatigue cycles, Lcf, number of
cycles, minimum to maximum load ratios, Rf and Rcf, test temperature, θ, and creep dwell time, tdwell, indicate the uncertainties in
“test condition”. It should be noted that, in the present study, the uncertainties in “test condition”, are considered as unique values for
the entire test, not for each cycle, individually.

The probability distribution of random variables are given in Table 3. Coefficient of Variation (CoV) that represents the extent of
variability in relation to the mean may be an important measure in a probabilistic assessment. In this work, the CoV (i.e. std/|mean|)
of parameters A, Fd, a0 and t are adapted from [29], and the CoV of parameter Cf, is estimated based on [30]. It is noted that, for
similar conditions it is expected that a larger mean of initial crack size leads to a lower CoV of this parameter, assuming a relatively
constant standard deviation of crack detection. However, the considered CoV for parameters a0 and c0/a0 in present work, is similar
to the value assumed in [29], for smaller and different initial crack. For the other parameters, the CoV has been assumed. Mean value
of the random variables are assumed equal to quantities employed in the deterministic approach (section 2).

Fig. 3. Deterministic calculated crack depth, a, in comparison with experimental results.

Fig. 4. Deterministic calculated half-surface crack length, c, in comparison with experimental results.
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3.2. Probabilistic assessment procedure

Probabilistic assessments have been carried out in the following two areas:
Case A. Estimation of probability distribution of the outputs, consisting of crack depth, a, and half-surface crack length, c, after

each four creep-fatigue loadings (see Table 1), initial and final stress intensity factors, and final creep rupture life; using Monte-Carlo
sampling method.

Case B. Calculation of probability of exceedance of experimental values reported by Possuard and Moulin [20] (Table 1); using
reliability methods (i.e. FORM, Modified FORM, Sampling, etc.). The first purpose of this calculation is to understand the influence of
uncertainties on creep-fatigue crack growth prediction, in comparison with available experimental data. In addition, this calculation
assists to investigate the importance of random variables corresponding to each of the limit state functions.

The limit state functions used to calculate the probabilities of exceedance of experimental crack sizes, are considered as,

= − =x xg a a i( ) ( ) ( 1 to 4)i
a

i i
exp

(16)

= − =x xg c c i( ) ( ) ( 1 to 4)i
c

i i
exp

(17)

where ai
exp and ci

exp are, respectively, the experimental crack depth and half-surface crack length, after ith creep-fatigue loading. xa ( )i

and xc ( )i are ith calculated crack depth and half-surface crack length, respectively, as functions of random variables vector, x.
Furthermore, a limit state function for creep rupture life is applied as follows.

= −x xg life( ) ( ) lifeL
cr (18)

where life (x) is the creep rupture life calculated from Eq. (15) as a function of random variables vector, x. lifecr is the critical
remaining life that is assumed to be equal to 1.5 years (13,140 h). The critical value may be selected based on the inspection intervals
or determined as critical allowable remaining life. Probabilistic assessments are carried out using the Rt software, developed by
Mahsuli et al. [31].

3.3. Probabilistic results

3.3.1. Case A: Probability distribution of outputs
Probability distribution of crack depths, ai, and half-surface crack lengths, ci, after each four creep-fatigue loading (Table 1),

which is obtained by Monte-Carlo sampling method, are illustrated in Figs. 5 and 6, respectively. The comparison of probability
distribution of the first and the fourth propagated crack size (in both through-wall direction and along the surface of the plate) shows
an increased standard deviation and a decreased peak of pdf (probability density function), for larger crack.

It can be observed that, the uncertainty in the prediction of the half-surface crack lengths, ci, is significantly more than that of
crack depths, ai (Fig. 7). For example, the standard deviation (std) and coefficient of variation (CoV) of final crack depth, a4, are
approximately equal to 2.3mm and 0.17, respectively; while the final half-surface crack length, c4, has a std and CoV of approxi-
mately 15.6 mm and 0.29, respectively. This may be caused by the fact that the crack growth through the thickness direction and
along the plate surface, are significantly affected by the related stress intensity factors at the deepest and surface points, respectively.
The pdfs of initial and final stress intensity factors, related to a0, c0 and a4, c4 are shown in Fig. 8. This figure illustrates that the
prediction of surface point’s stress intensity factors involves higher uncertainty (more standard deviation) compared to deep point’s

Table 3
Probability distribution of random variables.

Random variable Symbol Distribution Mean CoV

Material behavior
Creep crack eq. factor A Log-normal 1.117e−2 0.5
Creep deformation scaling factor Fd Log-normal 1 1.3
Fatigue crack eq. factor Cf Log-normal 4.662e−7 0.3

Geometry parameters
Initial crack depth a0 Log-normal 7.9 mm 0.2
Initial aspect ratio c0/a0 Log-normal 5.519 0.2
Arm length l Log-normal 350mm 0.015
Plate thickness t Log-normal 24.5 mm 0.025
Plate width w Log-normal 350mm 0.025

Test condition
Maximum load (creep-fatigue) Lcf Normal 14 KN 0.015
Maximum load (fatigue) Lf Normal 10 KN 0.015
Number of cycles at ith creep-fatigue loading (i=1–4) – Log-normal Table 1 0.05
Number of cycles at jth fatigue loading (j=1–3) – Log-normal Table 1 0.05
Load ratio (creep-fatigue) Rcf Normal −1 0.01
Load ratio (fatigue) Rf Normal −1 0.01
Creep hold time tdwell Log-normal 1 h 0.03
Temperature θ Normal 650 °C 0.01
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Fig. 5. Probability distribution of crack depths, ai, after each of four creep-fatigue loading.

Fig. 6. Probability distribution of half-surface crack lengths, ci, after each of four creep-fatigue loading.

Fig. 7. Comparison of probability distribution of crack depths and half-surface crack lengths.

Fig. 8. Probability distribution of initial and final stress intensity factors.
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stress intensity factors. Also, as the crack grows, the mean and std of stress intensity factors in the through-wall direction (related to a)
and along the surface of the plate (related to c) will be decreased and increased, respectively. Fig. 9 demonstrates the pdf of creep
rupture life after the last creep-fatigue loading.

The comparison between the experimental, deterministic and probabilistic results, are given in the Table 4. It is found that, there
is no significant difference between the mean value of the probabilistic results and deterministic or experimental results. However,
probabilistic assessments are accompanied by valuable complementary data (i.e. standard deviation), that indicates the effects of the
randomness of the input parameters on the uncertainty of the results. As mentioned earlier, the CoV of the half-surface crack lengths,
ci, are obtained higher than the CoV of the crack depths, ai. Although, this table shows a relatively high CoV for the final creep rupture
life, which represents the important role of the input random variables on the probabilistic prediction of the creep rupture life.

3.3.2. Case B: Calculations of probabilities of exceedance
Cumulative Distribution Function (CDF) of each four-crack depths, ai, and four-half surface crack lengths, ci, obtained by Monte-

Carlo sampling method, are illustrated in Figs. 10 and 11, respectively. The amount of each CDF at the related experimental values
(which showed by vertical lines in these Figs.), can be used to calculate the probabilities of exceedance of the experimental results.

In addition to the above method which is named as histogram sampling, different reliability methods, i.e. FOSM, FORM, Modified
FORM (named as MFORM), probability sampling and importance sampling, are utilized in order to evaluate the probabilities of failure
(PoF), ⩽xP g( ( ) 0), associated with the previously defined limit state functions (Eqs. (16)-(18)). Note that, the term “PoF” means the
probability of falling in the region where the limit state function, g(x), is negative. For limit state functions xg ( )i

a and xg ( )i
c , PoF

represents the probability of exceedance of experimental values.
InModified FORM (MFORM) approach, first, the last two trial points in the search for the Most Probable Point (MPP) in FORM, are

used to calculate the first principal curvature, κ1, of the limit state function. Then the probability of failure that obtained by FORM,
will be modified according to Breitung’s improved formula, in Rt software [31].

Probability sampling refers to Monte-Carlo sampling method with a specified target coefficient of variation of failure probability
( =δP

σ

μf
Pf

Pf
). Sampling continues until the δPf reaches its target value. A reasonable amount of =δ 0.02Pf is considered here. The

relationship between the probability of failure, Pf, target coefficient of variation, δPf , and the number of samples, Ns, can be gained by,

Fig. 9. Probability distribution of creep-rupture life related to the final crack.

Table 4
Comparison between the experimental, deterministic and probabilistic results.

Parameter Experimental results [20] Deterministic results Probabilistic results

Mean std CoV

Crack depth (mm)
a1 8.75 8.91 8.73 1.698 0.195
a2 10.35 11.02 10.62 1.960 0.185
a3 12.65 13.31 12.68 2.224 0.175
a4 13.35 14.23 13.52 2.293 0.170

Half-surface crack length (mm)
c1 44.53 44.38 44.30 12.59 0.284
c2 46.45 46.96 46.82 13.17 0.281
c3 51.58 51.68 51.32 14.61 0.285
c4 54.98 54.63 54.12 15.60 0.288

Final creep rupture life (hours)
tr – 23658.8 27814.9 17480.0 0.628
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Importance sampling is a corrective sampling method in which the distribution of sampling points concentrated in the region of
most importance [32]. Using Rt software, the importance sampling is carried out around the Most Probable Point (MPP) from the
FORM analysis, considering a target δPf equal to 0.02.

The outputs obtained from different reliability methods are mentioned in Table 5. Since a large number of samples (approxi-
mately of 450,000) generated in histogram samplingmethod; the obtained results are considered as reference data and other results are
compared with them. Several inferences can be drawn from these assessments:

Fig. 10. CDF of crack depths, ai.

Fig. 11. CDF of half-surface crack lengths, ci.

Table 5
Probabilities of failure (PoF) obtained by different methods.

Limit state
function

Histogram
sampling

Probability sampling Importance sampling FOSM FORM MFORM

PoF (%) PoF (%) Diff.* (%) PoF (%) Diff.* (%) PoF (%) Diff.* (%) PoF (%) Diff.* (%) PoF (%) Diff.* (%)

xg ( )a
1 45.77 45.09 −1.49 44.82 −2.08 53.67 17.26 44.35 −3.10 45.69 −0.17

xg ( )a
2 52.54 52.23 −0.59 52.33 −0.40 62.00 18.01 49.54 −5.71 60.08 14.35

xg ( )a
3 48.12 47.64 −1.00 47.69 −0.89 60.13 24.96 44.53 −7.46 49.24 2.33

xg ( )a
4 51.10 50.16 −1.84 50.96 −0.27 62.93 23.15 47.53 −6.99 55.34 8.30

xg ( )c
1 43.66 42.64 −2.33 43.10 −1.28 49.53 13.44 43.42 −0.55 43.50 −0.37

xg ( )c
2 45.39 44.71 −1.50 45.25 −0.31 51.55 13.57 44.18 −2.67 44.70 −1.52

xg ( )c
3 43.30 42.78 −1.2 43.25 −0.12 50.28 16.12 40.68 −6.05 42.36 −2.17

xg ( )c
4 41.67 41.25 −1.01 41.47 −0.48 49.14 17.93 38.53 −7.53 36.92 −11.4

xg ( )L 18.82 18.67 −0.80 18.85 0.16 24.73 31.40 15.69 −16.63 17.79 −5.47

* Difference from histogram sampling (first column) data.
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(1) For half-surface crack lengths, ci, the probabilities of exceedance of experimental results, predicted by histogram sampling method
are all below fifty percent. For crack depths, ai, the results are somewhat different. The comparison of these PoFs with de-
terministic results (Fig. 3) can clarify the importance of uncertainties in prediction of the crack growth after each of four creep-
fatigue loadings.

(2) Three sampling methods lead to approximately similar results. Selection of the value of 0.02 for the target CoV of failure
probability, δPf , in probability sampling and importance sampling methods, reduces the number of samples, significantly, compared
with approximately 450,000 samples used in histogram sampling method. In most cases, the results of importance sampling ap-
proach are more accurate than those obtained by probability sampling method. At low and high probabilities of failure, importance
sampling method has a more effective role in the calculation of probabilities. For example, in prediction of PoF related to creep
rupture life’s limit state function, xg ( )L , the number of samples in histogram sampling, probability sampling and importance sampling
methods are equal to∼ 450000, 10,894 and 3389, respectively; while the difference between the importance and histogram
sampling results is only 0.16%.

(3) FOSM (First Order Second Moment) approach has not led to reliable results compared to histogram sampling method outputs and
therefore this approach is not recommended.

(4) For limit state functions, xg ( )i
a and xg ( )i

c , the difference between FORM and histogram sampling results is at most 7.53%. But this
difference is about 16.6% for limit state function, xg ( )L .

It should be noted that, MFORM (Modified FORM) method which performed aimed at improving the predictions, did not ne-
cessarily lead to more accurate results compared with FORM (e.g. for g a

2 , g a
4 and g c

4 ). Therefore, this method should be used more
cautiously.

3.4. Sensitivity analysis

Importance measures are an important by-product of FORM analysis, which may provide useful information about the order of
importance of random variables. If there is a correlation between random variables (such as here), the γ importance vector can be
used to investigate the relative importance of the random variables [33]. The elements of γ importance vector represent valuable
data:

• The sign of the elements of this vector indicates the nature of the random variables. A positive (negative) value of element, γi,
shows that the associated random variable, xi, is of load (capacity) type.

• The magnitude of the elements of γ importance vector, determine the order of importance of the random variables. A greater
magnitude of element, γi, means that the random variable, xi, is of more importance.

The order of importance of the random variables, correspond to different limit state functions, summarized in Table 6. In order to
understand more clearly, the elements of γ importance vector associated with limit state functions xg ( )i

a and xg ( )i
c , are illustrated in

Figs. 12 and 13, respectively.
Figs. 12 and 13 show that, in the calculation of probability of exceedance of experimental crack sizes ( ⩽xP g( ( ) 0)i

a and
⩽xP g( ( ) 0)i

c ), uncertainties in “geometry parameters” and “material behavior” are of more importance, compared with uncertainties

Table 6
γ importance measure of random variables.

γ importance measure

Random variable (xi) Symbol xg ( )a
1 xg ( )a

2 xg ( )a
3 xg ( )a

4 xg ( )c
1 xg ( )c

2 xg ( )c
3 xg ( )c

4 xg ( )L

Material behavior
Creep deformation scaling factor Fd 0.15 0.24 0.32 0.32 0.01 0.04 0.10 0.12 0.1
Creep crack eq. factor A 0.10 0.17 0.22 0.23 0.01 0.03 0.07 0.09 0.07
Fatigue crack eq. factor Cf 0.07 0.27 0.38 0.42 0.01 0.06 0.17 0.23 0.18

Geometry parameters
Initial crack depth a0 0.98 0.89 0.76 0.73 0.72 0.74 0.75 0.75 0.52
Initial aspect ratio c0/a0 0.05 0.15 0.24 0.27 0.70 0.66 0.61 0.58 0.41
Arm length l 0.02 0.05 0.07 0.08 0 0.01 0.03 0.04 0.14
Plate thickness t −0.06 −0.15 −0.19 −0.20 −0.01 −0.04 −0.09 −0.13 −0.46
Plate width w −0.04 −0.09 −0.12 −0.13 0 −0.02 −0.05 −0.06 −0.29

Test condition
Maximum load (fatigue) Lf 0 0.01 0.02 0.02 0 0 0.01 0.01 0.01
Maximum load (creep-fatigue) Lcf 0.02 0.04 0.05 0.05 0.00 0.01 0.02 0.03 0.13
Load ratio (fatigue) Rf 0 0 −0.01 −0.01 0 0 0 0 0
Load ratio (creep-fatigue) Rcf 0 −0.01 −0.01 −0.01 0 0 0 −0.01 0
Creep hold time tdwell 0 0.01 0.01 0.01 0 0 0 0 0
Temperature θ 0 0 0 0 0 0 0 0 0.43
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in “test condition”. However, in determination of PoF corresponds to xg ( )L , some random variables, which fall into “test condition”
uncertainties category, i.e. test temperature, θ, and maximum load in creep-fatigue cycles, Lcf, become more important.

The variables thickness and width of the plate have negative amount of γ measure and therefore, are of capacity type. For all limit
state functions, the variable initial crack depth, a0, with assumed distribution and CoV of Table 3, has the greatest order of im-
portance. For limit state functions, xg ( )i

a , by increasing loading cycles from 1st to 4th creep-fatigue loading, the importance of a0 will
be decreased and the importance of almost other variables, will be increased. For limit state functions, xg ( )i

c , both variables initial
crack depth, a0, and initial aspect ratio, c0/a0, have a significant order of importance. However, by increasing loading cycles, the
importance of a0 will not vary, considerably; while the importance of c0/a0 will be decreased.

It should be mentioned that, in general, probabilistic assessments and consequently the importance of random variables may be
affected by the randomness level of these variables. For example, it can be found that, in this study, the importance of initial crack
depth, a0, and initial aspect ratio, c0/a0, are significantly affected by the CoV of these two parameters. Figs. 14 and 15 that are
respectively associated to the limit state functions g a

4 and g c
4 , show that the importance of initial crack depth, a0, and initial aspect

ratio, c0/a0, will be decreased by decreasing the CoV of these two parameters.

4. Conclusions

The purpose of this study is to investigate the effects of different sources of uncertainty on the prediction of creep-fatigue crack
growth, which has been implemented on a known problem. This problem consists of a 316L(N) austenitic stainless steel plate with a
semi-elliptical surface crack, subjected to a set of fatigue and creep-fatigue loading conditions [20]. Deterministic calculations as a
key component of the probabilistic assessments, were adopted from references [14] and [21]. Deterministic predictions of crack
growth at the deepest and surface points (Figs. 3 and 4) show relatively good agreement with the experimental data. However,

Fig. 12. γ importance measure associated to crack depth limit state functions, xg ( )i
a .

Fig. 13. γ importance measure associated to crack surface limit state functions, xg ( )i
c .
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several issues are encountered in these deterministic evaluations which are:

• The solutions of the stress intensity factors [24] and reference stress [26], have been accompanied by assumptions and constraints,
that may not be entirely met in the present study.

• The assumptions and details of the deterministic procedure, can be found in [14,21].

• It should be noted that the employed approach, is not necessarily applicable to other creep-fatigue problems. For each creep-
fatigue crack growth problem, it may be possible to use the existing well-known procedures such as those given in [21,22].

Probabilistic assessments have been carried out in three areas: (I) estimation of probability distribution of desired outputs (e.g.
propagated crack sizes), (II) calculation of probabilities of exceedance of experimental results, and (III) sensitivity analysis. In the first
area, it has been shown that, the prediction of the last propagated crack size, a4 and c4, is associated with more uncertainty (more
standard deviation), compared to the first propagated crack sizes, a1 and c1 (Figs. 5 and 6). It has been also illustrated that, the
uncertainty in the prediction of the half-surface crack lengths, ci, is significantly more than the crack depths, ai (Fig. 7). The second
area focuses on the implementation of different reliability methods to determine the probabilities of exceedance of experimental data,
which are reported by Poussard and Moulin [20]. These evaluations clarified the importance of consideration of uncertainties in
creep-fatigue crack growth prediction, in comparison with the deterministic approach. Furthermore, it has been found that, the
importance sampling method might be an efficient and almost accurate approach in the determination of probabilities of failure. In the
last area, sensitivity analysis was performed in order to investigate the importance of random variables related to different limit state
functions (Eqs. (16)-(18)). It is shown that the initial crack depth, a0, with the assumed distribution of Table 3, has the greatest value
of γ importance measure in all of the limit state functions. Initial aspect ratio, c0/a0, is another important random variable, in the

Fig. 14. Effect of CoV variations of initial crack depth, a0, and initial aspect ratio, c0/a0, on γ importance measure, associated to final crack depth
limit state function, xg ( )a

4 .

Fig. 15. Effect of CoV variations of initial crack depth, a0, and initial aspect ratio, c0/a0, on γ importance measure, associated to final crack surface
limit state function, xg ( )c

4 .
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prediction of probabilities of exceedance of experimental crack surface lengths (related to limit state functions, gi
c). Figs. 14 and 15

showed that variation in the CoV of the initial crack size, a0 and c0/a0 can significantly change the importance of these parameters. In
determination of PoF corresponds to xg ( )L , test temperature, θ, and maximum load in creep-fatigue cycles, Lcf, become more im-
portant. Some issues related to the probabilistic assessments, are as follows.

• There are several sources of uncertainties, such as “models’ uncertainty” and “experiment results”, that are not investigated in this
study. Furthermore, various parameters in stress intensity factor equations [24], creep rupture life (Eq. (15)), etc. are considered
as constant values (not random variables).

• In this study, the uncertainties in “test condition” (see Table 3), are assumed as unique values for the entire test, not for each cycle,
individually. Although, this assumption may be not consistent with actual state of practical problems, but this can be implemented
in such probabilistic assessments and sensitivity analysis.

• The importance of random variables indicates which variable can be ignored in probabilistic assessments (i.e. considered as
constant value), and which one(s) is needed to be considered more precisely.

• It is necessary to take into account the correlation between random variables in probabilistic evaluations, consistent with the
available data. However, in the present study, because of the convergence problems in Newton algorithm within the Nataf
transmission, the negative correlation between creep strain rate scaling factor, Fd, and constant A in creep crack growth rate
equation, could not have any high value. Furthermore, the same scaling factor, Fd, is assumed for both primary and secondary
creep (Eq. (10)).
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