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Abstract

Currently the majority of crop protection approaches are based on homogeneous rate fungicide

application (HRFA) over the entire field area. With the increasing pressures on fungicide

applications, associated with increased environmental impact and cost, an alternative approach

based on variable rate fungicide application (VRFA) and selective harvest (SH) is needed. This

study was undertaken to evaluate the economic viability of adopting VRSA and SH in winter

wheat and the environmental benefit in terms of chemical reduction is also discussed. High

resolution data of crop canopy properties, yellow rust, fusarium head blight (FHB), soil

properties and yield were subjected to k-means cluster analysis to develop management zone

(MZ) maps for one field in Bedfordshire, UK. Virtual cost-benefit analysis for VRFA was

performed on three fungicide application timings, namely, T1 and T2 focused on yellow rust,

and T3 focused on FHB. Cost-benefit analysis was also applied to SH, which assumed different

selling prices between healthy and grain downgraded due to mycotoxin infection. Results

showed that in this study VRFA allowed for fungicide reductions of 22.24% at T1 and T2 and

25.93% at T3 when compared to HRFA. SH reduced the risk of market rejection due to low

quality and high mycotoxin content. Gross profit of combining SH and VRFA was £83.35 per

hectare per year, divided into SH £48.04 ha-1 , and VRFA £8.8ha-1 for T1 and T2 and £17.7 ha-

1 for T3. Total profit when considering soil and crop scanning costs would be £66.85 ha-1 per
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year, which is roughly equivalent to €80 or $90 ha-1 per year. This study was restricted to a

single field but demonstrates the potential of fungicide reductions and economic viability of

this MZ concept.
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Cereal crop disease; Management zones; Cost-benefit analysis; Selective harvest; Variable rate

fungicide application

1 Introduction

High crop yields would ideally be achieved with minimal environment impact. Conventional

agricultural practice has led to increased crop yields, but depends on the unsustainable

management of external inputs, posing severe environmental problems (Pimentel et al., 1995;

Hole et al., 2005). Considerable yield losses occur due to crop diseases, requiring the

development of sustainable approaches to crop disease management. Variable rate

management of farm external inputs is a potential approach to achieve this. Site-specific

management requires high resolution data on all relevant factors. High resolution data

collection for specific diseases, crop canopy, and soil properties is possible with the use of on-

line crop and soil sensors (Kuang et al., 2012; Kuang and Mouazen, 2013; Whetton et al.,

2018a). Fusing these different layers of information allows for the creation of management

zones (MZ). This study will focus on and explore the potential use of these MZ for variable

rate fungicide application (VRFA, where the rate of fungicide can be varied in response to

requirement), and selective harvest (SH, where grain can be harvested separately in areas of

high and low quality).

Yellow rust is a foliar fungal disease that is linked with a long history of yield loss. Yield loss

is mostly attributed to a reduction in the number of grains per ear, and the weight of individual
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grains (Herrera-Foessel et al., 2006). Across the globe, yield losses due to yellow rust are

reported to be between 10 and 70% (Chen, 2005), with susceptible varieties often being >50%

(Safavi, 2015). Historically, Doodson et al. (1964) reported yield losses of 64.5% in individual

infected plants, whilst Doling and Doodson (1968) attributed yield loss reductions of up to 30%

to the cultivation of resistant spring and winter wheat varieties.

Fusarium head blight (FHB) is a sporadic ear disease, with level of infection varying across

regions and years (Jelinek et al., 1989). FHB can result in yield losses, economic losses (direct

and indirect) and negative influences on human and animal health (Paul et al., 2005). The direct

economic loss is attributed to reduced grain quantity and size, while indirect loss is due to

reduced quality, and mycotoxin contamination (a secondary metabolite of the fusarium mould),

associated with market rejection or downgrading of grain (Parry et al., 1995). The downgrading

of grain can occur if a portion of the harvested grain is of lower quality, this can reduce the

overall quality or cause the harvested grain to surpass the mycotoxin health limits. With the

increased awareness of food security, and the knowledge that one third of food is currently lost

or wasted, innovative studies are needed to maximise yields and quality of yield reaching the

market (Gustavsson et al., 2011). It is estimated that without the use of crop protectants and

fungicides about 50% of wheat yield can be lost due to pests (Oerke, 2006). To generate similar

yield levels, an expansion of the extent of arable land will be required and combined with

inefficient application of external inputs, this may lead to increased levels of greenhouse gas

(GHG) emissions (Mahmuti et al., 2009; Berry et al., 2010; Burney et al., 2010; Carlton et

al., 2010). Use of fungicides for disease control on wheat, barley and oilseed rape is estimated

to save emissions in excess of 1.5 Mt CO2-e in each cropping season (Hughes et al., 2011),

while reductions in external inputs is also linked to decreased emissions (Lin et al., 2011).
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Soil characteristics affect the crop growth and yield, e.g. more fertile soil leads to stronger and

more resistive plants if plant density is controlled (Sylvester-Bradley and Kindred, 2009).

Microclimate conditions also affect crop growth and disease spread with a greater occurrence

of fungal diseases observed in denser canopies, but a conclusive regression relationship through

multiple years and fields has not been found, potentially due to the confounding effects of

weather (Rozalski et al., 1998). An essential step towards site specific plant protection is

information about crop disease in the field, collected at high sampling resolution. However,

information on crop disease alone is not sufficient for an integrated decision support system,

due to the influence of other factors e.g., relevant soil properties, microclimate conditions and

crop canopy characteristics (Sylvester-Bradley and Kindred, 2009). To our best knowledge, no

assessments exist examining the environmental and economic benefits of VRFA for yellow

rust and FHB, and SH based on fusion of high sampling resolution data, of soil characteristics,

crop growth and diseases, and microclimate conditions.

The aim of this paper is to apply a multi-sensor and data fusion approach for the delineation of

MZ maps for VRFA and SH. It will evaluate whether these approaches could have potential

economic benefits. This study focuses on the potential economic benefits, using a virtual cost-

benefit analysis, of heterogeneous fungicide applications and selective harvest based on high

sample data, compared to a conventional practice.

2 Materials and methods

2.1 Field site

One study field of 10.8 ha with cereal crop production was selected for this study. It is located

at Duck End Farm, a commercial family farm in Wilstead, Bedfordshire, UK (52°05'46.3"N

0°26'41.4"W), with an average annual rainfall of 598 mm. The northern part of the field is a

clay soil, whereas the southern part is a sandy clay soil. The farmer uses a 3-year crop rotation
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of barley, wheat and oil seed rape. The experiment was carried out in 2015 during the winter

wheat rotation. Yellow rust and FHB were observed in the field. Measurement dates of soil,

crop canopy, diseases, micro-climate conditions, and yield in relation to growth stages are

shown in Table 1. Detailed information about the collection of each dataset is further described

below.

Table 1: Date of different measurement as related to crop growth stages according to the

BBCH scale (Lancahsire et al., 1991).

Parameter Date of measurement Growth stage

Yield September, 2015 NA

NDVI and LAI May, 2015 43

Soil properties (MC, TN,

OC, CEC)

September, 2014 NA

Yellow rust early May, 2015 43

Yellow rust late July, 2015 70

Fusarium head blight July, 2015 70

Canopy data (humidity,

temperature)

May, 2015 43

NDVI is normalised difference vegetation index; LAI is leaf area index; MC is moisture content; TN: is total

nitrogen; CEC is cation exchange capacity; OC is organic carbon
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2.2 Disease and canopy data collection

A push broom hyperspectral imager (spectrograph) (HS spectral camera PS model from Gilden

Photonics Ltd., UK) using a spectral range of 400 and 750 nm was used. The imager along

with a halogen light source were mounted on a tractor, by means of a metal frame for on-line

measurement of yellow rust and FHB. The optimal configurations include an integration time

of 50 ms, a camera height of 0.3 m and light height and distance of 1.2 m and a camera angle

of 10°. Measurement was carried out at a forward travel speed of approximately 4 km h-1, and

line images were captured at 1 sec frequency, which is subsequently logged and geo-located

with a sub-meter accuracy, using a differential global positioning system (DGPS) (EZ-Guide

250, Trimble, California, USA). At 5 locations per hectare ground truth plots were selected

(Figure1), where manual disease assessment and recognition of yellow rust and FHB were

made (0 for no infection, 1 for less than 5% infected heads (FHB) or leaf area (yellow rust), 2

for up to 10%, 3 for up to 30%, 4 for up to 50%, and 5 being a heavy infection of over 50%)

and applied to calibration models. Whilst the NIR is a key spectral region for detecting early

disease symptoms, successful models for crop disease detection have been built using the visual

spectrum, highlighting the significance of the 500 nm, 600 nm, and 650 nm wavebands (Sasaki

et al., 1999; Thomas et al., 2017). The models utilised in this study were classed as a good

accuracy 0.78 and 0.82 R² for the detection of established yellow rust and FHB, respectively.

The methodologies and models for application of the hyperspectral imager and crop disease

detection was utilised from our previous (Whetton et al., 2017, 2018a and 2018b).

At the same 60 ground truth locations, data of leaf area index (LAI) was collected with use of

a Sunscan (V1, Delta-T devices, Cambridge, UK) sensor, while air humidity and temperature

were measured with a hand-held device (Testo 610, Hampshire, UK), positioning the sensor

just under the flag leaf. Yield was measured with on-board yield sensor of the farmer’s combine
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harvester (New Holland, CX8070 model) and normalised difference vegetation index (NDVI)

was measured with an online Crop Circle sensor (Crop Circle ACS 470, Holland Scientific,

Lincoln, NE USA).

2.3 On-line soil measurement

An on-line visible and near infrared (vis-NIR) spectroscopy sensor (Mouazen, 2006) was used

to measure soil total nitrogen (TN), organic carbon (OC), moisture content (MC) and cation

exchange capacity (CEC). It consists of a mobile, fibre type, AgroSpec visible and near infrared

(vis-NIR) spectrophotometer (tec5 Technology for Spectroscopy, Germany) with a

measurement range of 305-2200 nm, and a differential global positioning system (DGPS) (EZ-

Guide 250, Trimble, USA) to record the position of the on-line measured spectra with sub-

metre accuracy. The spectrophotometer was linked with an optical probe by means of two

optical fibres. The optical probe was attached to the underside of a subsoiler, which penetrated

the soil opening a smooth trench. The probe was illuminated by a 20w light source and

collected diffuse reflected spectra at 1 sec frequency. A detailed description of the system can

be found in Kuang and Mouazen (2013). On-line measurement was carried out in 2014, after

the harvest of the previous crop at parallel transects approximately 10 m apart and at 2 km

forward speed, at a sensor depth of 15 cm.

2.4 Spectral modelling of disease and soil properties

The pre-processing of the soil and canopy spectral data was carried out following an approach

outlined in Mouazen et al. (2006). The first step was to remove the noisy wavelengths at the

two far edges of the soil spectra, as this had already been clipped from the canopy spectra. The

spectra then underwent averaging of neighbouring wavebands, maximum normalisation, first
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derivative and smoothing, successively. All spectra pre-processing was carried out using

Unscrambler 10 software (Camo Inc.; Oslo, Norway).

The hyperspectral imager data set was randomly divided into two sets of 70% and 30%,

representing the calibration and validation data sets, respectively. The pre-processed canopy

spectra and manual assessments of disease were subjected to partial least squares regression

(PLSR) analysis with leave-one-out full-cross validation using the calibration set (70%). PLSR

analyses were carried out using Unscrambler 10 software (Camo Inc.; Oslo, Norway). The

model’s performance was evaluated using the on-line validation set (30%). The prediction

results of these models are shown in Table 2. More detailed information about the calibration

and validation of the FHB and yellow rust models can be found in Whetton et al. (2018a and

2018b). The same approach was used for the calibration and validation of models to predict

soil properties (e.g., MC, OC, TN and CEC). More detailed information about the calibration

and validation of these models can be found in Kuang and Mouazen (2013) for TN, OC and

MC and Marin-González et al. (2013) for CEC (Table 2).

Since the canopy properties LAI, humidity and temperature were measured only at 60 locations

(shown in Figure 1), these limited data set was used for further analysis. However, a much

larger number of data points was obtained of the on-line predicted crop yellow rust and FHB,

on-line predicted TN, OC, MC and CEC and measured NDVI and yield.
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Figure 1: Map of the experimental field where ground sample locations (5 per hectare, n=60)

are shown.

2.5 Mapping

Maps for each of the properties were developed using ArcGIS 10 software (ESRI, California,

USA). The first step in the development of maps was the creation of semi-variograms in R-

studio (RStudio, Boston, MA), which are presented in Table 2. After an optimal semi-

variogram (smallest sum of square error) was established for a given property, kriging was

applied to develop a full point map using ArcGIS 10 software (ESRI, California, USA).

Different number of data points was considered in the semi-variogram development and

kriging, hence, the resolution of maps differs, although the best fit was found with spherical

semi-variograms for all properties investigated.
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Table 2: Properties of the spherical semi-variogram obtained for yellow rust early (YR early)

and late (YR late) scans, fusarium head blight (FHB), soil moisture content (MC), organic

carbon (OC), total nitrogen (TN), cation exchange capacity (CEC), leaf area index (LAI) and

normalised difference vegetation index (NDVI), crop humidity and temperature. Showing

nugget (c0), sill (c), range (r m), proportion (C0/ C %), and the sum of square error (SSE). The

ratio of prediction deviation (RPD) values are presented for the spectral models of OC, TN,

and MC, developed by Kuang and Mouazen (2013), CEC, developed by Marin-González et al.

(2013), and FHB and YR, developed by Whetton et al. (2018b).

c0 is nugget variance, c is sill, r is range, c0/c is proportion, and SSE is sum of squared error.

Property c0 r (m) c c0/c (%) SSE RPD

FHB 0.11 97.02 0.89 8.02 3.32 2.27

YR early 0.00 78.34 0.001 9.00 2.56 2.50

YR late 0.01 92.57 0.04 2.93 1.53 2.50

OC 0.00 9.60 0.01 9.55 2.65 2.36

TN 0.00 23.04 0.01 3.00 12.46 1.85

MC 4.43 15.52 5.09 0.81 6.23 1.49

CEC 0.73 24.71 1.48 1.78 4.20 1.70

NDVI 0.061 4.45 0.21 2.6 2.15 NA

Yield 3.24 98.36 6.49 4.25 1.68 NA

LAI 1.08 68.04 2.07 1.9 3.06 NA

Humidity 0.17 102.96 1.07 6.19 0.57 NA

Temperature 0.1 83.09 1.06 10.05 0.51 NA
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2.6 Management zone maps

Typically, there are up to four timings of fungicide application to control foliar diseases and

ear diseases. Timing 0 (T0) is applied between growth stage 25 and 30 according to BBCH

(Lancahsire et al., 1991). Fungicide application is usually preventative in historically

problematic fields, or if early disease is observed. T1 (GS 31-33) and T2 (GS 37-39) are applied

to keep the third, second and flag leaves healthy, as these heavily influence yield in wheat. The

T3 application (GS 52-60) can also be an “ear wash”, and is usually applied to preserve the

quality of the grain. T2 is commonly considered the most crucial application and is the most

frequently applied, due to the importance of maintaining flag leaf health. T1 is considered

secondary in importance followed by T3 and then T0 (Clark, 2016).

The predicted soil properties and crop disease levels measured canopy and yield parameters

and microclimate conditions were pulled into one matrix by means of a Statistica software

(StatSoft inc., Oklahoma USA), before running k-means clustering. A k-means cluster is an

unsupervised learning algorithm, which partitions multiple observations into a suitable number

of clusters, and a data point is classified into a cluster point based on the cluster with the nearest

mean (MacQueen, 1967), which allowed MZ based on multiple properties to be delineated, for

VRFA and SH. The k-means cluster analyses were performed for the following applications to

produce three different maps, with a different number of MZ, depending on variability of the

input data used:

1) Selective harvest: In this case only the on-line predicated FHB and late yellow rust were

included in the k-means clustering to produce a MZ map for SH.

2) T1 and T2 variable fungicide applications: The k-means cluster analysis here aimed at

producing MZ maps for VRFA at growth stages 31 to 39, applied as a foliar disease
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preventative. In this case, the predicted early yellow rust levels and soil properties (MC, OC,

TN and CEC) and measured canopy properties (NDVI, LAI, canopy humidity and temperature)

were included in the analysis.

3) T3 variable fungicide applications: The k-means cluster analysis produced a MZ map for the

growth stage 52-60, where fungicides are usually applied to preserve the grain quality. Input

data included the on-line predicted FHB and soil properties (MC, OC, TN, and CEC) and

measured canopy properties (NDVI, LAI, canopy humidity and temperature).

2.7 Cost-benefit analysis

The following assumptions were made in this study for the cost-benefit analyses;

1) The cost of implementing the different sensing technologies was assumed to be £10 ha-

1 for soil data (commercial price of soil sensing in the UK) and £6.5 ha-1 for crop growth

and diseases (comparable to cost of current commercial VR N recommendation price

in the UK based on crop data only). It is assumed that soil sensing will be carried out

in one operation with tillage, whereas crop sensing will be carried out in one operation

with fertilisation.

2) FHB presence is directly linked to mycotoxin presence, which is in line with Paul et al.

(2005), who reported a mean correlation of R² of 0.73 between deoxynivalenol (DON)

level and fusarium observed in 163 studies in the USA.

3) VRFAs would not reduce the efficiency of disease control obtained with homogeneous

applications, an assumption supported by a practical note that reduced doses of

fungicide should be applied in low disease pressure areas (FRAC, 2010) and vice versa.
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4) Wheat grain would be sold at a lower price due to fusarium contamination of

mycotoxins. This assumption is supported by the European commission imposed upper

limits of the DON mycotoxin in cereal grain for human consumption.

5) A uniform application of fungicide was proposed for the T0 growing stage, as it is

usually a preventive treatment and at this early growth stage disease sensing would be

difficult, as the canopy is sparse.

Two fungicides commonly used in disease control were selected for this study. Adexar

(epoxicoazole) is suitable for the treatment of many fungal disease infections and is particularly

common for FHB treatment. It is used at a maximum of 2 litres per hectare (lha-1), with a

maximum of 2 applications per annum for wheat in Europe. The current price (2017) is £34

per litre. Proline 275 (prothioconazole), is suitable for many fungal disease infections but

particularly for treatment of yellow rust. It is applied at a maximum of 0.72 lha-1 per dosage,

with a max total of 2.16 l ha-1 per year for wheat treatment in Europe. The 2017 price is between

£52.5 and £59 per litre1. The following two cost-benefit analyses were carried out for the VRFA

and SH;

1- The cost-benefit for the variable fungicide treatments (T1, T2 and T3) was applied using

ArcGIS 10 software (ESRI, California, USA), by dividing the field area into high infection risk

(HIR) and low infection risk (LIR) zones, taking into consideration the boom width relative to

the position of tramlines. Zones of HIR were virtually subjected to a full application rate,

whereas the LIR zones were given a 50% application rate. For T3 the medium infection zones

(MIF) were subjected to 75% dosage rate. All MZ were considered in the analysis, and the

amount of fungicide per area was calculated. The overall applied amount of fungicide was then

compared to that of a conventional full homogenous application (100% application rate), and

the potential savings or losses were calculated.
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2- The cost-benefit analysis for SH was calculated in a similar manner to that of VRFA using

ArcGIS 10 software (ESRI, California, USA). MZ were classified into HIR and LIR. This was

made by proposing separate harvest of the HIR (low quality) from that of the LIR (high quality)

zones. All MZ were considered in the analysis, and their corresponding area were calculated,

so as the average yield per zone could be calculated. The total prices of wheat grain obtained

from Farmer’s Weekly (FWI, 2016) were £145 and £135 per tonne, for the high-quality and

low-quality yield, respectively. The SH was compared to the homogeneous harvest of the entire

field-area, sold at the lower price of £135.

3 Results and discussion

3.1 Spatial variability of different properties

The analysis for semi-variogram of different soil and crop properties indicated that the best

approximation can be achieved with spherical models, whose properties can be found in Table

2. The largest sum of square error is calculated for TN followed by MC. The small values of

the proportion between the nugget (attributed to small sampling intervals, or measurement

errors) to sill variation (less pairs of points separated by far distances) indicate the

autocorrelation between different properties studied, because this proportion is an important

parameter to quantify short-distance autocorrelation or the degree of spatial dependency for a

variable (Cambardella et al., 1994; Chang et al., 2014). Cambardella et al. (1994) defined three

categories of spatial dependency of high, moderate, and weak with ratios of less than 25%,

between 25% and 75%, and greater than 75%, respectively. Ranges of spatial dependency are

wider than the sampling interval of on-line soil measurement (10 m), disease (Figure 2), LAI,

humidity and NDVI (24 m) (Figure 3), and yield (12 m) (Figure 4), confirming the
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effectiveness of geostatistical analysis adopted in this study (Chang et al., 2014). The only

exception is for the NDVI measurement (Table 2).

As a general observation, the crop was healthier towards the centre of the field. This was

particularly evident in the early yellow rust map (Figure 2). This is an expected spatial pattern,

as yellow rust and fusarium spores are both wind borne and can survive in soil and weeds

occurring in the borders of a field, acting as a source of inoculum for the next cropping season

(Jenkinson and Parry, 1994; Imathiu et al., 2013). Between the early and late scan of yellow

rust, some small areas decreased in disease severity, which could be due to additional crop

growth (from later tillers and secondary tillers) and regrowth of damaged crop (Livingston et

al., 2016).

Field areas high in NDVI correlated with areas high in LAI (Figure 3). The central part of the

field is of low LAI/NDVI, which coincides well with low concentrations of both FHB and early

yellow rust spatial distribution pattern in the field. LAI/NDVI and temperature appear to have

similar spatial distribution pattern, but of inverse magnitude. Areas of the field with a lower

crop density will warm up and cool down faster than those with dense canopies (Dammer,

2003). Differences in a wheat field’s canopy temperature could have an inter-canopy variation

of up to 7.5°C (Dammer, 2003), a variation of 5.4°C (at canopy level) was recorded during the

field scan in May. At the time of scanning the lower temperatures were found in denser

canopies, highlighting the differences in microclimate through the field. The values of each

property may vary throughout the growing season (i.e., moisture content and temperature may

change significantly within a few hours). However, the pattern of spatial variability will persist

for significantly longer.
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Figure 2: Disease severity; On-line predicted maps of fusarium head blight (FHB) measured

at milk growth stage 72 (July 2015), early yellow rust measured at booting growth stage 43

(May 2015), and late yellow rust measured at milk growth stage 72 (July 2015). The disease is

classified on a 0 to 5 scale, where 0 indicates low disease presence and 5 indicates high disease.
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A small spatial variability of the four on-line predicted soil properties (CEC, TN, MC and OC)

was observed (data not shown), hence, might not have effect on crop diseases, an assumption

to be tested further below. Clear spatial similarity between crop yield (Figure 4) and NDVI

(figure 3) can be observed. The highest yield is recorded in the middle part of the field, which

coincides with the NDVI map. This is in line with other studies, reporting that NDVI of

previous years can be used as an indicator for yield in the following years (Mkhabela et al.,

2011).

Both macro and micro nutrients have an impact on the severity of fungal diseases. Nutrient

deficiency will increase the crop’s vulnerability to specific diseases, (Huber, 1980; Engelhard,

1989; Graham and Webb, 1991; Agrios, 1997; Fageria and Baligar, 1997; Snoeijers et al.,

2000; Dordas, 2009). Increases in nitrogen will increase the green area index, crop density and

duration of the canopy (Stokes et al., 1997; Sylvester-Bradley and Kindred, 2009). This

subsequently affects the microclimate of the crop and the efficacy of the disease control

(Bryson et al., 1997).
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Figure 3: Properties attributed to the canopy; On-line measured normalised difference

vegetation index (NDVI), along with the 60 samples based developed maps for leaf area index

(LAI), canopy air temperature and humidity. These data were all collected at the booting

growth stage 43, in May 2015.
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Figure 4: Yield map of wheat measured in September 2015.

3.2 K-means clusters

The k-means clustering carried out for 1) SH, (Figure 5a) 2) T1 and T2 VRFAs (Figure 5b) and

3) T3 VRFA resulted in different numbers of clusters (Figure 5c). For SH, where on-line

predicted FHB and late yellow rust were included in the analysis, the k-means clustering

resulted in two classes (Figure 5a). Cluster 1 (Figure 5a) demonstrated high normalised means

associated with high yellow rust and FHB spread, whereas cluster 2 associated with lower

spread of both diseases. Therefore, there is a straightforward classification of wheat yield into

high quality and low quality, associated with the cluster 2 and cluster 1, respectively. This

classification is made based on the assumption that FHB presence relates to mycotoxin

accumulation, resulting in downgrade of grain quality and economic loss (Parry et al., 1995).

Yellow rust was included in the classification, as infection reduces yield quantity but also yield
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quality due to affected grain filling. Yield losses in wheat from yellow rust infections are

usually the result of reduced kernel number per ear and low weight (Prescott et al., 1986).

Small grains are associated with low flour extraction rates (during milling), and low energy

contents for livestock feed (Gooding and Davies 1997; Rose et al., 2001). Grain protein content

is often reduced with infection by rust (Dimmock and Gooding, 2002). A higher protein content

in the grain can fetch higher prices (Devadas et al., 2014).

Figure 5: K-means cluster analysis for the selective harvest (SH), and the variable rate

fungicide application (VRFA). SH (chart a) shows two classes, which are based on the on-line

measured late yellow rust and fusarium head blight (FHB). VRFA at the T1 and T2 (chart b)

and T3 (chart c) application timings are both based on the measured; normalised difference

vegetation index (NDVI), air temperature, air humidity, leaf area index (LAI), and on-line

predicted soil organic carbon (OC), total nitrogen (TN), moisture content (MC) and cation

exchange capacity (CEC).
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The k-means cluster analysis for T1 and T2 VRFAs used; the on-line predicted properties of

early yellow rust and the four soil properties, NDVI, LAI, temperature and humidity which

produced two clusters (Figure 5b), highly and poorly infected. In cluster 1, high yellow rust is

associated with low NDVI and LAI, indicating degraded crop growth (Figure 5b). A smaller

crop density (smaller LAI and NDVI) could permit a greater penetration and distribution of the

yellow rust spores (Whetton et al., 2018b). However, moisture is essential for yellow rust

infection. Yellow rust is most likely to occur in areas with a cool and moist environment during

the growing season, with the optimum temperature for urediniospore germination being

between 7 and 12°C (Chen et al., 2014). A denser canopy is more likely to maintain a higher

humidity, but to heat up and cool down slower compared to a sparse canopy (Dammer, 2003).

The cluster analysis demonstrates no influences of the on-line predicted soil properties, as no

clear differences in the normalised mean values for the four soil properties can be observed

between the two clusters. This is expected due to the small variability measured throughout the

field area. Due to the higher yellow rust spread of cluster 1, a high fungicide application rate

would be proposed, whereas a low application rate would be proposed for cluster 2.

The k-means cluster analysis for T3 VRFA results in three clusters (Figure 5c). Similar to that

for T1 and T2 growing stages and due to the small spatial variability range, the effect of on-

line predicted soil properties on FHB spread is negligible. The lower LAI and NDVI (lower

crop density) of cluster 1 is associate with higher air temperature and lower air humidity than

those of clusters 2 and 3. This has resulted in cluster 1 having the largest FHB pressure and this

in turn negatively affected crop growth indicated by low NDVI and LAI. The clear majority of

cluster 2 areas are along the edge of the field, where it is understood that there is a higher risk

of inoculation, due to the hedgerow (Jenkinson and Parry, 1994; Imathiu et al., 2013). Due to

the degree of FHB pressure, clusters, 1, 2 and 3 have been classified at the highest, medium
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and lowest risks for FHB severity. Whilst soil properties have had little influence on crop

disease severity in this study, it is suggested to continue monitoring in future, particularly in

fields with high variability in soil properties.

Figure 6: Shows the management zone (MZ) maps for selective harvest (SH) (a) and for

variable rate fungicide application (VRFA) (b and c), all obtained by k-means clustering. a)

The map on the left shows high disease infection (MZ 1) and low disease infection (MZ 2),

The map on the right shows high and low quality grain zones, with the field being split into

plots of 12 m wide to match the combine harvest cutting head. b) The map on the left shows

low yellow rust (MZ1) and high yellow rust (MZ2), whereas the map on the right shows high

and low infection zones, with the field being split into plots of 24 m to match the sprayer boom

width. c) The map on the left shows high fusarium head blight (FHB) (MZ 1), medium FHB

(MZ 2), and high FHB (MZ3), whereas the map on the right shows high and low infection

zones, with the field being split into plots of 24 m.
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3.3 Treatment maps

MZ maps for the SH developed by k-means cluster analysis using on-line predicted late yellow

rust and FHB show two distinctive MZs (Figure 5a and Figure 6a). Based on this MZ map, the

field was divided into experimental plots of 12 m width to match the width of the cutting head

of a combine harvester, which would be used for SH. The owner of the study farm had

witnessed an increase in levels of mycotoxin in recent years. Therefore, a variable harvest will

reduce economic loss and increase efficiency by separating the harvested wheat grain into two

categories of high and low quality and selling it separately. This SH would also reduce the

mycotoxin levels in grain and toxic influences on human health. MZ1 (Figure 6a) is associated

with cluster 1 in Figure 5a, with high FHB presence and high risk for mycotoxin presence and

toxic effects on human health, whereas MZ 2 is associated with cluster 2, low risk of mycotoxin

presence and higher quality grain.

Figure 6b and Figure 6c illustrate spatial distribution of MZs and the division of the field area

into 24 m width plots, responding to a fungicide sprayer boom width of 12 m either side of a

tramline. West et al. (2003) discussed the highest benefit to VRFAs can be achieved with a

boom containing separately controllable sections. However, at the commercial farm this

technology was not available, so the VRFA maps were based on 24 m widths (with the standard

being 12 m on either side). MZ 2 in Figure 6b, associated with cluster 2 in Figure 5b indicates

low disease in the centre, whereas MZ 1 at the field hedges, linked with cluster 1 refers to high

yellow rust infections. It’s proposed that this MZ map is adopted for VRFA for T1 and T2

growing stages. The MZ map (Figure 6c) for VRFA for the T3 application stage shows three

MZs of high (northern and southern edge areas), medium (east and west edge areas) and low

(central areas) FHB spread, associated with cluster 1, cluster 2 and cluster 3, respectively
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(Figure 5c). The general shape of the MZ map here (Figure 6c) is like the one developed for

yellow rust for T1 and T2 application times (Figure 6b), but the former is in three MZs while

the latter is in two.

3.4 Economic benefits

Table 3 summarises the yield and average disease development in each MZ. For SH, MZ 2

(higher quality grain shown in Figure 6a) is associated with a higher average yield (8.2 tha-1)

and lower average late yellow rust (1.9) and FHB (0.54), as compared to MZ 1 (6.9 tha-1, 2.9

and 0.87, respectively). Similarly, for VRFA at T1 and T2 growing stages, MZ 2 (lower early

yellow rust pressure shown in Figure 6b) is associated with higher average yield (8.3 tha-1) and

lower early yellow rust pressure (1.2), as compared to MZ 1 (6.7 tha-1 and 2.2, respectively).

For VRFA at the T3 growing stage, the MZ 3 (lowest FHB pressure as shown in Figure 6c) has

the highest average yield (8.3 tha-1) and lowest FHB (0.54), followed by MZ 2 and MZ 1,

respectively (Table 3). The consistent link between the yield and disease pressure in the three

studied cases proves the correct classification of the field area into proposed MZs, so that MZs

with high disease pressure are associated with low yield and vice versa.

The cost-benefit analysis of SH based on the two MZs proposed in this work (Table 4) reveals

a gross saving of £519 per field (£48.05 ha-1), as compared to the homogeneous harvest of the

entire field area. This is because of the higher price that the SH could provide for almost 59%

of the field area with high quality of grains (FWI, 2016) harvested from MZ2 with low FHB

spread with low mycotoxin concentration.

Table 3: Statistics of yield and disease pressure (fusarium head blight (FHB), early and late

yellow rust (YR)) of each management zone (MZ), for the variable rate fungicide applications

(VRFA) at growing stage T1 and T2 (which consider soil properties, canopy properties and
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early yellow rust); at growing stage T3 (which consider soil properties, canopy properties, and

FHB); and for the selective harvest (SH) (late yellow rust and FHB). For the VR T1 and T2

applications, two MZs are considered; MZ1 (high yellow rust disease) and MZ2 (low yellow

rust disease). For the VR T3 applications, three MZs are considered; MZ1 (high FHB disease),

MZ2 (medium FHB disease) and MZ3 (low FHB disease). SH considers two MZs; MZ1 (lower

quality crop) and MZ2 (higher quality crop).

MZ Total

cluster

area, ha

Total

yield, t

Average

Yield,

tha-1

Average

early YR

Average

late YR

Average

FHB

SH MZ1 4.5 33.2 6.9 NA 2.9 0.87

MZ2 6.3 51.9 8.2 NA 1.9 0.54

VR T1

and

T2

MZ1 4.8 36.5 7.6 2.2 NA NA

MZ2 6 49.8 8.3 1.2 NA NA

VR T3 MZ1 3.6 26.3 7.3 NA NA 0.8

MZ2 3.2 25.9 8.1 NA NA 0.71

MZ3 4 33.2 8.3 NA NA 0.54

VRFA at the T1 and T2 application times are associated with BBCH growth stage 31-33 and

37-39, respectively. They are aimed at protecting the third, second, and flag leaves from foliar

diseases, such as yellow rust. In this study, VRFA is split into two areas of high and low disease

pressure as compared to a homogenous rate application applied as the full dose. The calculated

potential gross saving of the VRFA at the T1 and T2 was £95.04 per application for this field

(£190.08 for the T1 and T2 applications), with an average gross saving of £8.8 per ha per
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application (or £17.6 for two applications) (Table 5), compared with the homogeneous

application. This assumes that yellow rust has a direct link with grain yield and reducing the

fungicide dosage on lower yellow rust infected areas would not have significant negative

impacts on yield. The homogenous rate would consume 7.776 l fungicide (Proline 275) per

application for the 10.8 ha field, whereas the variable rate would need 6.048 l, suggesting a

potential reduction of 1.73 l per application (or 3.46 l for the two applications). This reduction

would sum up to a 22.24% reduction in fungicide application by adopting the variable

application method, as compared to the homogeneous application. Estimates for the carbon

contribution for the production of fungicide applied in conventional farming system of wheat

per hectare in the UK are 3.30 kg CO2-e kg−1. However, effective use of fungicides is

associated to a carbon saving (Hughes et al., 2011; Lin et al., 2011).

The VRFA at the T3 application stage is usually an ear wash aimed at preserving grain quality

from diseases such as FHB. This application in the study field would be based on 3 rates

according to the three MZ delineated by the k-means clustering. Treatments proposed are: full

dose for the heavily infected MZ1, 75% dose for the medium infected MZ2 and 50% dose for

the low infected MZ3, compared to the full dose rate for the homogenous application proposed

for the entire field area. The per field potential gross saving of the VRFA at the T3 application

time (targeted at BBCH growth stage 52-60) is £191.2, with an average saving of £17.7 ha-1

(Table 5). The homogenous rate would consume 21.6 l fungicide (Adexar) per 10.8 ha total

field area, whereas the VRFA would consume 16 l, with a potential reduction of 5.6 l per

application, or 25.93% to be expected by adopting the VRFA, as compared to the uniform

application.

By combining he SH with the VRFA at T1 and T2 and at T3 application times, a potential gross

saving of £900.18 is expected for this field, which is an average gross saving of £83.35 per ha.
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It is possible to consider the combined economic benefit as SH results in savings from

preventing down grading of the grain, whilst VRFAs results in savings from reducing fungicide

applied compared to 100% full homogenous rate. Since the commercial price of implementing

soil sensing and crop sensing in the UK are £10 ha-1 and £6.5 ha-1, this would leave a total

saving of £721.98 per year for the field, or £66.84 ha-1.

The current technology of fungal disease treatment based on the CROP-meter offers economic

benefits by just reducing fungicide input but does not necessarily increase crop quality or

quantity (Ehlert et al., 2003). The suggested methodology in the current work may lead to not

only economic, but environmental and social benefits. The potential reduction in the amount

of fungicide applied (Table 5) would also lead to reducing the environmental impact due to

reduced soil and water contamination, and overall reduction in GHG by increasing crop yield

and cultivated field area efficiency. The social benefit is associated with lower mycotoxin

concentration’s in human consumed grain obtained with SH. If a field has generally a low

disease spread, and the farmer would otherwise prescribe a half dose for the field, they can add

a full dose in the areas recognised to be at higher risk. Better control of the disease (by applying

higher rates on risk areas than lower rates homogenously), and reducing the chance of the

efficacy of the fungicide product being reduced in the long term, as fungal strains adapt and

develop increased immunity (FRAC, 2010).

The current work assesses the use of high spatial resolution data to compare the economic and

environmental benefit of a VRFA and SH to a conventional homogenous practice. Whilst the

study found an economic gross saving of £83.35 ha-1 and an actual saving of £66.84 ha-1, the

results are specific to this field, crop and year. For a decision tool that would recommend a

time of spraying and VRFA, further components would need to be considered such as the use

of air sampling for the detection of airborne pathogens. West et al. (2008) combined air
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sampling with polymerase chain reaction analysis, for the quantitative identification of

pathogens. A process-based model which included climate data would create a robust decision

tool to help optimise decisions relating to fungicide applications. In conventional farming,

fungicides are often applied in response to agronomists’ visual assessments. This study has

highlighted the potential economic benefit of the disease mapping methodology for VRFA and

SH in a non-uniform field, compared to conventional methods. However, further work should

consider a combination of disease mapping, pathogen sensor technologies, and temporal data

(such as plant growth, and climate data) in a process-based model, for production of a robust

decision tool. The SH could potentially develop to having separate grain tanks at harvest, but

confidence in the concept would need to be established before such infrastructure could be

developed. However, it is important to acknowledge that SH and VRFA approaches are only

appropriate for heterogeneous fields, where significant variations of disease levels are

witnessed in different areas of a field. The approaches would be redundant in homogenous

fields.

4 Conclusions

The study proposed the use of management zones for variable rate fungicide applications

(VRFA) and selective harvest (SH) of crops. The study site was in a winter wheat crop infected

with yellow rust and fusarium. A k-means cluster analysis was implemented to divide the

experimental field into separated clusters (zones) based on on-line predicted fusarium and

yellow rust (measured with a hyperspectral imager), on-line predicted soil total nitrogen (TN),

organic carbon (OC), moisture content (MC) and cation exchange capacity (CEC) (measured

with an on-line visible and near infrared (vis-NIR) spectroscopy sensor), measured crop canopy
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normalised difference vegetation index (NDVI) and leaf area index (LAI), yield, and air

humidity and temperature. The main findings highlight the following conclusions;

1) The field area could be divided into different management zones for each of the VRFA

applications and SH, using K-means clustering and different input data. Management

zones with high disease pressure were associated with low NDVI and LAI, and high air

temperature and the opposite was true for management zones with low disease pressure.

2) Fungicide reductions of 22.24% (for T1 and T2 applications) and 25.93% (for T3

application) were calculated for the entire 10.8 ha field for VRFA, as compared to

homogeneous application.

3) The SH of the high and low-quality grain categories would result in a reduced risk of

mycotoxin contaminated grain reaching a human consumer.

4) The gross profit of SH and VRFA was £83.35 ha-1, divided into £48.04 ha-1 for SH,

£8.8 ha-1 for each VRFA at T1 and T2 applications and £17.7 ha-1 at T3 application.

The net saving after considering sensing costs is £66.84 ha-1, which is roughly

equivalent to €80 or $90 ha-1 per year.

The results highlighted here are specific to one field with specific circumstances. The study

demonstrates the potential benefits in applying VRFA and SH to variable disease distributions.

Future work should focus on the implementation of the proposed methodology in a larger

number of fields. The cost-benefit analysis could be expanded to account for yield responses

to different fungicide application rates, which was not included in the current work.
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