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Abstract 

Extensive studies have been reported on the improvement of through-thickness 

reinforcement to inter-laminar performance of composite laminates; current understanding on 

the in-plane performance is relatively limited, although it is also concerned in industrial 

application. The influence of through-thickness reinforcement (Z-pinning) on the inter-fibre 

failure in compression of unidirectional laminates was investigated. Both unpinned and Z-

pinned laminates were tested at four different off-axis angles, representing different 

combinations of transverse compression and in-plane shear stress. It was found that the 

stiffness of Z-pinned laminates decreased significantly in all off-axis angles. The failure 

strain and strength were reduced in shear dominated failure modes, while improved in the 

compression dominated failure modes by the presence of the Z-pins. A further investigation 

on the angle of failure plane was carried out and a comparison with analytical failure models 

is presented. 
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1. Introduction 

The inter-laminar strength of carbon fibre reinforced composite laminates is generally 

much lower than that in the fibre direction. Accordingly, delamination and other inter-fibre 

failure modes in transverse direction have been a major concern in the development of 

composite structures [1, 2].  Through-thickness reinforcement methods, such as Z-pinning, 

using metallic or carbon fibre rods inserted through the laminate thickness, have been studied 

in the last decades for its great potential in increasing damage tolerance of composite 

structures [3], namely in offering resistance to the growth of delamination. 

Apparent fracture toughness in Mode I delamination of composite laminates was 

reported to be dramatically increased with Z-pins [4-9]. In mode II delamination, there is also 

a linear increase in apparent fracture toughness with the volume content of Z-pins [2, 8-10]. 

Z-pinning has also proven effective in decreasing fatigue crack growth rate [11]. The 

laminate through-thickness stiffness also exhibits significant increase with the insertion of Z-

pins [12]. The strength of composite joints may also be improved with Z-pinning, such as the 

work reported on T-joints and Adhesive joints [13-16].  

The major benefit of Z-pinning to composite laminates is the improved out-of-plane 

performance, which has attracted most of the research on Z-pinned laminates [3]. The 

influence of Z-pinning on the in-plane properties has received much less attention. Existing 

work suggested that Z-pinning is detrimental to the in-plane stiffness and strength[3]; 

numerical simulation showed that the longitudinal modulus may drop by about 7-10% with 

Z-pinning of 2% volume fraction [12]. During Z-pin insertion process, fibres are pushed 
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aside, creating a matrix rich zone around the pin and causing significant waviness of the 

fibres in the laminate [17]. This waviness may trigger crack initiation in the resin rich zone in 

longitudinal tension [18], as well as fibre kinking under longitudinal compression [18]. 

Experimental work has shown that longitudinal tensile strength is reduced by 27% while 

compressive strength drop is around 30% due to Z-pinning [17]. The longitudinal modulus 

and strength were found to degrade linearly with the volume fraction of the Z-pins [18, 19]. 

The flexural strength of laminates also decreases with Z-pinning [20]. 

Existing research on the in-plane properties of Z-pinned laminates has mainly focused 

on fibre dominated modes; few works have been reported on the matrix dominated inter-fibre 

failure behaviour. Off-axial compression tests of Z-pinned laminates were conducted by 

Steeves and Fleck [17], however, there is no comparison reported between off-axis strength 

of unpinned samples. Inter-fibre failure is one of the major failure modes in composite 

laminates due to the weak strengths of matrix and fibre-matrix interface. The fibre waviness 

[17], resin rich zone [19] and residual stress after cure [21], may have noticeable influence on 

the inter-fibre deformation and failure response. The in-plane performance is critical during 

sizing and analysis of composite structures. Inter-fibre stress may be dominating in some 

layers due to the fact that practical structures are mostly multi-directional. Many structures 

such as composite aero-engine fan blades may experience tension, torsion and bending load 

simultaneously, while delamination is also worth concerning due to the impact threat from 

foreign object. Therefore, a comprehensive understanding about the inter-fibre failure 

performance of Z-pinned laminates is vital for industrial applications.  

As part of a systematic characterization work for understanding the Z-pinned 

laminates, an experimental investigation is reported for the first time here, to help understand 

the influence of Z-pinning on the inter-fibre failure strength of composite laminates, 

specifically here in the combined load of transverse compression and in-plane shear. 



4 

 

Experimental set-up is introduced in Section 2, followed by a detailed investigation on the 

microstructures of Z-pinned laminates in Section 3. Experimental results are presented in 

Section 4, in which the influence of Z-pinning on the stiffness and strength of laminates is 

discussed. 

2. Material and methods  

2.1 Manufacturing 

The IM7/8552 material system was chosen for the manufacture of the composite 

laminates. Two laminated plates with 40 plies of unidirectional prepregs were prepared with 

one being Z-pinned prior to curing. The cure process was carried out within an autoclave 

following the material supplier’s (Hexcel, UK) recommended cure cycle. T300/BMI Z-pins 

of 0.28 mm diameter were inserted into the laminates’ through-thickness direction in a 4×9 

grid with spacing between Z-pins of 1.75 mm (equivalent to 2% areal density) as illustrated 

in Fig.1a. The mechanical properties of T300/BMI can be found in [22]. The same 

arrangement was then rotated to different angles with respect to the fibre direction. Four 

different angles () were used: 30°, 45°, 60°, and 90°, which provided gradual transition of 

stress condition from in-plane shear dominated failure to the pure transverse compression 

case. A three-dimensional configuration of Z-pinned sample is presented in Fig.1b. Due to 

the challenge of insertion process, misalignment of Z-pins with respect to the thickness 

direction was noticed, and the misalignment angle is around 9°. Unpinned samples with equal 

geometry were also prepared to serve as benchmarks in the forthcoming comparative study.  

Each sample was machined from the panel using a fine diamond saw. This provided 

very smooth, defect free surface on all the edges of the samples. The top and bottom surfaces 
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of the Z-pinned samples were gently polished after curing to remove the pin bulges to create 

a nominally flat surface.  

Fig.1 (a) preparation of Z-pinned laminates with Z-pins inserted in different patterns (b) three 

dimensional view of Z-pinned sample showing pin misalignment. 

The cubic geometry was selected in this study, similar to the work by Koerber et al 

[20]. Frictional stress and stress concentration near the ends of samples hindered uniform 

stress distribution across the cross section. The non-homogeneity in stress distribution may 

results in premature failure, and the true material strength may be underestimated. The main 

purpose of this study is to evaluate the influence of Z-pinning on the inter-fibre failure 

response of unidirectional laminates. Considering the fact that both Z-pinned and unpinned 

samples share similar geometry, the non-homogeneity in stress distribution shouldn’t affect 

comparative study undertaken here. The interface between the sample and the fixture was 

lubricated before each test, to minimize the effect of friction.  
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Fig.2. Debonding around Z-pin after curing caused by residual thermal stress 

The Z-pinning process resulted in increased defects in the composite laminates. Residual 

thermal stresses after curing have resulted in partial debonding of Z-pin from surrounding 

epoxy resin. As show in Fig.2, the debonded interface is certainly detrimental to the in-plane 

strength, which may grow at relatively low stress level due to the stress concentration at crack 

tip. Besides, the fibre waviness is significant around Z-pins as will be shown in Fig.4. 

2.2 Test set-up 

All tests were carried out on a standard Zwick Roell 250 test machine, at a constant 

displacement rate of 0.01 mm/s. The samples were loaded via flat-end steel fixture as 

illustrated in Fig.3. The ends of the loading fixture ensured to be perpendicular to the loading 

axis. Laser extensometer was used to track the relative displacement between both ends of the 

sample. The failure process was recorded with a camera at a frame rate of 2 frames per 

second. Each sample was painted with a speckle pattern on white background. A digital 

image correlation (DIC) method was then employed to capture the strain field on the 

specimen surface, using the GOM ARAMIS® software. The in-plane strain field for samples 
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of off-axis angle 30° and 45° was analysed with DIC methods to get the normal and in-plane 

shear strains in the local material coordinate system. These two off-axis angles were chosen 

because of the shear dominated nonlinear deformation in these loading cases [23]. 

 

Fig.3 The compression experiment configuration. 

2.3 Data process 

The true axial strain εxx is determined with the measured displacement as: 

lnxx

l

l




 
  

 
                                                                                                        (1) 

where l is the length of the sample, and the  is the relative displacement at the boundary of 

the sample measured with laser extensometer. The true axial stress is calculated: 

xx

F l

A l





                                                                                                                (2) 

in which F is the measured force and A is the cross-section area. The apparent stress 

components in off-axis compression tests were determined as [23]: 
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where σ22 is the normal stress, and τ12 is the in-plane shear stress in local material coordinate 

system. 

 

Fig.4. the resin pocket and fibre waviness in Z-pinned laminates  

3. Microstructural characterisation 

One of the outcomes of inserting Z-pins in a fibre reinforced composite is the 

formation of fibre waviness, and a resin rich zone around the Z-pins as shown in Fig.4. In 

order to investigate the fibre volume variation in Z-pinned laminates and characterise the area 

of influence of an individual pin, two cross-sections were defined and analysed. 

The first cross-section crosses two neighbouring pins (identified as ‘Centre’ in Fig.4) 

while the second cross-section cuts the material in a more remote region (‘End’ in Fig.4). A 

high-resolution mosaic was created from smaller optical images and the result is shown in 

Fig.5a for the ‘Centre’ cross-section and in Fig.5b for the ‘End’ cross-section. The evolution 

of the fibre volume fraction within the area highlighted in Fig.5 was then measured using an 

open source image processing software ImageJ and the results are presented in Fig.6. The 
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fibre distribution is very dense near the resin-rich area because the Z-pins have pushed fibres 

of the laminate aside and compressed them during insertion process, leading to considerable 

waviness in these fibres (see Fig.4). The averaged fibre volume fraction excluding resin-rich 

zone (see Fig.6) is very close to that of unpinned laminates. Including the volume of resin-

rich zone, the averaged fibre volume was about 0.56 at the ‘Centre’ section shown in Fig.4 

(Z-pin fibres were not considered in the fibre volume), and 0.57 in the ‘End’ section. The 

unpinned samples were analysed as well, and its averaged fibre volume fraction was found to 

be between 0.63±0.03. The Z-pins may have influence on the compaction of fibres during the 

curing process, and are responsible for the lower fibre volume fraction.  

 

Fig.5. Micro-structure of Z-pinned laminates through the thickness direction: the cross-

section at the (a) centre and (b) end of resin rich zone 



10 

 

 

Fig.6 Fibre volume fraction of Z-pinned laminates 

4. Experimental results 

4.1 Observation of failure types 

Three unpinned and four Z-pinned samples were tested for each off-axis angle, and a 

representative failed specimen for each test case is shown in Fig.7. All specimens failed along 

a fracture plane parallel to the fibre direction. For an off-axis angle of β = 30°, the fracture 

plane was following the insertion direction of Z-pins. Increasing the off-axis angle leads to an 

increase of the fracture angle relative to the thickness direction of the laminate. For both 

unpinned and Z-pinned samples in purely transverse compression tests (β = 90°), the failure 

plane initiated at an angle around 50 ± 5° degrees in the plane normal to fibre direction, with 

respect to the normal direction of the laminate. Similar failure modes have also been reported 

for unpinned unidirectional laminates in [23]. At the macroscopic level, it can be concluded 

that there is no noticeable difference in the failure mode between unpinned and pinned 

laminates. 



11 

 

 

Fig.7 Failure modes for unpinned and Z-pinned samples with different off-axis angles. 

4.2 Stress-strain curves 

Representative stress-strain curves in the loading axis direction from all tests are 

plotted in Fig.8, where the strain was estimated using Eq(2) with the measurement from laser 

extensometer. Stress first evolved linearly with strain until nonlinearity emerged.                                                                                                         

The initiation of nonlinearity increased with the increase of off-axis angle, because the yield 

strength can be enhanced by transverse compressive stress [24]. The axial failure strain was 

between 3% and 7% depending on off-axis angle, detailed discussion on it will be provided in 

Section 4.3. 
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Fig.8 The axial stress-strain curves along the loading direction. 

 

Fig.9 (a) major strain field at the axial strain of 0.032 for off-axis angle of 30°; (b) major 

strain field at the axial strain of 0.045 for off-axis angle of 45°; 

The major strain on surface of samples were obtained from images taken by the USB 

camera, with the GOM Aramis DIC software, as shown in Fig.9 for tests at off-axis angle of 

30° and 45°. Due to the fact that the magnitude of strain is dependent on many parameters 

such as the selected facet size during DIC process, this figure should only be for indicting a 
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global strain distribution, rather than any specific strain value. There is some high strain zoon 

near the boundary for unpinned samples, suggesting the influence of selected fixture on the 

experimental results, as discussed in section 2.1. The Z-pins have much more significant 

influence on the strain distribution than the boundary constraints introduced via loading 

interface. There is noticeable strain concentration following the orientation of resin pocket 

( see Fig.4) in Z-pinned samples.  

With the deformation field analysed using DIC methods, it is possible to calculate the 

transverse compression and in-plane shear response in local material coordinate system. The 

local stress components were calculated using Eq(3), to assemble the stress-strain response 

for the tests at off-axis angle of 30° and 45° presented in Fig.10. It becomes evident that the 

nonlinearity is mainly attributed to the in-plane shear deformation component, for both 

unpinned and Z-pinned samples (see Fig.10). The unpinned samples exhibited considerable 

nonlinear compressive deformation when approaching the failure strength, while this 

nonlinearity seemed to be limited by the presence of the Z-pins. As shown in Fig.10b, the 

normal failure strain of the Z-pinned samples is noticeably lower than that of unpinned ones, 

which could be caused by existing debonding at pin-matrix interface (Fig.2). The localization 

of strain around Z-pins (shown in Fig.9) is also responsible for the reduced ductility of Z-

pinned laminates. 
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Fig.10 Comparison of the in-plane deformation in material coordinate system for 

β = 30° and β = 45°. 

4.3 Stiffness, failure strain and strength 

The elastic modulus of the laminates for each off-axis angle β was investigated using 

the linear portion of the stress-strain curves of Fig.8 and results are presented in Fig.11a. The 

laminate modulus was reduced by Z-pinning in all investigated angles. This reduction in 

stiffness is justified by the waviness in the laminate plies caused by pin insertion [3], and by 

the presence of resin rich zones around each pin and the corresponding decrease in fibre 

volume fraction. 

The critical stress at the moment of unstable failure surface propagation, from both 

unpinned and Z-pinned samples, is summarized in Fig.11b. Despite considerable scatters in 

all tests, it is observed that Z-pinning decreases the in-plane shear dominated fracture, as 

illustrated in the experiments with off-axis angles of 30° and 45°. Similar results have been 

reported in tension tests of ±45° laminates [25]. The failure strength for off-axis angle of 60° 

was not reduced by the presence of Z-pins, although the scatter for both tests is considerable. 

However, it is interesting to notice that the purely transverse compression strength was 

improved by Z-pinning. The influence of Z-pinning on the inter-fibre failure strength shows 

clear dependence on the stress conditions. 
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Fig.11 Influence of Z-pinning on the (a) stiffness, (b) strength and (c) failure strain for 

different off-axis loading angles. 

The strain at final failure for both unpinned and Z-pinned laminates is shown in 

Fig.11c. When the failure is dominated with in-plane shear stress (β=30°), the failure strain is 

reduced by about 10% by Z-pin presence. The failure strain is not influenced by Z-pinning 

for an off-axis angle of 45°. However, larger intervals of results were observed in the Z-

pinned samples. For the samples loaded predominantly with transverse compression stress, Z-

pinning leads to an increase in the failure strain. The purely transverse compressive failure 

strain increases by approximately 17%, for the Z-pin aerial density of 2% used in this study. 

This increase may be attributed to two factors: (1) increase in the failure stress with the 

presence of the Z-pins and (2) the decreased stiffness modulus leading to greater strain 
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required to reach the equivalent stress level in unpinned laminates. The influence of Z-

pinning on in-plane failure transitioned from negative to position at the angle between 30° 

and 60°. Considering the misalignment angle illustrated in Fig.1, the local Z-pin angle 

deviation may be responsible for the relatively large scatter in 45° experiments.  

There were 3-5 samples tested for each angle for both unpinned and Z-pinned samples, 

and the actual scatter and error in Fig.11 should be higher if more samples were tested. 

Although only limited number of samples were tested in this work, the influence of Z-pins on 

the in-plane performance is evident at least from a qualitative manner, which may be further 

confirmed with more samples. 

4.4 Micromechanical failure mechanisms 

 

Fig.12 Failure surface of unpinned samples (a) β=60°; (b) β=90°. 

The failure processes were predominantly unstable during tests, making it very 

difficult to specify the location for damage initiation on the fracture surface. However, the 

fracture surface was reasonably consistent for each test case, and a representative surface was 
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selected to study the failure mechanisms at microscale with SEM imaging. All unpinned 

samples exhibited very similar fracture surface morphology for each magnification scale with 

the failure surface of samples with β = 60° and β = 90° shown in Fig.12 for reference. Inter-

fibre fracture dominated the failure process, while few fibre ruptures were observed in the 90° 

test cases. 

 

Fig.13 Failure mechanisms of Z-pinned laminates in compression tests of different off-axis 

angles: (a) β = 30°; (b) β = 45°; (c) β = 60°; (d) β = 90°. 

The fracture surfaces of Z-pinned samples are shown in Fig.13. The fracture planes on 

these samples are illustrated with red surface in the blocks. At an angle of β=30°, failure 

occurred between the resin rich zone and the surrounding fibres, with a few resin pockets 

visible in Fig.13a. As shown in Fig.4&6, there is a very high fibre volume fraction next to the 

Z-pins, causing a relatively smooth adhesion interface between the laminate and resin-rich 
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zone. The debonding between Z-pin and epoxy (Fig.2) may be largely responsible for 

stimulating the failure process. 

The failure mechanisms started to change when the off-axis angle increases from 30° 

to 45°. As shown in Fig.13b, interfacial failure between resin rich zone and fibres can be 

observed, which may be responsible for the decrease in failure strength. However, this 

interfacial crack didn’t propagate through the entire laminate thickness, and migrated to the 

opposite side of the resin rich zone, shearing off the Z-pin during this process. As a 

consequence of the combined failure modes, the failure strain of Z-pinned laminates was 

similar to that of unpinned ones. 

The crack path does not follow the resin rich interface for laminates with off-axis 

angle of 60°, as shown in Fig.13c. It propagates across the resin rich zone, causing all Z-pins 

near the failure surface to be sheared-off. Some Z-pins have failed with a small pultruded 

length from the failure surface meaning some pull-out has occurred during  failure surface 

propagation in the laminates [26].  

For an off-axis angle of 90° (pure transverse compression), the Z-pins failed in a very 

similar way as that in the samples of 60°, as shown in Fig.13d. However, the pull-out 

phenomenon is more significant. The existence of Z-pin rupture and pull-out for off-axis 

angles of 60° and 90° is the main justification for the increase in strength observed in Fig.9b 

for these two off-axis loading angles. 
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5. Discussion on the transition of Z-pinning influence 

 

Fig.14 Illustration of the inter-fibre failure plane 

The influence of Z-pinning on the failure strength varied from negative to positive as 

the change in off-axis angle. Such transition showed also clear correlation with the Z-pin 

failure modes introduced in the previous section. In this section, the authors try to explain the 

change of Z-pin failure mode, and therefore understand the transition of Z-pinning influence.  

The failure modes of Z-pins is largely dominated by the global failure process of the 

laminates, due to the small Z-pin aerial density. The inter-fibre failure happens on a plane 

parallel to the fibres according to Puck’s theory [23, 27, 28], as shown in Fig.14. The plane 

may be inclined by an angle ; only the two shear tractions n1 and nt , and the normal stress 

σn contribute to failure. The quadratic form of Puck’s criteria reads: 

2 2

n1 nt
22

n1 1 nt

1, for 0
n n nt n

e
R p R p

 


 

   
      

    
                                                           (4) 

where e is the damage exposure, 1np and ntp are the friction coefficient to account for the 

enhancement in shear strength due to compressive normal stress. n1R is the longitudinal in-

plane shear strength, which can be determined experimentally [29], and ntR is the transverse 

shear resistance on the Puck failure plane and can be estimated by [30]: 
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The friction coefficients can also be determined as [30]:  

1

tan 2
nt

f
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

                                                                                                         (6a) 
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1

n
n nt

nt

R
p p

R
                                                                                                                           (6b)  

in which θf is the failure plane angle under transverse compression, typically around 53°. The 

stress components on the failure plane can be calculated by rotating the stress σ22 and τ12 with 

angle θ. The angle of this failure plane θ is dependent on the stress state, and it can be 

determined by finding the angle that maximizes the damage exposure e [28].  

The failure angle θ can be determined for different combination of transverse 

compression and shear components, which can be calculated for different off-axis angle β 

using Eq(3). The variation of inter-fibre failure angle θ with respect to off-axis angle β is 

shown in Fig.15. When the off-axis angle is small, the sample is loaded mainly in shear, and 

the failure plane is aligned with the thickness direction. With the increase in off-axis angle, 

the failure plane rotates around the fibre axis in the laminate.  

The response of Z-pins was very much dependent on the way they were loaded [26, 

31]. In shear dominated failure, the resin-rich zone and the interface between resin pocket and 

surrounding laminate fibres weaken the intra-laminar strength (Fig.13 a), resulting in a failure 

plane parallel to the insertion direction of Z-pins. With increasing transverse compressive 

stress, the failure plane crosses through the Z-pin, resulting in initial debond and pull-out of 

the Z-pin, up to its complete failure in shear (Fig.13 c&d). These processes consume 

considerable energy providing an additional bridging force and increasing the damage 

resistance. 
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In summary, the imperfections caused by Z-pinning, such as a resin-rich zone, are 

responsible for the decrease in strength in shear-dominated failure modes while the bridging 

force brought by the Z-pins at the failure plane helps improve the strength under compression 

dominated loading conditions. 

 

Fig.15 Change of Z-pin failure mode with compression at different off-axis angle 

6. Conclusions 

The influence of Z-pinning on the inter-fibre properties of unidirectional laminates 

was investigated in this study. The analysis of the Z-pinned laminates’ microstructure 

revealed the distribution of fibre volume fraction in Z-pinned laminates, and it is found that 

the resin-rich zone was responsible for the decrease of fibre volume fraction in Z-pinned 

laminates.   
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The modulus of laminates was reduced considerably with Z-pinning, and it was 

attributed to the decrease in fibre volume fraction as a result of the resin rich zones.  

The failure strain and strength decreased with the presence of the Z-pins in shear 

dominated failure modes, while increased in the compression dominated failure modes. The 

change in the angle of the inter-fibre failure plane, resulting in different failure modes for Z-

pins and the resin-rich zone, was responsible for the influence of Z-pinning on the inter-fibre 

failure performance. 

The influence of Z-pinning on the inter-fibre failure of unidirectional laminates was 

relatively moderate. The strength dropped by less than 10% for the 2% Z-pin volume fraction 

in the unidirectional laminates. Further studies on multi-directional laminates are 

recommended to be more representative for industrial applications. 

The conclusion from this study is applicable to through-thickness reinforcement made 

with carbon fibre composites, such as T300/BMI used here. The bonding strength between 

pin and laminates may change with pin materials, and therefore affect the in-plane 

performance. 

The failure of Z-pinned laminates under transverse tension load will be conducted in 

future, to generate a complete inter-fibre failure envelope for design guidance in industry. 
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