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A B S T R A C T

The effects of type II hot corrosion on the fatigue resistance of turbine blade superalloys is of growing interest as
gas turbine (GT) original equipment manufacturers (OEMs) strive to optimise the operational efficiencies and
versatilities of GT systems. Hot corrosion fatigue has been observed in the under platform regions of first stage
GT blades, this location is subject to both relatively high principal stresses and stress gradients, combined with
temperatures up to those associated with type II hot corrosion (500–700 °C). The effect of the deposition flux of
corrosive salt species and the tensile stress dwell period on the fatigue performance and resultant crack
morphologies of single crystal (SC) superalloy CMSX-4 has been studied at 550 °C. Deposit recoat methodologies
were applied to specimens that were cyclically fatigued with a load-controlled trapezoidal waveform. It was
observed that introducing a longer dwell period increased the number of {1 0 0} crack initiations and reduced
the fatigue life (load cycles to failure). Optical and SEM microscopy and EDX techniques were used to examine
specimen fractography, and mechanisms of crack advance and propagation discussed.

1. Introduction

Gas turbines (GTs) are used for a range of power generation appli-
cations; some of the more common being industrial power generation
and aviation engines. With GTs relevance to the future of energy and
aerospace industries looking to remain high [1], and demand for GTs to
generate sustainable clean and efficient power being significant [1–3],
GT original equipment manufacturers (OEMs) are constantly striving to
optimise operation and efficiencies. One of the key limiting factors ef-
fecting the power density and thermal efficiencies that can be achieved
by GTs is the operational gas temperatures reached in the turbine sec-
tion of the engine. These gas temperatures are largely limited by the
material capabilities in the following areas; high temperature oxida-
tion/corrosion performance, and high temperature mechanical perfor-
mance such as creep and fatigue [4]. Often blade cooling is used in first
stage turbines in order to reduce the blade temperatures and improve
the mechanical properties, however the increasing temperatures can
result in the extended effect of hot corrosion. In addition to increasing
temperatures the low cycle fatigue (LCF) duty cycles GTs are subjected
to can also be intensified as a result of increased multi start up and shut
down procedures. This can be as a result of increased renewables and
peak loads on the energy grid in the case of industrial GTs, and in-
creased short haul flights in the case of aviation engines. These

combined factors provide the motivation for conducting combined hot
corrosion fatigue testing.

Due to the importance of the high temperature material properties
and degradation models for GT component design, there is a large
amount of research available and a good understanding of them [5–7].
However, whilst it has been observed [8], the interactions and me-
chanisms generated as a result of combined hot corrosion and me-
chanical fatigue is not currently a heavily researched area and as such
there is a limited understanding of these interactions. As a result,
combined material degradation mechanisms not predicted by current
design life methods have resulted from simultaneous hot corrosion and
mechanical fatigue [9]. Type II hot corrosion has been reported to both
assist crack initiation due to corrosion pitting, and accelerate fatigue
crack propagation [10]. The work presented in this paper focuses on
type II hot corrosion and fatigue interactions, and studies the effect of
extended dwell periods on fatigue life in the single crystal turbine blade
alloy CMSX-4. Dwell effects on hot corrosion fatigue have been studied
in a disk alloy [11], it was found that increased dwell resulted in a
decrease in fatigue life, which was attributed to time dependant me-
chanisms such as crack tip oxidation. This paper further hypothesises
that this effect could in part be due to additional crack growth occur-
ring in a period of static load, such as a fatigue dwell period. This hy-
pothesis is informed by previous research showing that cracks can
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initiate and propagate under static loads when combined with type II
hot corrosion [12,13]. Dwell periods were introduced using a trape-
zoidal waveform, on the first stage turbine blade material, single crystal
nickel based superalloy CMSX-4 (Table 1).

Type II hot corrosion is induced through salt deposition combined
with a regular supply of SOx [14]. Salt species typically deposit on the
surface of GT components, forming low melting point mixtures with
alloying elements. This mechanism commonly produce corrosion pro-
ducts rich in CoSO4 and NiSO4 for nickel-based superalloys such as
CMSX-4 [15,16]. In gas turbines, sulphur can be introduced into the
system through both fuel and air contaminants. However salt species
are normally introduced into the turbine via the air intake; this can be
in the form of particulate or liquid matter, which can then deposit onto
turbine components via two mechanisms. The salt species can either be
vaporised or sublimated in the combustion process, and then condense
onto turbine components, this is commonly referred to as vapour de-
position [17]. Additionally, salt species can deposit due to particles
sticking onto turbine components; resulting in a build-up of deposit
[18]. A combination of these mechanisms can occur depending on the
temperatures and pressures at certain locations in the turbine, a model
for similar deposition mechanisms in pulverised coal boilers was pro-
posed by Tomeczek et al [19].

The effect of the deposition flux of corrosive salts on the fatigue
resistance and resulting crack morphologies of single crystal (SC) su-
peralloy CMSX-4 was previously experimentally studied at 550 °C [13].
It was found that an increase in the deposition flux had a detrimental
effect on the fatigue resistance of CMSX-4. Additionally, the increase in
flux generated a shift in the crack propagation plane from the con-
ventional {1 1 1} slip systems [20,21], to a orthogonal {1 0 0} propa-
gation. This was observed in plane cylindrical specimens with no stress
concentration. This behaviour was associated with the orthogonal
corrosion attack and embrittlement of the primary gamma-prime
strengthening phase at the crack tip.

The stability of a crack under fatigue loading can be simplistically
assessed through the use of linear elastic fracture mechanics (LEFM)
[22]. In order for fatigue crack propagation to occur the stress intensity
has to overcome the fatigue threshold value (KTH). For CMSX-4 at a
temperature of 550 °C this has been determined to be in the range of
15MPa m [23].

Conventional fatigue is defined as occurring in three stages defined
as follows [24,25]. Stage 1 is defined as crack nucleation and initiation
and is arguably the least well understood and most heavily researched
area of fatigue. Crack nucleation and initiation is thought to occur due
to cyclic loading causing shear slip and resulting in the generation and
accumulation of micro pours which initiate a fatigue crack. Stage 2 is
the propagation stage which is arguably the most well understood stage
and can be simplistically modelled using Paris law and fracture me-
chanics. Fatigue crack propagation is thought to occur due to cyclic
loading generating plastic slip which results in dislocation emissions
ahead of the crack tip. Stage 3 is the final rupture stage where the re-
duction in cross-section leads to mechanical over load.

2. Methodology

2.1. Experimental methodology

Accelerated type II hot corrosion conditions were generated by de-
positing an 80/20mol% mix of Na2SO4/K2SO4 over 100 h intervals in
order to maintain a consistent deposition flux. A test gas of 300 ppm
SOx and air was passed through the test chamber to maintain a partial
pressure of SOx. Specimens were subjected to a temperature of 550 °C
via radiated heat from a sheath which was in turn induction heated
(Fig. 1). Specimens were pre-corroded for 500 h with either a 1.25 or
5 µg/cm2/h flux.

The specimens used were cylindrical plain specimens oriented in the
[0 0 1] direction, meaning the [0 0 1] axis is aligned to the length of the
cylindrical gauge length of the specimen to within a tolerance of± 20°.
Therefore the crystallographic groups for directions and planes can be
determined from this known [0 0 1] axis alignment. The cylindrical
gauge length of 6mm diameter generates a uniaxial stress state within
the specimen.

The procedure used for fatigue testing is outlined in Fig. 2 where all
specimens were exposed for 500 h of pre corrosion in order to

Table 1
Composition of CMSX-4 (wt%), Ni Bal.

Cr W Co Mo Al Ti Ta Re Hf

6.5 6.0 9.6 0.6 5.6 1.0 6.5 3..0 0.1

Fig. 1. Cranfield load controlled corrosion fatigue rig.

L. Brooking et al. International Journal of Fatigue 117 (2018) 13–20

14



accelerate the corrosive environment. Fatigue specimens were sub-
jected to a fully tensile un-reversed (R=0) trapezoidal load controlled
waveform (Fig. 3). The waveforms used were 1-1-1-1 s and 1-60-1-1 s.
Fatigue cycles were controlled through a servo hydraulic load feedback
control loop and S-N curves were plotted for stress levels between 700
and 850MPa.

2.2. Analytical methodology

Post testing specimens were examined using scanning electron mi-
croscopy (SEM) and characterised with energy dispersive X-rays (EDX).
Both Phillips FEI XL-30 and JEOL 7800F systems were used to analyse
fracture surfaces and cross-sections. Cross-sections were mounted in a
50:50 mixture of epoxy resin and ballotoni (40–70 µm diameter glass
beads), then polished using oil lubricant to preserve the corrosion
products.

Analysis of the banding observed on fracture faces was conducted
using Image-J [26] to assess crack propagation paths and en-
vironmentally induced banding spacing.

3. Results

3.1. Experimental results

For the 5 µg/cm2/h deposition flux curves a reduction in fatigue life
of up to four times was observed with the introduction of a 60 s dwell
period (Fig. 4). However as the gradient of the 60 s dwell curve is
shallower than that of the 1-1-1-1 curve. It should be noted that dwell
has a detrimental effect on fatigue life, and the data suggests that this is
more marked at higher stresses.

To provide an additional comparison, the 1.25 and 5 µg/cm2/h
deposition flux curves for 1-1-1-1 cycle has been included, as previously
presented in [13]. It can be seen that the relative effect of dwell from 1-
1-1-1 to 1-60-1-1 is significantly greater than the increased flux from
1.25 to 5 µg/cm2/h.

When considering the time to failure, due to the increased cycle
length of the 1-60-1-1 waveform compared with that of the 1-1-1-1, the
longer dwell has the impact of increasing the time to failure by up to
two times (Fig. 5). Similarly the shallower gradient of the 60 s dwell
curve suggests that longer dwell specimens take a relatively greater

time to fail at lower stresses. However due to the length of 60 s dwell
tests, testing with lower stresses achieved a runout defined as over
200 h of testing.

3.2. Fractographic analysis

Optical images of fracture faces on 60 s dwell samples show multiple
{1 0 0} crack initiations and subsequent propagation in the form of semi
elliptical thumbnails (Fig. 6). After a period of {1 0 0} propagation the
cracks transition to {1 1 1} propagation. During this rapid {1 1 1} me-
chanical crack growth driven by fatigue cycles, fatigue striations were
observed on the fracture face/facets. In relation to the presented ana-
lysis, striations were defined as rigged demarcation formed as a result of
fatigue crack propagation and generated predominantly on {1 1 1} fa-
cets on the fracture faces examined. Environmental banding were de-
fined as corrosion/oxidation demarcation generated predominantly on
{1 0 0} planes on the fracture faces examined.

Energy dispersive X-ray (EDX) analysis performed on an SEM, of
environmental banding on a fracture face (Fig. 7) is presented in
Table 2. It can be see that the spectrum locations 1 and 2, taken in the
oxide banding contain Ni, O and S, suggesting they are a corrosion
product of type II hot corrosion [15,16]. Spectrum location 1 taken in
the γ/γ′ microstructure contains a comparable wt% of elements as to
the substrate alloy CMSX-4, presented in Table 1.

SEM fracture face images of a 750MPa, 1-1-1-1 loaded specimen are
shown in Fig. 8. Closely spaced environmentally induced oxidation/
corrosion banding can be seen on the {1 0 0} fracture face. Additionally
fatigue striations can be seen on the same sample later in the crack
propagation path, these are generated on a {1 1 1} fracture face and are
most likely produced in the cycles just prior to mechanical overload,
when a relatively high ΔK is present at the crack tip. Similar oxidation
banding and marking can also be seen on the fracture face of an
800MPa, 1-1-1-1 loaded specimen presented in Fig. 9, along with build-
up of corrosion product on the fracture surface.

Comparative SEM images of fracture faces from 800 to 850MPa
specimens, with a 1-60-1-1 waveform are given in Fig. 10 and Fig. 11.
These images demonstrate the initial transitioning from the {1 0 0}
fracture plane to {1 1 1} rooftop peaks as the fatigue threshold is ex-
ceeded. Environmental oxide/corrosion banding, and {1 1 1} fatigue
striations are also visible.

It was noted that the small environmental banding spacing, such as
those visible on the 1 s dwell fracture face shown in Figs. 8 and 9, were
not clearly visible on 60 s dwell faces (Figs. 10 and 11). It is possible
that this banding, generated during fatigue crack initiation, has sub-
sequently been covered up by corrosion product in the 60 s dwell test
due to the longer durations specimens were exposed to resulting in
higher levels of corrosion on the fractured face.

A summary of the number of initiation sites visible over the fracture
face area, and of the environmentally induced oxidation/corrosion
banding markings are presented in Table 3. These values are estima-
tions taken from measurements of optical and SEM images.

Fig. 2. Flow chart outlining the type II hot corrosion
fatigue testing procedure.

Fig. 3. Trapezoidal load wave form: (a) ramp up period, (b) maximum stress
dwell period, (c) ramp down period, (d) minimum load dwell period.
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4. Discussion

Dwell had a significant impact on reducing the fatigue life when
acting in combination with type II hot corrosion. There are several
plausible mechanisms as to why dwell has this effect. One is that
holding the crack open for prolonged dwell periods allows the corrosive
contaminates to diffuse to the crack tip. This results in increased oxi-
dation around the crack tip, enabling the fatigue/cracking mechanism
to continue to propagate. A second mechanism is based upon previous
research that demonstrated a combined static stress and type II hot
corrosion cracking [12,13]. It is therefore plausible that under similar
conditions crack propagation can occur during static load dwell periods
as well as due to conventional fatigue cycling. This static crack

propagation would aid the nucleation and initiation of a fatigue crack.
It is also possible however that a combination of enhanced diffusion of
corrosive species to the crack tip and static load crack propagation is
also occurring and accelerating crack propagation under longer dwell
exposures.

It was observed that, whilst dwell reduced the cycles to failure, it
took a relatively longer test duration for 60 s dwell specimens to fail.
This can also be explained by considering the dwell as accelerating
crack initiation and being dependant on exposure time at maximum
stress, however when the fatigue threshold is exceeded, the fatigue
frequency and ΔK become the dominate factors behind crack propa-
gation. With service conditions generating much longer max stress
dwell periods in combination with high cycle fatigue (HCF) and low

Fig. 4. Normalised cycles to failure S-N curve, 1 s dwell curves are previously presented in [13].

Fig. 5. Normalised time to failure.
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cycle fatigue (LCF) [27], it is possible that dwell propagation could be
the dominate propagation mechanism for crack initiation, and HCF/
LCF for fatigue crack propagation until final fracture.

An increased number of {1 0 0} crack initiations where observed
with the introduction of 60 s dwell and with lower stress dwell tests. It
is proposed that there are two contributors for this. Firstly as a result of

crack tip oxidation/corrosion resulting in crack tip blunting and en-
hanced crack initiations [28]. And secondly as a result of the static
stress crack propagation associated with fatigue crack initiation, being
partly independent of stress concentration/intensity.

It can be theorised from fracture face analysis that the combined
type II hot corrosion fatigue cracking mechanism exhibits a stop/start
behaviour during crack initiation both with 1 and 60 s dwell. This
generates the environmental oxidation/corrosion banding. It is postu-
lated that this results from a time dependant embrittlement mechanism
at the crack tip causing crack arresting or abrupt changes in the pro-
pagation rate.

Measuring the spacing between environmental oxidation/corrosion
banding demonstrates that the spacing can be significantly different
between 1 s dwell and 60 s dwell waveform. Additionally the banding
looks visibly different, with 1 s dwell leaving light surface discolora-
tions in the γ/γ′ microstructure, whereas 60 s dwell leaves a thick scale
banding on top of the γ/γ′ microstructure. This difference in resultant
fracture face could be due to the early environmental banding being
masked by corrosion scale on the longer 60 s dwell tests. Additionally it
could be due to the dominance of static stress corrosion cracking gen-
erating larger beach mark type banding such as those scene in static
stress testing [12].

The shell shaped and semi-circular markings observed in the scale
on the 60 s dwell fracture faces have contours which match those of the
environmental oxidation markings. And are therefore likely to be as-
sociated with crack arresting or abrupt changes in the propagation rate.

Changes in the fracture face morphology can in part be associated
with the crack transitioning from stage 1 sub fatigue threshold crack
initiation, to stage 2 Paris crack growth occurring above the fatigue
threshold. Previously conducted finite element (FE) modelling [13]

Fig. 6. Optical microscope images of fracture surfaces (a) 800MPa, 5 µg/cm2/h deposit flux, 1-60-1-1 (b) 850MPa, 5 µg/cm2/h, 1-60-1-1 (c) 800MPa, 5 µg/cm2/h,
1-1-1-1 [13].

Fig. 7. Back scattered SEM image of environmental/corrosion banding on a
{1 0 0} fracture face, EDX spectrums were taken in locations 1, 2 and 3 and are
presented in Table 2.

Table 2
EDX analysis from spectrum locations given in Fig. 7.

Spectrum Ni wt% Co wt% Cr wt% O wt% W wt% Al wt% C wt% S wt% Ta wt%

1 52 9 8 9 8 8 0 0 5
2 41 7 4 22 2 3 8 5 0
3 45 9 4 21 3 2 9 5 0
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analysing the crack length at which the KTH is exceeded, suggests that it
is overcome at a length of around 114 µm for a plain specimen geo-
metry loaded at 800MPa uniaxial. This is of a similar magnitude to the
measured values for {1 0 0} to {1 1 1} rooftop transition presented in
Table 2, supporting this theory.

It is proposed that this transition in fracture face morphology is due
to stage 1 crack initiation being associated to the time dependant,
static-load driven crack growth. This accelerated stage 1 initiation has
been observed to take the form of {1 0 0} crystallographic propagation,
due to preferential γ′ corrosion attack at the crack tip [13]. However
when stage 2 propagation is reached, propagation results from fatigue
driven shear slip contributions in the crystallographic octahedral
〈1 1 1〉 directions.

5. Conclusions

• The introduction of a 60 s dwell period reduced the fatigue life of
single crystal superalloy CMSX-4 when acting in combination with
type II hot corrosion. Considering previous research into static stress
cracking combined with type II corrosion, it was suggested that
cracks could additionally propagate during the dwell period most
notably aiding fatigue crack nucleation and initiation. Fatigue
cracks demonstrated consistent surface initiation when exposed to a
type II hot corrosion environment.

• It was found that 60 s dwell tests required a relatively longer test
duration to fail than comparative 1 s dwell tests. It was proposed
that this was due to dwell enhancing the fatigue crack nucleation
and initiation, however when cracks exceeded the fatigue threshold
KTH and entered stage 2 propagation, loading frequency and ΔK
were the critical drivers determining crack propagation rates.

• The introduction of a 60 s dwell had the effect of increasing the
number of {1 0 0} crack initiations particularly at lower stresses.
This is theorised to be due to crack tip blunting due to oxidation and
static stress cracking being less sensitive to stress intensity/con-
centration.

Fig. 8. Fracture face images of specimen exposed to
750MPa, 1-1-1-1, 5 µg/cm2/h deposit flux (a)
Secondary electron (SE) image of {1 0 0} crack in-
itiation and propagation showing environmental
oxidation/corrosion banding close to initiation
point (b) Back scattered electron (BSE) image of
environmental oxidation/corrosion banding (c) SE
image of environmental oxidation/corrosion
banding (d) SE image of {1 1 1} fatigue striations
prior to mechanical overload located on {1 1 1}
facets.

Fig. 9. BSE, SEM images of an 800MPa , 5 µg/cm2/h, 1-1-1-1 specimen (a)
Fracture face showing transition between {1 0 0} and {1 1 1} [13] (b) Higher
magnification of circled location in image (a) showing corrosion product build
up on fracture surface.
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• Analysis of fracture faces suggests that the crack propagation me-
chanism propagates in a start/stop fashion. This maybe a result of a
time-dependant corrosion embrittlement or crack tip oxidation.

• A correlation in the transition of fracture morphology from {1 0 0}
to {1 1 1} rooftops with the KTH being exceeded was observed. This
suggests corrosion has an influence in the crack propagation plane.

• Further research to confirm the nature of crack growth and de-
termine crack growth rates under type II corrosion fatigue condi-
tions is needed in order to account for its effects when designing GT
components.

Fig. 10. SE SEM images of fracture face of spe-
cimen exposed to 800MPa, 1-60-1-1, 5 µg/cm2/h
deposit flux (a) environmentally induced oxida-
tion/corrosion markings and {1 0 0} to {1 1 1}
transitioning (b) & (c) semi-circular oxide banding
taken from white circled location in image (a) (d)
fatigue striations taken from black circled location
in image (a).

Fig. 11. SE SEM images of fracture face from a
specimen exposed to 850MPa, 1-60-1-1, 5 µg/cm2/
h deposit flux (a) environmentally induced oxida-
tion/corrosion banding and {1 0 0} to {1 1 1}
transitioning (b) & (c) semi-circular oxide banding
taken from white location (d) shell shaped feature
in the oxide scale taken from the black location.

Table 3
Environmental {0 0 1} spacing and fracture face analysis for 5 µg/cm2/h flux.

Stress
(MPa)

Dwell
time (s)

Number of {1 0 0}
initiations over
fracture face

Oxidation
banding spacing
(µm)

{1 0 0} to {1 1 1}
transition length
(µm)

800 60 8 150–180 150–200
850 60 4 185–250 100–150
800 1 1 15–20 150–200
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