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Abstract  

Presented is an efficient method for variance-based sensitivity analysis. It provides a general approach 

to transforming a sensitivity problem into one uncertainty propagation process, so that various 

existing approximation techniques (for uncertainty propagation) can be applied to speed up the 

computation. In this paper, formulations are deduced to implement the proposed approach with one 

specific technique named Univariate Reduced Quadrature (URQ). This implementation was evaluated 

with a number of numerical test-cases. Comparison with the traditional (benchmark) Monte Carlo 

approach demonstrated the accuracy and efficiency of the proposed method, which performs 

particularly well on the linear models, and reasonably well on most non-linear models. The current 

limitations with regard to non-linearity are mainly due to the limitations of the URQ method used.  

1 Introduction 

In the context of Uncertainty Quantification and Management (UQ&M), sensitivity analysis is used to 

identify the contribution of different uncertainty sources on the total variance of system/model outputs 

[1]. This is particularly useful for large scale simulation or design problems, where it is normally 

impractical to consider all the factors, especially at the outset. Various techniques have been 

developed for sensitivity analysis. Systematic reviews can be found in [1–4]. Among these 

techniques, the variance-based method, also referred to as the Sobol’ Indices, is widely used. It has 

the benefits of being ‘global’ and ‘model-independent’ [1]; where ‘global’ refers to analysing all the 

factors simultaneously over the entire region of interest, while ‘model-independent’ means that the 

approach is sufficiently general to handle different  problems, without the need of knowing the inner 

structure of the models (i.e. models are treated as ‘’black-boxes”).  

The development of variance-based sensitivity analysis dates back to 1970s, when Cukier et al [5–7], 

Schaibly and Shuler [8], proposed the method of Fourier Amplitude Sensitivity Test (FAST), in which 

the Fourier Transformation and searching curves were used to decompose the output variances. 

Similar problems were also referred to as ‘Importance Measure’ by Hora and Iman [9,10], Ishigami 
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and Homma [11], and Saltelli et al [12,13]; or ‘Top/Bottom Marginal Variance’ by Jansen [14]. In 

parallel, Sobol’ adopted the so-called ANOVA (Analysis of Variance)-representation to decompose a 

function, so that the portions of total variance caused by different factors can be formulated separately 

[15–19]. The numerical implementation is based on Monte Carlo Simulation along with multiple 

sampling sets (also referred as pick-freeze scheme [20]). It was later pointed out by Saltelli that all 

these methods calculate an equivalent statistical quantity [21], and that with this regard, the Sobol’s 

approach is the most general one [22]. 

Further research has been focusing on the computational efficiency, which includes: improved 

sampling strategies (Sobol’ sequences [23], Latin Hyper Cube [24], and Random Balance Design 

(RBD) [25–27]); improved formulation of estimators (Jansen [28], Saltelli [29], Sobol’ et al [30]); 

approximation techniques (quadrature plus Latin Hyper Cube [31], grid quadrature [32]); Bayesian 

approach based on Gaussian processes (Oakley and O’hagan [33]); and Polynomial Chaos Expansion 

(PCE) [34–40] (where the polynomial coefficients are used to obtain the Sobol’ indices), etc. 

In general, for most of the aforementioned techniques (except [26,27]), the computational cost is 

related to the number of uncertainty sources, and becomes very expensive for high dimensional 

problems. Thus improving efficiency (i.e. the calculation speed), is still an area requiring further 

research, especially for early stage computational design, where the problem scale is large, and fast 

assessments are required. 

In this research, a general approach is proposed to approximate the sensitivity indices based on the 

formulation from Saltelli [1,2,29]. In particular, we propose one implementation of the proposed 

approach, using the Univariate Reduced Quadrature (URQ) method [41], which was originally 

developed for uncertainty propagation. 

The remaining part of the paper is structured as follows. Section 2 contains a background on variance-

based sensitivity analysis and a brief description of the URQ method. In Section 3, the general 

approach for approximation is presented, followed by the detailed formulations incorporated with 

URQ, which include: the first order, second order, and total effect indices. The method is evaluated in 

Section 4, using a number of test-cases and is compared to the traditional (benchmark) MCS 

approach. Finally conclusions and future work are presented in Section 5. 

2 Background 

The rationale and the derivation of the variance-based sensitivity analysis method is given by Saltelli 

in [1,2,29]. In this section, only a brief overview is presented, along with a short description of the 

URQ technique, which forms a part of the method proposed in Section 3.  
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2.1 Variance-based Sensitivity Indices 

Consider a computational model with 𝑛 input variables: 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛). It can be written in the 

form of a function: 

 𝑦 = 𝑓(𝒙) (2.1) 

Here, 𝑦 is assumed to be the only output variable, while a vector 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑚) can be used for 

multivariate output functions. In the original definition of Sobol’ indices, each output is regarded as a 

separate scalar and the calculation process should be repeated for each of those. Recent research [42–

49] has proposed several generalised sensitivity indices which are dedicated to the case of 

multivariate outputs, based on decomposition or covariance of the outputs. Such an extension is 

beyond the scope of the current research. Also, the input variables are assumed to be independent in 

this work. The reader is referred to [32,50–52] for further information regarding sensitivity analysis 

with correlated input variables.  

2.1.1 First-order Indices 

A first-order index accounts for the portion of variance caused by uncertainty from only one of the 

inputs. For instance the sensitivity index of 𝑥𝑖, can be defined as [2]:   

 𝑆𝑖 =
𝑉(𝑦) − 𝐸𝑋𝑖

(𝑉𝑥~𝑖
( 𝑦|𝑥𝑖=𝑋𝑖

))

𝑉(𝑦)
 (2.2) 

Here 𝑉(𝑦) is the total variance, while 𝑉𝑥~𝑖
( 𝑦|𝑥𝑖=𝑋𝑖

) is the conditional variance with 𝑥𝑖 temporarily 

fixed as a constant 𝑋𝑖. The expectation 𝐸𝑋𝑖
(𝑉𝑥~𝑖

( 𝑦|𝑥𝑖=𝑋𝑖
)) is with regard to the randomness of 𝑋𝑖  

(which is equivalent to the randomness of 𝑥𝑖, as 𝑋𝑖 is a realization of 𝑥𝑖). 

By further expansion and derivation, equation (2.2) could be reformulated to the following forms:  

 𝑆𝑖 = 
𝐸𝑋𝑖

(𝐸𝑥~𝑖
2 ( 𝑦|𝑥𝑖=𝑋𝑖

)) − 𝐸2(𝑦)

𝑉(𝑦)
 (2.3) 

 𝑆𝑖 = 
𝑉𝑋𝑖

(𝐸𝑥~𝑖
( 𝑦|𝑥𝑖=𝑋𝑖

))

𝑉(𝑦)
 (2.4) 

 𝑆𝑖 = 
𝐸(𝑓∗(𝒙∗𝒊)) − 𝐸2(𝑦)

𝑉(𝑦)
 (2.5) 

The reader is referred to [1,2] for more details on the derivation of equation (2.4), and to [11,29] for 

the derivation of equations (2.3) and (2.5). It should be noted that in equation (2.5), the problem is 

converted into a single loop expectation of the new function 𝑓∗(𝒙∗𝒊), which is defined by multiplying 

the original function 𝑓(𝑥) with itself:  

 𝑓∗(𝒙∗𝒊) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … 𝑥𝑛) ∙ 𝑓(𝑥1
′ , 𝑥2

′ , … 𝑥𝑖−1
′ , 𝑥𝑖, 𝑥𝑖+1′, … 𝑥𝑛′), (2.6) 
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where 𝒙∗𝒊 is the new input vector, which consists of 2𝑛 − 1 variables. In this vector, 𝑥𝑘 and 𝑥𝑘′ are 

considered as independent variables for each 𝑘 = 1,2, … , 𝑛; 𝑘 ≠ 𝑖, but with the same Probability 

Density Function (PDF). Also note that there is no 𝑥𝑖′ in vector, 𝒙∗𝒊:  

 𝒙∗𝒊 = [𝑥1, 𝑥2, … , 𝑥𝑖, … 𝑥𝑛, 𝑥1
′ , 𝑥2

′ , … 𝑥𝑖−1′, 𝑥𝑖+1′, … 𝑥𝑛′] (2.7) 

2.1.2 Second-order Indices 

A high order index captures the portion of variance caused by particular combinations (interaction 

effects) of the input variables [1,2]. For example, the second order index 𝑆𝑖𝑗 refers to the interaction 

effect caused by the combination of the 𝑖𝑡ℎ and 𝑗𝑡ℎ input variables. Note that this interaction effect 

leads to a portion in the output variance, while 𝑥𝑖 and 𝑥𝑗 are still independent inputs. In this research, 

only the second order indices are considered, but the same principle can be applied to calculate higher 

order indices as well. 

Similar to the first order indices, 𝑆𝑖𝑗 can be calculated by solving the expectation of conditional 

variance with regard to two input variables. It can be proven that this formulation also includes the 

first order effects [1,2], therefore the first order indices need to be subtracted: 

 
𝑆𝑖𝑗 =

𝑉(𝑦) − 𝐸𝑋𝑖,𝑗
(𝑉𝑥~𝑖,𝑗

( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗
))

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 

(2.8) 

Some alternatives formulations [1,2] include, 

 𝑆𝑖𝑗 =
𝐸𝑋𝑖,𝑗

(𝐸𝑥~𝑖,𝑗

2 ( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗
)) − 𝐸2(𝑦)

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 

(2.9) 

 𝑆𝑖𝑗 = 
𝑉𝑋𝑖,𝑗

(𝐸𝑥~𝑖,𝑗
( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗

))

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 (2.10) 

 𝑆𝑖𝑗 = 
𝐸 (𝑓∗∗(𝒙∗𝒊𝒋)) − 𝐸2(𝑦)

𝑉(𝑦)
− 𝑆𝑖 − 𝑆𝑗 (2.11) 

Using similar reasoning as applied to  equations (2.5) - (2.7), 𝑓∗∗(𝒙∗𝒊𝒋) is defined by multiplying the 

original function 𝑓(𝒙) with itself, taking two different sets of independent inputs, but this time sharing 

the same 𝑥𝑖 and 𝑥𝑗 in both sets. 

 
𝑓∗∗(𝒙∗∗𝒊𝒋) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑗 … 𝑥𝑛)

∙ 𝑓(𝑥1′, 𝑥2′, … , 𝑥𝑖−1′, 𝑥𝑖, 𝑥𝑖+1′, … , 𝑥𝑗−1′, 𝑥𝑗, 𝑥𝑗+1′, … , 𝑥𝑛′) 
(2.12) 

Here 𝒙∗∗𝒊𝒋 is the corresponding input vector, consists of 2𝑛 − 2 variables. In this vector, 𝑥𝑘 and 𝑥𝑘′ 

are considered as independent variables for each 𝑘 = 1,2,… , 𝑛; (𝑘 ≠ 𝑖, 𝑗), but with the same PDF. 

However there is no 𝑥𝑖′ and 𝑥𝑗′ in this vector.  
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 𝒙∗∗𝒊𝒋 = [𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑗, … , 𝑥𝑛, 𝑥1′, 𝑥2′, … , 𝑥𝑖−1′, 𝑥𝑖+1′, … , 𝑥𝑗−1′, 𝑥𝑗+1′, … , 𝑥𝑛′] (2.13) 

2.1.3 Total Effect Indices 

A total effect index accounts for the variable’s first order effect and all its interactions with other 

variables [1,2]. That is,  

 
𝑆𝑖

𝑇 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗

𝑛

𝑗=1
𝑗≠𝑖

+ ∑ 𝑆𝑖𝑗𝑘

𝑛

𝑗,𝑘=1
𝑘≠𝑗≠𝑖

+ ∑ 𝑆𝑖𝑗𝑘𝑙

𝑛

𝑗,𝑘,𝑙=1
𝑙≠𝑘≠𝑗≠𝑖

+ ⋯ 
(2.14) 

Apart from calculating sums using equation (2.14), which may become impractical when the number 

of inputs is high, this index is more widely calculated by using a nested structure as:  

 𝑆𝑖
𝑇 =

𝐸𝑿~𝒊
(𝑉𝑥𝑖

( 𝑦|𝒙~𝒊=𝑿~𝒊
))

𝑉(𝑦)
, (2.15) 

where all variables except 𝑥𝑖 are first fixed for the calculation of the conditional variance, and then are 

varied  in the expectation loop. The reader is referred to [1,2] for more rigorous mathematical 

derivation. By expansion and further deduction, equation (2.15) could be transferred as following 

alternatives, 

 𝑆𝑖
𝑇 = 

𝑉(𝑦) + 𝐸2(𝑦) − 𝐸𝑋~𝑖
(𝐸𝑥𝑖

2 ( 𝑦|𝒙~𝒊=𝑿~𝒊
))

𝑉(𝑦)
 (2.16) 

 𝑆𝑖
𝑇 = 

𝑉(𝑦) − 𝑉𝑿~𝒊
(𝐸𝑥𝑖

( 𝑦|𝒙~𝒊=𝑿~𝒊
))

𝑉(𝑦)
 (2.17) 

 𝑆𝑖
𝑇 = 

𝑉(𝑦) + 𝐸2(𝑦) − 𝐸(𝑓~∗(𝒙~∗𝒊))

𝑉(𝑦)
 (2.18) 

Again, the same reasoning as applied to equations (2.5) - (2.7), 𝑓~∗(𝒙~∗𝒊) is defined by multiplying 

the original function 𝑓(𝑥) with itself. This time all the inputs are the same except 𝑥𝑖 and 𝑥𝑖′. 

 𝑓~∗(𝒙~∗𝒊)  = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛) ∙ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖′, 𝑥𝑖+1, … , 𝑥𝑛) (2.19) 

Therefore 𝒙~∗𝒊 consists of only 𝑛 + 1 variables. In this vector, 𝑥𝑖 and 𝑥𝑖′ are considered independent 

variables, but with the same PDF.  

 𝒙~∗𝒊 = [𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛, 𝑥𝑖′] (2.20) 

2.2 Univariate Reduced Quadrature Method 

The Univariate Reduced Quadrature (URQ) method was proposed by Padulo, Campobasso, and 

Guenov [41] for efficient uncertainty propagation. It uses the first four statistical moments (mean 𝜇𝑥𝑝
, 

standard deviation 𝜎𝑥𝑝
, skewness 𝛾𝑥𝑝

, and kurtosis 𝛤𝑥𝑝
) of the stochastic inputs, and produces the 

mean and variance of the output. 
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 𝐸(𝑦) ≈ 𝐸𝑈𝑅𝑄(𝑦) = 𝑊0𝑓(𝝁𝒙) + ∑ 𝑊𝑝 [
𝑓(𝒙𝒑

+)

ℎ𝑝
+ −

𝑓(𝒙𝒑
−)

ℎ𝑝
− ]

𝑛

𝑝=1

 (2.21) 

 

𝑉(𝑦) ≈ 𝑉𝑈𝑅𝑄(𝑦)

= ∑ {𝑊𝑝
+ [

𝑓(𝒙𝒑
+) − 𝑓(𝝁𝒙)

ℎ𝑝
+ ]

2

+ 𝑊𝑝
− [

𝑓(𝒙𝒑
−) − 𝑓(𝝁𝒙)

ℎ𝑝
− ]

2𝑛

𝑃=1

+ 𝑊𝑝
± [𝑓(𝒙𝒑

+) − 𝑓(𝝁𝒙)][𝑓(𝒙𝒑
−) − 𝑓(𝝁𝒙)]

ℎ𝑝
+ℎ𝑝

− } 

 

(2.22) 

The coefficients in equation (2.21) and (2.22) are shown in the Table 1. The required number of 

model evaluation is 2𝑛 + 1 in total. 

Table 1. Coefficients and vectors used in URQ 

ℎ𝑝
+ =

𝛾𝑥𝑝

2
+ √Γ

𝑥𝑝
−

3𝛾𝑥𝑝
2

4
 𝑊0 = 1 + ∑

1

ℎ𝑝
+ℎ𝑝

−

𝑛

𝑝=1

 

ℎ𝑝
− =

𝛾𝑥𝑝

2
− √Γ

𝑥𝑝
−

3𝛾𝑥𝑝
2

4
 𝑊𝑝 =

1

ℎ𝑝
+−ℎ𝑝

−
 

𝝁𝒙 = [𝜇𝑥1
, 𝜇𝑥2

, … , 𝜇𝑥𝑛
] 𝑊𝑝

+ =
(ℎ𝑝

+)
2

− ℎ𝑝
+ℎ𝑝

− − 1

(ℎ𝑝
+−ℎ𝑝

−)
2  

𝒙𝒑
+ = [𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, … , 𝜇𝑥𝑛
] 𝑊𝑝

− =
(ℎ𝑝

−)
2

− ℎ𝑝
+ℎ𝑝

− − 1

(ℎ𝑝
+−ℎ𝑝

−)
2  

𝒙𝒑
− = [𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑝

+ ℎ𝑝
−𝜎𝑥𝑝

, … , 𝜇𝑥𝑛
] 𝑊𝑝

± =
2

(ℎ𝑝
+−ℎ𝑝

−)
2 

3 Proposed Method 

3.1 General Approach 

The formulations reviewed in Section 2.1 are summarized in Table 2, where the equations are 

categorised into four options. In the traditional Monte Carlo Simulation (MCS) approach [11,16], only 

option 4 is adopted, because the other three options (1, 2, and 3) are computationally too expensive 

for MCS, due to the nested integrals in the formulations. The rationale of the proposed approach is 

that, since the nature of these integrals is to solve nested expectations/variances, the calculation can be 

reformulated as an uncertainty propagation process. As there are plenty of more efficient uncertainty 

propagation techniques compared with MCS, options 1, 2, and 3, may become computationally 

affordable.  
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Table 2. Equations used in four options to implement the proposed approach 

Index Option 1: Nested 

Expectation of 

Variance 

Option 2: 

Nested 

Expectations 

Option 3: Nested 

Variance of 

Expectation 

Option 4: 

Single Loop 

Expectation 

First Order: 𝑆𝑖 Eq. (2.2)  Eq. (2.3) Eq. (2.4) Eq. (2.5) 

Second Order: 𝑆𝑖𝑗  Eq. (2.8) Eq. (2.9) Eq. (2.10) Eq. (2.11) 

Total Effect: 𝑆𝑖
𝑇 Eq. (2.15) Eq. (2.16) Eq. (2.17) Eq. (2.18) 

 

 

Figure 1. The general process, illustrated with first order index using option 1 

The critical part is to construct the nested propagation loops as illustrated in Figure 1, by taking 𝑆𝑖 in 

option 1 as an example. The uncertainty propagation is first applied to calculate the variance of the 

original model, as indicated by the number (1) in Figure 1. In this process, the 𝑖𝑡ℎ variable is 

temporarily fixed as 𝑋𝑖, thus the calculated variance is conditional. Now considering the variation of 

𝑋𝑖, the block indicated by dashed lines can be treated as a ‘new model’, with 𝑋𝑖 as its input, and the 

conditional variances as the outputs.  Another propagation loop is conducted on top of this ‘new 

model’, regarding the uncertainty of 𝑋𝑖, as indicated by the number (2) in Figure 1. This outer loop 

provides the means (expectations) of the conditional variances, which could be used to calculate the 

indices as defined by Eq. (2.2). For Option 2 and 3, similar approaches could be applied by modifying 

the sequence of calculating the means and variances. Option 4, as discussed previously, does not 

require any nested loops. The approach is to apply single-loop uncertainty propagation for the mean 

of 𝑓∗(𝒙∗𝒊) defined by Eq. (2.6). 

3.2 Formulation with URQ 

Following the general approach, the specific formulation with the URQ method is deduced in this 

section, regarding the first order, second order, and total effect indices. In this research, we considered 

Original 
Model

Input 
Variables

Output 
Variables

Uncertainty Propagation for Variance

…

Information of 
Uncertainty

𝑋𝑖

…

……

𝑥1

𝑥2

𝑥 

𝑥𝑖−1

𝑥𝑖

𝑥𝑖+1

𝑥𝑛

Constant

𝑦 𝑉𝑥~𝑖
 𝑦 

𝑥𝑖=𝑋𝑖

Information of 
Uncertainty

Uncertainty Propagation for Mean

Treated as a new model

𝐸𝑋𝑖
𝑉𝑥~𝑖

 𝑦 
𝑥𝑖=𝑋𝑖

Conditional 
Variances as New 

Outputs

𝑋𝑖  as 
New Input

(1)

(2)
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all the four options as listed in Table 2, as it is difficult to predict their performance before numerical 

test. To avoid repetition, only the derivation of option 1 will be explained in detail. 

3.2.1 First-order Indices 

Given equation (2.2), as the computation of 𝑉(𝑦) via URQ has already been specified in equation 

(2.22), the following section will focus on the calculation of 𝐸𝑋𝑖
(𝑉𝑥~𝑖

( 𝑦|𝑥𝑖=𝑋𝑖
)). 

To calculate the inner loop 𝑉𝑥~𝑖
( 𝑦|𝑥𝑖=𝑋𝑖

), firstly 𝑥𝑖 is temporarily fixed as a constant 𝑋𝑖. Compared 

with the original function 𝑓 defined in equation (2.1), a new function 𝑓1
(~𝑖)

 could be obtained, which 

has 𝑛 − 1 input variables.  

 𝑓1
(~𝑖)(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑦|𝑥𝑖=𝑋𝑖

= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑋𝑖 , 𝑥𝑖+1, … , 𝑥𝑛) (3.1) 

Equation (2.22) from URQ could be used to calculate the variance of this new function 𝑓1
(~𝑖)

. 

 

𝑉𝑥~𝑖
( 𝑦|𝑥𝑖=𝑋𝑖

) = 𝑉 (𝑓1
(~𝑖)) = ∑ {𝑊𝑝

+ [
𝑓1

(~𝑖)
(𝒙𝒑

(~𝑖)
+ )−𝑓1

(~𝑖)
(𝝁𝒙

(~𝑖)
)

ℎ𝑝
+ ]

2

+𝑛
𝑝=1
𝑝≠𝑖

𝑊𝑝
− [

𝑓1
(~𝑖)

(𝒙𝒑

(~𝑖)
− )−𝑓1

(~𝑖)
(𝝁𝒙

(~𝑖)
)

ℎ𝑝
− ]

2

+

𝑊𝑝
±

[𝑓1
(~𝑖)

(𝒙𝒑

(~𝑖)
+ )−𝑓1

(~𝑖)
(𝝁𝒙

(~𝑖)
)][𝑓1

(~𝑖)
(𝒙𝒑

(~𝑖)
− )−𝑓1

(~𝑖)
(𝝁𝒙

(~𝑖)
)]

ℎ𝑝
+ℎ𝑝

− }, 

(3.2) 

where 𝑊𝑝
+, 𝑊𝑝

−, 𝑊𝑝
± , ℎ𝑝

+, and ℎ𝑝
− are defined by the original URQ method (as shown in Table 1), 

while 𝝁𝒙
(~𝑖)

, 𝒙𝒑

(~𝑖)
+ , and 𝒙𝒑

(~𝑖)
− are defined by removing the 𝑖𝑡ℎ variable from the original input vector, as 

shown in equation (3.3), (3.4), and (3.5) respectively. 

 𝝁𝒙
(~𝑖)

= [𝜇𝑥1
, 𝜇𝑥2

, … , 𝜇𝑥𝑖−1
, 𝜇𝑥𝑖+1

, … , 𝜇𝑥𝑛
] (3.3) 

 𝒙𝒑

(~𝑖)
+ = [𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, … , 𝜇𝑥𝑖−1
, 𝜇𝑥𝑖+1

, … , 𝜇𝑥𝑛
], 𝑝 ≠ 𝑖 (3.4) 

 𝒙𝒑

(~𝑖)
− = [𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑝

+ ℎ𝑝
−𝜎𝑥𝑝

, … , 𝜇𝑥𝑖−1
, 𝜇𝑥𝑖+1

, … , 𝜇𝑥𝑛
], 𝑝 ≠ 𝑖 (3.5) 

Recalling the definition of 𝑓1
(~𝑖)

, since the value of 𝑋𝑖 is still not specified, equation (3.2) now 

becomes a function of 𝑋𝑖, which could be defined as, 

 𝑔1(𝑋𝑖) = 𝑉𝑥~𝑖
( 𝑦|𝑥𝑖=𝑋𝑖

) (3.6) 

Then, the expected value of 𝑔1(𝑋𝑖) can be calculated by employing Equation (2.21). 
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𝐸𝑋𝑖
(𝑉𝑥~𝑖

( 𝑦|𝑥𝑖=𝑋𝑖
)) = 𝐸𝑋𝑖

(𝑔1(𝑋𝑖))

= 𝑊0
(𝑖)

𝑔1(𝜇𝑥𝑖
) + 𝑊𝑖 [

𝑔1(𝜇𝑥𝑖
+ ℎ𝑖

+𝜎𝑥𝑖
)

ℎ𝑖
+ −

𝑔1(𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
)

ℎ𝑖
− ], 

(3.7) 

where 𝑊𝑖, ℎ𝑖
+, and ℎ𝑖

− are defined in Table 1 and 𝑊0
(𝑖)

 is defined by: 

 𝑊0
(𝑖)

= 1 +
1

ℎ𝑖
+ℎ𝑖

− (3.8) 

Substituting Equation (3.7) and (2.22) into Equation (2.2), the first order Sobol’ index is obtained by: 

 
𝑆𝑖 ≈

𝑉𝑈𝑅𝑄(𝑦) − 𝑊0
(𝑖)

𝑔1(𝜇𝑥𝑖
) + 𝑊𝑖 [

𝑔1(𝜇𝑥𝑖
+ ℎ𝑖

+𝜎𝑥𝑖
)

ℎ𝑖
+ −

𝑔1(𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
)

ℎ𝑖
− ]

𝑉𝑈𝑅𝑄(𝑦)
 

(3.9) 

In this equation, 𝑉𝑈𝑅𝑄(𝑦) is the total variance calculated by equation (2.22). 

3.2.2 Second Order Indices 

Given equation (2.8), the objective is to calculate 𝐸𝑋𝑖,𝑗
(𝑉𝑥~𝑖,𝑗

( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗
)), where two variables 

(noted as the 𝑖𝑡ℎ and 𝑗𝑡ℎ input variables) are involved in the nested loop. Similar to the deduction of 

the first order index, the second order index can be obtained by: 

 

𝑆𝑖𝑗 ≈ {𝑉𝑈𝑅𝑄(𝑦) − 𝑊0
(𝑖,𝑗)

𝑔2 (𝜇𝑥𝑖
, 𝜇𝑥𝑗

)

+ 𝑊𝑖 [
𝑔2 (𝜇𝑥𝑖

+ ℎ𝑖
+𝜎𝑥𝑖

, 𝜇𝑥𝑗
)

ℎ𝑖
+ −

𝑔2 (𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
, 𝜇𝑥𝑗

)

ℎ𝑖
− ]

+ 𝑊𝑗 [
𝑔2 (𝜇𝑥𝑖

, 𝜇𝑥𝑗
+ ℎ𝑗

+𝜎𝑥𝑗
)

ℎ𝑗
+ −

𝑔2 (𝜇𝑥𝑖
, 𝜇𝑥𝑗

+ ℎ𝑗
−𝜎𝑥𝑗

)

ℎ𝑗
− ]}

/𝑉𝑈𝑅𝑄(𝑦) − 𝑆𝑖 − 𝑆𝑗 

(3.10) 

In this equation, 𝑊𝑖, 𝑊𝑗, ℎ𝑖
+, ℎ𝑗

+, ℎ𝑖
−and ℎ𝑗

− are defined in Table 1 and 𝑊0
(𝑖,𝑗)

 is defined by:  

 𝑊0
(𝑖,𝑗)

= 1 +
1

ℎ𝑖
+ℎ𝑖

− +
1

ℎ𝑗
+ℎ𝑗

− (3.11) 

The function 𝑔2 is defined as the conditional variance: 
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𝑔2(𝑋𝑖 , 𝑋𝑗) = 𝑉𝑥~𝑖,𝑗
( 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗

) = 𝑉 (𝑓2
(~𝑖,𝑗)

)

= ∑

{
 
 

 
 

𝑊𝑝
+

[
 
 
 𝑓2

(~𝑖,𝑗)
(𝑥𝑝

(~𝑖,𝑗)
+ ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)

ℎ𝑝
+

]
 
 
 
2

𝑛

𝑝=1
𝑝≠𝑖,𝑗

+ 𝑊𝑝
− [

𝑓2
(~𝑖,𝑗)

(𝑥𝑝

(~𝑖,𝑗)
− ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)

ℎ𝑝
− ]

2

+ 𝑊𝑝
±

[𝑓2
(~𝑖,𝑗)

(𝑥𝑝

(~𝑖,𝑗)
+ ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)] [𝑓2

(~𝑖,𝑗)
(𝑥𝑝

(~𝑖,𝑗)
− ) − 𝑓2

(~𝑖,𝑗)
(𝜇𝑥

(~𝑖,𝑗)
)]

ℎ𝑝
+ℎ𝑝

−

}
 
 

 
 

, 

(3.12) 

where, 

 𝝁𝒙
(~𝑖,𝑗)

= [𝜇𝑥1
, 𝜇𝑥2

, … , 𝜇𝑥𝑖−1
, 𝜇𝑥𝑖+1

, … , 𝜇𝑥𝑗−1
, 𝜇𝑥𝑗+1

, … , 𝜇𝑥𝑛
] (3.13) 

 
𝒙𝒑

(~𝑖,𝑗)
+ = [𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, … , 𝜇𝑥𝑖−1
, 𝜇𝑥𝑖+1

, … , 𝜇𝑥𝑗−1
, 𝜇𝑥𝑗+1

, … , 𝜇𝑥𝑛
] ,

𝑝 ≠ 𝑖, 𝑗 

(3.14) 

 
𝒙𝒑

(~𝑖,𝑗)
− = [𝜇𝑥1

, 𝜇𝑥2
, … , 𝜇𝑥𝑝

+ ℎ𝑝
−𝜎𝑥𝑝

, … , 𝜇𝑥𝑖−1
, 𝜇𝑥𝑖+1

, … , 𝜇𝑥𝑗−1
, 𝜇𝑥𝑗+1

, … , 𝜇𝑥𝑛
] ,

𝑝 ≠ 𝑖, 𝑗 

(3.15) 

 
𝑓2

(~𝑖,𝑗)
(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑗−1, 𝑥𝑗+1, … , 𝑥𝑛) = 𝑦|𝑥𝑖=𝑋𝑖,𝑥𝑗=𝑋𝑗

= 𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑋𝑖 , 𝑥𝑖+1, … , 𝑥𝑗−1, 𝑋𝑗, 𝑥𝑗+1, … , 𝑥𝑛) 
(3.16) 

3.2.3 Total Order Indices 

Following equation (2.15), the total effect Sobol’ index can be obtained by: 

 

𝑆𝑖
𝑇 ≈

𝑊0
(~𝑖)

𝑔 (𝝁𝒙
(~𝑖)

) + ∑ 𝑊𝑝 [
𝑔 (𝒙𝒑

(~𝑖)
+ )

ℎ𝑝
+ −

𝑔 (𝒙𝒑

(~𝑖)
− )

ℎ𝑝
− ]𝑛

𝑝=1
𝑝≠𝑖

𝑉𝑈𝑅𝑄(𝑦)
 

(3.17) 

where 𝝁𝒙
(~𝑖)

, 𝒙𝒑

(~𝑖)
+ , and 𝒙𝒑

(~𝑖)
− have been defined in equation (3.3), (3.4), and (3.5), respectively. 𝑊0

(~𝑖)
 

is given by: 

 𝑊0
(~𝑖)

= 𝑊0 −
1

ℎ𝑖
+ℎ𝑖

− (3.18) 

In this equation, 𝑔  is a function of all the variables, except 𝑥𝑖 
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𝑔 (𝑋1, 𝑋2, … 𝑋𝑖−1, 𝑋𝑖+1, … 𝑋𝑛) = 𝑉𝑥𝑖
( 𝑦|𝒙~𝒊=𝑿~𝒊

) = 𝑉 (𝑓 
(𝑖)

)

= 𝑊𝑖
+ [

𝑓 
(𝑖)

(𝜇𝑥𝑖
+ ℎ𝑖

+𝜎𝑥𝑖
) − 𝑓 

(𝑖)
(𝜇𝑥𝑖

)

ℎ𝑖
+ ]

2

+ 𝑊𝑖
− [

𝑓 
(𝑖)

(𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
) − 𝑓 

(𝑖)
(𝜇𝑥𝑖

)

ℎ𝑖
− ]

2

+ 𝑊𝑖
±

[𝑓 
(𝑖)

(𝜇𝑥𝑖
+ ℎ𝑖

+𝜎𝑥𝑖
) − 𝑓 

(𝑖)
(𝜇𝑥𝑖

)] [𝑓 
(𝑖)

(𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
) − 𝑓 

(𝑖)
(𝜇𝑥𝑖

)]

ℎ𝑖
+ℎ𝑖

−  

(3.19) 

where, 𝑓 
(𝑖)

 is defined by fixing all the variables except the 𝑖𝑡ℎ, 

 𝑓 
(𝑖)(𝑥𝑖) = 𝑦|𝒙~𝒊=𝑿~𝒊

= 𝑓(𝑋1, 𝑋2, … , 𝑋𝑖−1, 𝑥𝑖, 𝑋𝑖+1, … , 𝑋𝑛), (3.20) 

3.3 Algorithm and Computational Cost 

In this section, the algorithm of the proposed method is given. Once again to avoid repetition, only 

option 1 from Table 2 will be discussed, as option 2 and 3 could be implemented in a similar way. 

The algorithm for option 4 is a straightforward application of URQ.  

We start with the first order indices as presented in section 3.2.1; the overall process for calculating 

𝐸𝑋𝑖
(𝑉𝑥~𝑖

( 𝑦|𝑥𝑖=𝑋𝑖
))  is illustrated in Figure 2, which could be considered as one specific realization of 

the general process in Figure 1. 

 

Figure 2. Illustration of the computational algorithm 

To execute the outer URQ loop, 𝑋𝑖 needs to be sampled at 𝜇𝑥𝑖
, 𝜇𝑥𝑖

+ ℎ𝑖
+𝜎𝑥𝑖

,  and 𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
, for the 

term ①, ②, and ③, respectively. For each realization of 𝑋𝑖, the inner URQ loop need to sample the 

other  𝑛 − 1 variables at 𝜇𝑥𝑝
, 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

,  and 𝜇𝑥𝑝
+ ℎ𝑝

−𝜎𝑥𝑝
, where 𝑝 ≠ 𝑖. It should be noted that in 

𝑓1 𝒙 (~𝑖) = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑋𝑖 , 𝑥𝑖+1, … , 𝑥𝑛

Inner URQ Loop for Variance:𝑉𝑥~𝑖
 𝑦|𝑥𝑖=𝑋𝑖

Outer URQ Loop for Mean: 𝐸𝑋𝑖
𝑉𝑥~𝑖

 𝑦|𝑥𝑖=𝑋𝑖

𝐸𝑋𝑖
𝑔1 𝑋𝑖 = 𝑊0

(𝑖)
𝑔1 𝜇𝑥𝑖

+ 𝑊𝑖

𝑔1(𝜇𝑥𝑖
+ ℎ𝑖

+𝜎𝑥𝑖
)

ℎ𝑖
+ −

𝑔1(𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
)

ℎ𝑖
−

𝑉𝑥~𝑖
 𝑦 

𝑥𝑖=𝑋𝑖

= 𝑉 𝑓1
~𝑖

= ∑ 𝑊𝑝
+

𝑓1
~𝑖

(𝒙𝒑

~𝑖
+ ) − 𝑓1

~𝑖
𝝁𝒙

(~𝑖)

ℎ𝑝
+

2

+ 𝑊𝑝
−

𝑓1
~𝑖

(𝒙𝒑

~𝑖
− ) − 𝑓1

~𝑖
𝝁𝒙

(~𝑖)

ℎ𝑝
−

2

+ 𝑊𝑝
±

𝑓1
~𝑖

(𝒙𝒑

~𝑖
+ ) − 𝑓1

~𝑖
𝝁𝒙

(~𝑖)
𝑓1

~𝑖
(𝒙𝒑

~𝑖
− ) − 𝑓1

~𝑖
𝝁𝒙

(~𝑖)

ℎ𝑝
+ℎ𝑝

−

𝑛

𝑝=1
𝑝≠𝑖

Loop to access each variable (For 𝑖 = 1,2,3, … , 𝑛)

Equation (3.7) 

Equation (3.2) 

① ② ③
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these nested loops, many samples could be reused. Therefore it is beneficial to evaluate the model at 

all the required points first, then to start the algebraic calculation of equations (3.2) and (3.7). The 

sampling points are summarized in Table 3. 

Table 3. Sampling points 

Sampling Point Number of Evaluations 

(𝜇𝑥1
, 𝜇𝑥2

, 𝜇𝑥3
, … , 𝜇𝑥𝑛

) 1 

(𝜇𝑥1
, 𝜇𝑥2

, 𝜇𝑥3
, … , 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, … , 𝜇𝑥𝑛
) ; 𝑝 = 1,2,3, … , 𝑛 𝑛 

(𝜇𝑥1
, 𝜇𝑥2

, 𝜇𝑥3
, … , 𝜇𝑥𝑝

+ ℎ𝑝
−𝜎𝑥𝑝

, … , 𝜇𝑥𝑛
) ; 𝑝 = 1,2,3, … , 𝑛 𝑛 

(𝜇𝑥1
, 𝜇𝑥2

, 𝜇𝑥3
, … , 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, … , 𝜇𝑥𝑞
+ ℎ𝑞

+𝜎𝑥𝑞
, … , 𝜇𝑥𝑛

) ; 𝑝, 𝑞

= 1,2,3, … , 𝑛; 𝑝 ≠ 𝑞 

(
𝑛
2
) = 𝑛(𝑛 − 1)/2 

(𝜇𝑥1
, 𝜇𝑥2

, 𝜇𝑥3
, … , 𝜇𝑥𝑝

+ ℎ𝑝
−𝜎𝑥𝑝

, … , 𝜇𝑥𝑞
+ ℎ𝑞

−𝜎𝑥𝑞
, … , 𝜇𝑥𝑛

) ; 𝑝, 𝑞

= 1,2,3, … , 𝑛; 𝑝 ≠ 𝑞 

(
𝑛
2
) = 𝑛(𝑛 − 1)/2 

(𝜇𝑥1
, 𝜇𝑥2

, 𝜇𝑥3
, … , 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, … , 𝜇𝑥𝑞
+ ℎ𝑞

−𝜎𝑥𝑞
, … , 𝜇𝑥𝑛

) ; 𝑝, 𝑞

= 1,2,3, … , 𝑛; 𝑝 ≠ 𝑞 

𝑛(𝑛 − 1) 

 

The total number of evaluations is therefore: 

 𝑁𝑡𝑜𝑡𝑎𝑙
𝑂𝑝𝑡𝑖𝑜𝑛 1,2, 

= 2𝑛2 + 1 (3.21) 

For the second order indices, the process is similar. For 𝐸𝑋𝑖,𝑗
(𝑔2(𝑋𝑖, 𝑋𝑗)), the outer URQ loop now 

has five terms. For each (𝑥𝑖, 𝑥𝑗) = (𝜇𝑥𝑖
, 𝜇𝑥𝑗

), (𝜇𝑥𝑖
+ ℎ𝑖

+𝜎𝑥𝑖
, 𝜇𝑥𝑗

), (𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
, 𝜇𝑥𝑗

), (𝜇𝑥𝑖
, 𝜇𝑥𝑗

+

ℎ𝑗
+𝜎𝑥𝑗

), and (𝜇𝑥𝑖
, 𝜇𝑥𝑗

+ ℎ𝑗
−𝜎𝑥𝑗

), the inner URQ loop is calculated while the other 𝑛 − 2 variables are 

set to be 𝜇𝑥𝑝
, 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, and 𝜇𝑥𝑝
+ ℎ𝑝

−𝜎𝑥𝑝
 once at a time. It can be shown that the same set of 

samples used for the first order indices can also be used for the second order indices. 

For total effect indices, the outer URQ loop now has 2𝑛 − 1 terms, in these terms, each 𝑥𝑝 ≠ 𝑥𝑖 is set 

as 𝜇𝑥𝑝
, 𝜇𝑥𝑝

+ ℎ𝑝
+𝜎𝑥𝑝

, and 𝜇𝑥𝑝
+ ℎ𝑝

−𝜎𝑥𝑝
 one at a time. In the inner URQ loop, only 𝑥𝑖 is sampled, at 

the values of 𝜇𝑥𝑖
, 𝜇𝑥𝑖

+ ℎ𝑖
+𝜎𝑥𝑖

,  and 𝜇𝑥𝑖
+ ℎ𝑖

−𝜎𝑥𝑖
. Similar to the second order indices, no further 

sampling is required for the total effect indices.  

The implementations of the option 2 & 3 are similar, and the same sampling points are required. 

Option 4, as discussed previously, is a straightforward application of single-loop URQ for the mean of 

𝑓∗(𝒙∗𝒊) defined by Eq. (2.6). This requires even less points as there is no nested structure in 

calculation. As 𝑓∗(𝒙∗𝒊) has 2𝑛 − 1 input variables, the number of model evaluations for option 4 is: 

 𝑁𝑡𝑜𝑡𝑎𝑙
𝑂𝑝𝑡𝑖𝑜𝑛 4

= 2(2𝑛 − 1) + 1 = 4𝑛 − 1 (3.22) 

Because option 1, 2, and 3 require the same set of sampling points (and option 4 requires a subset of 

these points), for each application, it is recommended to calculate four sets of indices using all the 

options. A potential way to compare the accuracy of these results (without knowing the true values) is 
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to sum all the first order and high order indices from each option. Theoretically, for a set of indices 

from one option, the sum should be one, or slightly smaller if some higher order indices are neglected 

in implementation (in the case when the high order interactions are not significant). The option which 

gives the sum closest to one should be selected. 

It should be mentioned that, although quadrature techniques are also used in Ref [31] and [32] for 

approximating integrals, the proposed approach is able to transform the sensitivity problem into an 

uncertainty propagation process, so that apart from the URQ method, various other efficient 

propagation techniques can be applied with the same process. Additionally, compared with other 

quadrature techniques (e.g. the grid quadrature), in which the computational cost grows exponentially 

with the dimensions, the adopted URQ method requires a much lower number of sampling points. 

Thus it is especially suitable for analysis of large scale problems. 

4 Evaluation 

The proposed method is applied on a number of test-cases, and the results are compared with 

theoretical values (where available) or with estimations from the traditional (benchmark) MCS 

approach. These include 18 analytical test examples and one practical design case study. The 

analytical examples are based on single line algebraic equations so that representative mathematical 

properties can be explored explicitly.  By contrast, the practical design case study is based on a 

complex engineering model. The purpose is to demonstrate the scaling potential of the proposed 

method. At the end of this section, a comparison is given between the theoretical computational costs 

of the proposed method and other techniques. 

4.1 Analytical Test Cases 

4.1.1 Problem Statement 

The typical mathematical properties, which may affect and limit the applicability of the proposed 

method include: non-linearity, non-monotonicity of the model, type of the distribution, multi-modality 

of the distribution, interaction of variables, and combinations of the above. 

In order to take into account these properties, the test-cases are intended to form a “control variable 

experiment”, which involves five models and various settings of several probability distributions. 

Although a large amount of experiments have been used for testing and evaluation, only the most 

representative ones are shown in this paper. A summary of the test-cases is shown in Table 4, where 

the model and the corresponding distribution settings are indicated by the first and second number in 

the notation of the test-case. For example T1-3 indicates the combination of the first model and the 

third group of distribution settings. 
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The first three test-cases (T1-1, T1-2, and T1-3) are based on a linear model, defined by equation 

(4.1). In T1-1, all the inputs follow the uniform distribution 𝑈(0,1). This is the simplest case which 

serves as a reference. In T1-2, different distributions are used, including Gaussian, triangular and 

uniform distributions. Here, the Gaussian distribution is noted as N(μ, σ), where μ and σ are the mean 

and standard deviation, respectively. The triangular distribution is noted as Tri(ll, ul, mo), where ll, ul, 

and mo are the lower limit, upper limit, and mode, respectively. T1-3 is designed to investigate the 

influence of multimodal distributions. The selected distribution is the mixed-Gaussian [53], which is 

represented as 𝑀G(𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝑝1, 𝑝2), where 𝜇, 𝜎, and 𝑝 are the mean, standard deviation, and 

portion of two Gaussian distributions, respectively. It should be noted that in T1-2 and T1-3, the 

parameters of the distributions are arbitrarily selected. Also, as mentioned above, various other 

settings have been tested beside the ones reported here, and no influence on accuracy has been found 

for these linear cases. 

Test cases T2-1, T2-2, T2-3, T2-4, T2-5, and T2-6 are based on the non-linear model defined by 

equation (4.2). In this model, there is no interaction effect between the variables. The influence of 

non-monotonicity is explored in T2-1, T2-2, and T2-3, in which the distributions of the input 

variables are gradually expanded from [0,1] to more non-monotonic regions. T2-4 and T2-5 are used 

to demonstrate the combination of non-monotonicity and multi-modality. Combination of other PDF 

shapes is used in T2-6. 

Test cases T3-1, T3-2, and T3-3 are proposed to evaluate the method on high order indices (for 

interaction effects).  In these three cases, equation (4.3) is used and the expected interaction effects are 

dependent on the ranges of input variables. In T3-1, first order effect will be the main contributor of 

the total variance, while in T3-2 and T3-3 more interactions are involved.  

Apart from the proposed functions, experiments have also been conducted on the Sobol’ G-Function 

specified in Eq. (4.4) (the original source is [54], while the analytical solution is presented in [23]) 

and Ishigami-Function in Eq. (4.5) (original source is  [11], analytical solution available in [17]). 

These two functions are considered as classic test-cases for sensitivity analysis.  

 𝐹1(𝑥1, 𝑥2, 𝑥 ) = 𝑥1 + 2𝑥2 + 3𝑥  (4.1) 

 𝐹2(𝑥1, 𝑥2, 𝑥 ) = 𝑥1
2 + sin (

𝜋

2
𝑥2) + 𝑒|𝑥3| (4.2) 

 𝐹 (𝑥1, 𝑥2, 𝑥 ) = 𝑥1𝑥 + 𝑥1sin (
𝜋

2
𝑥2) + 𝑥2𝑒|𝑥3| + 𝑥1𝑥2𝑥  (4.3) 

 𝐹4(𝑥1, 𝑥2, 𝑥 ) = ∏
|4𝑥𝑖 − 2| + 𝑎𝑖

1 + 𝑎𝑖

 

𝑖=1

 (4.4) 

 𝐹5(𝑥1, 𝑥2, 𝑥 ) = 𝑠𝑖𝑛(𝑥1) + 𝑎 ∙ 𝑠𝑖𝑛2(𝑥2) + 𝑏 ∙ 𝑥 
4𝑠𝑖𝑛 (𝑥1) (4.5) 
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Table 4. Summary of the test-cases  

Notation Equation Distribution Settings Justification 

T1-1: Linear 

Model (4.1) 
𝑥1~𝑈(0,1) 

𝑥2~𝑈(0,1) 

𝑥 ~𝑈(0,1) 

Simplest reference case 

T1-2: Linear 

Model (4.1) 
𝑥1~𝑁(1,1) 

𝑥2~𝑇𝑟𝑖(0,2,1.5) 

𝑥 ~𝑈(0,2) 

Linearity and mixture of different 

distributions 

T1-3: Linear 

Model (4.1) 
𝑥1~𝑀G(0,5,0.5,0.7,0.25,0.75) 

𝑥2~𝑀G(1,3,0.5,0.5,0.5,0.5) 

𝑥 ~𝑀G(5,7,0.7,0.5,0.75,0.25) 

Linear and multi-modality 

T2-1: Non-Linear 

Model (4.2) 
𝑥1~𝑈(0,1) 

𝑥2~𝑈(0,1) 

𝑥 ~𝑈(0,1) 

Non-linearity and monotonicity 

T2-2: Non-Linear 

Model (4.2) 
𝑥1~𝑈(−1,1) 

𝑥2~𝑈(0,2) 

𝑥 ~𝑈(−1,1) 

Non-linearity and non-monotonicity 

T2-3: Non-Linear 

Model (4.2) 
𝑥1~𝑈(−1,1) 

𝑥2~𝑈(−2.5,2.5) 

𝑥 ~𝑈(−1,1) 

Non-linearity and non-monotonicity 

T2-4: Non-Linear 

Model (4.2) 
𝑥1~𝑀G(−0.5,0.5,0.2,0.2,0.75,0.25) 

𝑥2~𝑀G(−2.2,2.2,0.5,0.5,0.5,0.5) 

𝑥 ~𝑀G(−0.5,0.5,0.2,0.2,0.25,0.75) 

Non-Linear and multi-modality 

T2-5: Non-Linear 

Model (4.2) 
𝑥1~𝑀G(−0.5,0.5,0.2,0.2,0.75,0.25) 

𝑥2~𝑀G(−1.8,1.8,0.6,0.6,0.5,0.5) 

𝑥 ~𝑀G(−0.5,0.5,0.2,0.2,0.25,0.75) 

Non-Linear and multi-modality 

T2-6: Non-Linear 

Model (4.2) 
𝑥1~𝑁(1,1) 

𝑥2~𝑇𝑟𝑖(−2,3,1) 

𝑥 ~𝑈(−2,2) 

Non-Linear and mixture of different 

distributions 

T3-1: Non-Linear 

Model (4.3) 
𝑥1~𝑈(0,1) 

𝑥2~𝑈(0,1) 

𝑥 ~𝑈(0,1) 

Non-linearity and moderate interaction 

effect 

T3-2: Non-Linear 

Model (4.3) 
𝑥1~𝑈(−0.5,1.5) 

𝑥2~𝑈(−0.5,1.5) 

𝑥 ~𝑈(−0.5,1.5) 

Non-linearity and strong interaction 

effect 

T3-3: Non-Linear 

Model (4.3) 
𝑥1~𝑈(−1,1) 

𝑥2~𝑈(−1,1) 

𝑥 ~𝑈(−1,1) 

Non-linearity and strong interaction 

effect  

T4-1:  Sobol’ G 

Function 

(4.4) 

𝑥1~𝑈(0,1); 𝑎1 = 0 

𝑥2~𝑈(0,1); 𝑎2 = 0 

𝑥 ~𝑈(0,1); 𝑎2 = 0 

Classic Test Case 

T4-2: Sobol’ G 

Function 

(4.4) 

𝑥1~𝑈(0,1); 𝑎1 = 0 

𝑥2~𝑈(0,1); 𝑎2 = 3 

𝑥 ~𝑈(0,1); 𝑎2 = 5 

Classic Test Case 

T4-3: Sobol’ G 

Function 

(4.4) 

𝑥1~𝑈(0,1); 𝑎1 = 10 

𝑥2~𝑈(0,1); 𝑎2 = 30 

𝑥 ~𝑈(0,1); 𝑎2 = 50 

Classic Test Case 

 

T5-1: Ishigami 

Function 

(4.5) 

𝑥1~𝑈(0,1); 𝑎 = 7 

𝑥2~𝑈(0,1); 𝑏 = 0.1 

𝑥 ~𝑈(0,1) 

Classic Test Case: (𝑎 and 𝑏 from [11]) 

T5-2: Ishigami 

Function 

(4.5) 

𝑥1~𝑈(0,1); 𝑎 = 7 

𝑥2~𝑈(0,1); 𝑏 = 0.05 

𝑥 ~𝑈(0,1) 

Classic Test Case: (𝑎 and 𝑏 from[17]) 
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T5-3: Ishigami 

Function 

(4.5) 

𝑥1~𝑈(0,1); 𝑎 = 7 

𝑥2~𝑈(0,1); 𝑏 = 0.01 

𝑥 ~𝑈(0,1) 

Classic Test Case 

 

4.1.2 Results 

For each test-case, all the four options (as summarized in Table 2) have been tested and the results are 

plotted in Figure 3 to 7, with comparison to the theoretical/reference values. For most of the cases, 

theoretical values were obtained by using the equations from [16]. Some parts of the integral were 

numerically solved using vectorized adaptive quadrature [55] and Simpson quadrature [56] 

(implemented as the “integral” and “quad” functions in MATLAB). In T1-3, T2-4, and T2-5, the 

theoretical values were difficult to obtain due to the distributions being used, therefore values from 

the MCS are used as references. The theoretical results of the adopted test-cases are obtained from 

relevant papers referred to above. 

 

Figure 3. Results of the linear model under different settings 

It can be seen from Figure 3 that the proposed method worked well on the linear model, regardless of 

the distributions used (including multi-modal distributions). The results from the four options are 

almost the same and are very close to the theoretical/reference values. 
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Figure 4. Results of the non-linear model 1 under different settings 

Regarding the first non-linear model, the proposed method was able to deliver accurate results when 

all the inputs are inside the monotonic region of the function, as shown by Figure 4(a). In test-case 

T2-2 (Figure 4(b)), as the input distributions are expanded to the non-monotonic regions, the errors 

increase. It could be seen that, option 4 is the most affected one, resulting in negative values for 𝑆1 

and 𝑆2. The results of the other three options are still relatively close to the theoretical/reference 

values. Figure 4 (c) shows an extreme case where 𝑆2 is not detectable by the proposed method. Figure 

4 (d) and (e) represent the results of test-case T2-4 and T2-5. It can be seen that the accuracy of the 

former is considerably higher, especially regarding 𝑆2. This difference was initially unexpected, 

because in these two cases, the same model is used and the distribution settings are very close. The 

only slight difference is the distribution of 𝑥2, which still covers roughly the same region (from -4 to 

4) in both cases. A further investigation of this effect will be presented in Section 4.1.3. Figure 4 (f) 

shows the results of test-case T2-6, in which a number of different distributions are used. The results 

are close and relatively accurate, regarding the first three options. 
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Figure 5. Results of test cases with interaction effects 

The results of T3-1, T3-2 and T3-3 are shown in Figure 5. It can be seen that, the predicted first order 

and total effect indices are relatively accurate in test case T3-1, as plotted in Figure 5, (a) and (b). In 

T3-2, when the region of input is expanded to (−0.5,1.5), the accuracy has been reduced (Figure 5, 

(d) and (e)). In both T3-1 and T3-2, the second order indices do not come very close to the benchmark 

(Figure 5, (c) and (f)). T3-3 is an extreme case, when the proposed method fails altogether. It should 

be noted that in Figure 5 (g), the reference values of 𝑆1 and 𝑆  are also zeros.  

The results of test-cases T4 and T5 are shown in Figure 6 and Figure 7, respectively. The quality of 

results is dependent on the selected coefficients in equations (4.4) and (4.5). Regarding the Sobol’ G-

Function, when the 𝑎𝑖’s are all zeros, the proposed method could not produce any results as shown in 

Figure 6 (a), (b), and (c). As the values of 𝑎𝑖’s are increased, the first order and total order indices 
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from option 1 and option 3 become more accurate (Figure 6 (d), (e), (g), and (h)). Regarding the 

Ishigami Function, a smaller value of 𝑏 will lead to better predictions (Figure 7). For all the cases, the 

second order indices are still quite irrelevant. 

 

Figure 6. Results for test on the Sobol’ G-function 
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Figure 7. Results for tests on Ishigami Function 

4.1.3 Discussion 

The evaluation confirmed at large the effectiveness of the method, but also revealed some limitations. 

It was discovered that these are largely limitations of the URQ technique itself. The first limitation is 

due to aliasing, which could explain the low accuracy in T2-3 and T2-5.   
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+ ℎ2

+𝜎𝑥2
 respectively). 

At these three points, the variation of 𝑠𝑖𝑛 (
𝜋

2
𝑥2) are grossly underestimated, as illustrated in Figure 8. 

This directly leads to the disregard of 𝑆2 and a reduction in the calculated total variance. The latter 

will also cause over-estimation of 𝑆1 and 𝑆  (Figure 4 (c)). 
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Figure 8. Under-estimated variation for 𝒔𝒊𝒏 (
𝝅

𝟐
𝒙𝟐) 

For T2-4 and T2-5, although in both cases, the distributions of 𝑥2 have covered roughly the same 

region from -4 to 4, the subtle difference between the two PDFs has shifted the sampling points 

accordingly, as illustrated in Figure 9. Due to this shift, the accuracy of results in T2-4 (Figure 4(d)) is 

higher than that of T2-5 (Figure 4(e)).  

 

Figure 9. Comparison of the two PDFs and the relevant sampling points 
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variable at a time and keep the others at their mean values. If the means of the distributions happen to 
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will become zero. Therefore the variance will be totally disregarded, and cannot be used as 

denominator to calculate the indices (the estimated mean is zero as well). In test case T3-3 and T4-1 

the models have similar (multiplicative) features and the distributions of inputs are symmetric to the 

zero point. This is the reason why no results could be given by this method for these two cases. In the 

Ishigami function (equation (4.5)), this effect is caused by the component 𝑏 ∙ 𝑥 
4𝑠𝑖𝑛 (𝑥1), therefore by 

using smaller values of coefficient 𝑏, the effect will weaken, which gives more accurate predictions 

(as shown by T5-1, T5-2, and T5-3) .  

This limitation also leads to the discrepancies regarding option 2 and especially option 4. In option 4, 

a new function 𝑓∗(𝒙∗𝒊) is defined by multiplying the original function 𝑓(𝑥) with itself, as shown in 

equation (2.6). URQ is then used to estimate the mean of 𝑓∗(𝒙∗𝒊). This new function has a 

multiplicative feature which URQ cannot handle (similar to the case shown in Figure 10), therefore 

the estimation is less accurate. For instance, the negative values in Figures 4, 6, and 7 are caused by 

the under-estimation of 𝐸(𝑓∗(𝒙∗𝒊)), which leads to negative 𝐸(𝑓∗(𝒙∗𝒊)) − 𝐸2(𝑦) in equation (2.5). In 

option 2, a similar multiplicative structure exists in the term 𝐸𝑋𝑖
(𝐸𝑥~𝑖

2 ( 𝑦|𝑥𝑖=𝑋𝑖
)), as defined in 

equation (2.3), where 𝐸𝑥~𝑖
( 𝑦|𝑥𝑖=𝑋𝑖

) is regarded as a function of 𝑥𝑖, and URQ is used to predict its 

mean. In this case, the discrepancy is less influential when estimating 𝐸𝑋𝑖
(𝐸𝑥~𝑖

2 ( 𝑦|𝑥𝑖=𝑋𝑖
)), because 𝑥𝑖 

is the only variable, while in 𝐸(𝑓∗(𝒙∗𝒊)), there are 2𝑛 − 1 variables (refer also to equation (2.7)).  

As the aforementioned limitations are largely due to the URQ technique itself, it is expected that the 

proposed approach could be improved by adopting alternative propagation techniques. For instance, 

by using the propagation technique proposed by [57], additional sampling points will be used as 

indicated by the green dots in Figure 10. This will capture more information of the model response 

surface, and avoid disregarding the output variance. Another potential solution is to introduce 

coordinate transformations in future developments. 

 

Figure 10. Example of a 2D case 
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4.2 Practical Test Case 

4.2.1 Problem Statement 

The proposed method was applied on an example of an aircraft environmental control system (ECS), 

adopted from Pérez-Grande and Leo [58]. In this example, thermal characteristics of an ECS, such as 

pressures, temperatures at different locations, and the overall entropy generation rate are calculated, 

given the designer-specified geometry properties. The latter include the heat exchanger dimensions, 

fin characteristics, and efficiencies of turbines, compressors, nozzles, and diffusers. There are 119 

models in total,  adopted from [58], including 59 independent (design variables and parameters) and 

120 dependent variables (intermediate variables and outputs), respectively. The details of the inputs 

and outputs of interest are given in the appendix (Table 6 and Table 7, respectively). 

While the original work of Pérez-Grande and Leo [58] was focused on ECS optimization, the current 

study is concerned with sensitivity analysis of their optimal solution. Uncertainties have been 

considered for all the 42 input variables, listed in Table 6. In the original paper [58], some of these 

inputs were considered as fixed parameters, while in the current test case, their variations are also 

taken into account. All the nominal values are adopted from the original paper and the uncertainty 

distributions are arbitrarily assigned, with combinations of uniform, Gaussian, triangular, and 

mixture-Gaussian (multi-modal) distributions. It should be emphasised that the purpose of this study 

is to validate the proposed method with a practical application of realistic size and complexity, rather 

than conduct an investigation into the merits of the particular ECS design. In a real design scenario, 

the distributions could be based on historical data or expert elicitation [59–61]. 

4.2.2 Results 

Given the complexity of the test case, it was deemed infeasible to calculate the theoretical Sobol’ 

indices. Thus the results of the proposed method are compared with reference values obtained from 

the traditional (benchmark) Monte-Carlo approach. As it is impractical to show the different sets of 

Sobol’ indices for all the 19 output variables, only 𝑁𝑠 is chosen for illustration purposes. In the 

original paper [58], this output was used as the objective function (to be minimised) in the design 

optimization.  
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Figure 11. First order indices calculated from the four options, compared with the reference values 
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Figure 12. Total indices calculated from the four options, compared with the reference values 

Shown in Figure 11 and Figure 12 are the first order and the total effect indices calculated as per the 

four options from Table 2 (marked as red in each subplot), compared with the reference values from 
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MCS (marked as blue). The interaction effects in this model turned out to be insignificant. 

Comparison of the results are not shown as all the values (both the calculated and reference ones) are 

very close to zero. 

It can be seen that option 1 and 3 produced relatively good matches with the reference values, for both 

first order (Figure 11 (a) & (c)) and total effect indices (Figure 12 (a) & (c)). While option 2 and 4 

would sometimes give negative values for 𝑆𝑖 (Figure 11 (b) & (d)) and over-estimated values for 𝑆𝑖
𝑇 

(Figure 12 (b) & (d))). The discrepancies are related mostly to the estimation of the insignificant 

factors, while the most influential ones are captured well.  

4.2.3 Discussion 

In Figures 11-12 (c) and (d), the discrepancies regarding option 2 and 4 are mainly due to the second 

limitation as discussed in Section 4.1.3 and illustrated in Figure 10. 

Figures 13 and 14 illustrate the efficiency and the effectiveness of the proposed method with regard to 

the practical test case. The solid blue lines represent the first order and total effect indices for cooling 

ratio (𝑆𝑟 and 𝑆𝑟
𝑇, respectively) calculated from the traditional (benchmark) MCS approach, at different 

model evaluations, 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑚(𝑛 + 1) for 𝑆𝑟 and 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑚(𝑛 + 2) for 𝑆𝑟
𝑇, respectively, where 

𝑚 = 500,1000,2500,5000,7500,10000,12500,15000,17500,20000,30000,50000. The red error 

bars in Figure 13 and 14 indicate 95% confidence intervals of the estimated values, obtained by using 

the boot-strap method from [62]. Regarding the first order index, it can be seen that the value start to 

converge after 645000 points. The straight black dash line is the value calculated by the proposed 

method (Option 1) at a computational cost of 3529 model evaluations. This is 183 times faster 

(compared with 645000 points), at a similar accuracy.  

A convergence plot for the second order index 𝑆𝑟𝜂𝑡
 (interaction between cooling ratio and turbine 

efficiency), is shown in Figure 15. We have already shown in the analytical test-cases that the 

proposed method is not suitable for computing second order indices. In Figure 15, the result from the 

proposed method matches the one from MCS, because the interaction effects are very small and all 

the second indices are close to zero. Therefore we only claim effectiveness for the calculation of the 

first order indices.  

Also it should be noted that, there are (
𝑛
2
) =

𝑛(𝑛−1)

2
 second order indices (𝑛 in this case is 42, which 

leads to 861 indices). For demonstration, we only conducted a convergence study for 𝑆𝑟𝜂𝑡
 (interaction 

between cooling ratio and turbine efficiency). This leads to 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑚(𝑛 + 2) model evaluations. 

Equation (4.9) should be used to obtain the computational cost of all the first order, second order, and 

total effect indices. 
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Figure 13. Convergence of the first order index of cooling ratio 

 

Figure 14. Convergence of the total effect index of cooling ratio 

 

Figure 15. Convergence of the second order index of cooling ratio and turbine efficiency 
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4.3 Comparison of Computational Cost 

Numerical comparison with other available techniques has not been conducted yet. However, the 

costs can be predicted analytically using the equations (4.7)-(4.18) in Table 5 and Figure 16, which 

demonstrated the efficiency of the proposed method. 

Regarding the traditional MCS approach, equations (4.7), (4.8), and (4.9) are adopted from [29]. The 

cost of the improved MCS with Random Balance Design [27] is given by equation (4.10). In these 

equations, 𝑚 is the number of samples, which will be used for a general MCS. It is chosen by the 

user, based on the required accuracy (the error is inversely proportional to √𝑚) [2]. If a purely 

random sampling strategy is used, a representative value of 𝑚 could be 1000. Some of the modified 

estimators [23,28] or quasi-random sampling methods can speed up the convergence, therefore 

smaller 𝑚 could be used. In Figure 16, the computational costs against the number of uncertain input 

variables for all the MCS approaches are plotted as red lines, where the different settings (𝑚 values 

and indices included) are indicated as different markers. For instance, assume that the modified 

estimator from [23,28] could increase the efficiency by 50% (which is very optimistic), the cost of 

computing the first order indices (with 𝑚 = 500) is indicated by the red line with asterisk markers. 

The computational costs of PCE approaches are dependent on the detailed techniques for estimating 

the polynomial coefficients. For intrusive PCE, equation (4.11) can be used, where 𝑝 is the order of 

truncation. This approach requires modification of the original model, which becomes prohibitive if 

the models are complex or black-boxes [63]. The non-intrusive PCE can be further classified as full 

tensor approach, sparse grid approach, and Least Square Approximation (LSA). The cost of the full 

tensor approach grows exponentially as shown in (4.12), while the cost of sparse grid approach can be 

estimated with equation (4.13), where 𝑘 is the level of the grid. The LSA approach is relatively more 

flexible with regard to computational cost. In [64] and [34], the authors suggested that the number of 

samples should be more than twice or (𝑛 − 1) times that of the terms in the truncated polynomial 

expansion. Research on the optimal sampling strategy has been conducted in [38–40,65,66], which 

reduces the number of samples down to the number of polynomial terms. A technique named Low-

Rank tensor Approximation (LRA) was recently proposed in [37], which was reported to be more 

efficient than the conventional LSA. The computational cost is not included in Table 5, as an iterative 

algorithm is used for sampling. The stopping criteria of this algorithm include a pre-defined tolerance 

for error and a number of maximum iterations. In Figure 16, the PCE related approaches are plotted as 

blue lines, with the markers indicating different settings. In the above equations, 𝑝 is chosen to be 2 

and 4, and 𝑘 is chosen to be 2 (as representative values). The cost of sparse grid almost overlaps with 

the proposed method. 

The computational cost of Lamboni method for total effect indices is given by equation (4.17), where 

𝑚 is the sampling of a Latin Hyper Cube and 𝑞 is the order of quadrature. In the plot, 𝑚 is assumed to 
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be 250 and 𝑞 is assumed to be 2, indicated by the green line. The cost of the grid quadrature method 

used by Kucherenko et al [32] is not compared here, because the quantities being calculated are not 

equivalent. However a higher cost can be expected as the cost of grid quadrature grows exponentially. 

The cost of FAST is given by (4.18), where 𝑀 is the order of interference (the value is set as 4) and 

𝜔𝑚𝑎𝑥 is the maximum frequency in the Fourier Transformation, the set of frequencies are adopted 

from [67]. In Figure 16, the cost is indicated by the purple line. The cost of extended-FAST (which is 

not plotted here) will be higher due to re-samplings. 

The Bayesian approach is not included in the table, as no explicit estimation of the computational cost 

has been provided in the original paper [33]. However an example was given, in which a 40-

dimenssional problem was solved, using 101 model evaluations. 

In general, the computational cost of the proposed method is comparable to the RBD [27], Bayesian 

approach [33], and PCE using LSA [40,65], low-rank tensor [37] and sparse grid [68]. As the exact 

computational costs of these methods are also dependent on the required accuracy, a further 

comparison is planned for future work. 

Table 5. Computational cost of various method 

Method Computational Cost Equation 

Proposed Method 
𝑁𝑡𝑜𝑡𝑎𝑙 = {

2𝑛2 + 1  (Option 1,2 & 3)

4𝑛 − 1 (Option 4)
 

(4.6) 

MCS for First Order Indices Only [29] 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑚(𝑛 + 1) (4.7) 

MCS for First Order and Total Effect Indices 

[29] 
𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑚(𝑛 + 2) (4.8) 

MCS for First Order, Second Order, and Total 

Effect Indices [29] 
𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑚(𝑛 + 2 + (

𝑛
2
)) (4.9) 

MCS using Random Balance Design [27] 𝑁𝑡𝑜𝑡𝑎𝑙 = 2𝑚 (4.10) 

Intrusive PCE for All the Indices [69] 
𝑁𝑡𝑜𝑡𝑎𝑙 =

(𝑛 + 𝑝)!

𝑛! 𝑝!
 

(4.11) 

Non- Intrusive PCE (using full tensor 

quadrature) for All the Indices [64] 
𝑁𝑡𝑜𝑡𝑎𝑙 = (𝑝 + 1)𝑛 (4.12) 

Non- Intrusive PCE (using sparse grid) for All 

the Indices [68] 
𝑁𝑡𝑜𝑡𝑎𝑙~2𝑘𝑛𝑘/𝑘! (4.13) 

Non- Intrusive PCE 

(using least square 

approximation) for 

All the Indices 

With optimal 

sampling proposed in 

[40,65] 

𝑁𝑡𝑜𝑡𝑎𝑙 =
(𝑛 + 𝑝)!

𝑛! 𝑝!
 

(4.14) 

Recommended in 

[64] with random 

sampling 

𝑁𝑡𝑜𝑡𝑎𝑙 = 2
(𝑛 + 𝑝)!

𝑛! 𝑝!
 

(4.15) 

Recommended in 

[34] with random 

sampling 

𝑁𝑡𝑜𝑡𝑎𝑙 = (𝑛 − 1)
(𝑛 + 𝑝)!

𝑛! 𝑝!
 

(4.16) 

Lamboni Method [31] 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑚(𝑛𝑞 + 1) (4.17) 

Classic FAST [21] 𝑁𝑡𝑜𝑡𝑎𝑙 = 2𝑀𝜔𝑚𝑎𝑥(𝑛) + 1 (4.18) 
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Figure 16. Number of model evaluations required 

5 Conclusions 

Presented in this paper is a method for efficient variance-based sensitivity analysis. The main 

contribution can be seen in two aspects. The first aspect includes specific formulations allowing to 

integrate URQ with variance-based sensitivity analysis, which provides an alternative way of 

calculating Sobol’ indices, with considerable efficiency and effectiveness. The second aspect is 
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regarding the general approach to transforming a sensitivity analysis problem into an uncertainty 

propagation one. As extensive research has been conducted for the latter, existing propagation 

techniques (not only the URQ) can be exploited to compute the Sobol’ indices for further reduction of 

the computational cost. 

As demonstrated through the numerical experiments, the proposed method is very accurate in all 

linear or monotonic cases, under various probability distributions. For most non-linear and non-

monotonic conditions, this method still provides fairly accurate estimations of the first order and total 

effect indices. In general, option 1 has the highest accuracy and robustness, followed by option 3 and 

option 2. Option 4 is the least robust to non-linearity. 

In general, the particular strength is the low computational cost for large scale problems, compared 

with conventional techniques (such as MCS or FAST). In practical applications, the proposed method 

can be used as a first assessment to identify the most influential factors, which will reduce the 

dimensionality of the original problem. If needed, further sensitivity analysis with more accurate, but 

computationally expensive methods (such as MCS or FAST) can be conducted, within the reduced set 

of the most influential factors. Several other competitive approaches exist, including the RBD-based 

MCS [27], Bayesian approach [33], and PCE method (using sparse grid [68], LSA [40,65], and LRA 

[37]). Considering the cases reported in literature [33] and the comparison in Figure 16, it can be 

concluded that the Bayesian approach and PCE with LSA are currently the methods with the lowest 

computational cost. 

The current limitations of the proposed method with regard to non-linearity are mainly due to the 

limitations of the URQ method used. Interaction effects in the computational models will cause a 

decrease in the accuracy. The higher order indices are not yet usable and their computation needs 

further improvement. Certain combinations of non-linearity, non- monotonicity, and shapes of the 

distributions will restrict the application of the current method. In particular: 

• Periodicity of the model plus input distributions with spans larger than half of the model 

period may cause aliasing. 

• Multiplicative models with constant output values along the axes, plus the sampling 

points corresponding to the input distributions happen to be on the axes, will lead to 

disregard of the variance. 

Future work will focus on three tasks: the first is to further develop the specific method implemented 

with URQ. This will involve further investigation of the numerical errors and more rigorous 

comparisons with the aforementioned competitive approaches. The second is to implement the general 

approach with other approximation techniques. Some of the candidates may include: the unscented 

transformation [70], Gaussian Quadrature [71], and generalised Taguchi method [57]. These 

implementations will also be compared with current techniques for sensitivity analysis. The third task 
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is to organise these specific techniques as a comprehensive system to perform sensitivity analysis, 

adapting to different mathematical characteristics of the computational model under study.  
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Appendix 

Table 6. Input Variables and Associated Uncertainties 

 Inputs Symbol Probability Distribution 

Flight 

Condition 

Altitude (m) ℎ 𝑁(11000, 550) 

Mach Number 𝑀𝑎𝑐ℎ 𝑈(0.78, 0.82) 

Engine Bleed Pressure (kPa) 𝑃1 𝑈(225, 275) 

Engine Fan/Compressor Efficiency 𝜂𝑒𝑐 𝑇𝑟𝑖(0.8, 0.98, 0.9) 

Overall 

Parameters 

Conditioning Mass Flow Rate (kg/s) 𝑚̇ 𝑈(0.65, 0.75) 

Cooling Ratio 𝑟 𝑈(0.315, 0.385) 

Pre-cooler Length (m) 𝐿𝑥1
 𝑈(0.09, 0.11) 

Width (m) 𝐿𝑦1
 𝑈(0.27, 0.33) 

Height (m) 𝐿𝑧1
 𝑈(0.3852, 0.4708) 

Wall Thickness (m) 𝑡𝑊1 𝑈(5.4𝑒 − 4, 6.6𝑒 − 4) 

Sheet Fin Thermal Conductivity (W/(m∙K)) 𝑘𝑊1 𝑀𝐺(20,22,0.5,0.5,0.6,0.4) 

Pre-cooler 

Heat Transfer 

Surface (Main 

Stream side) 

Plate spacing (m) 𝑏1 𝑈(4.69𝑒 − 3, 5.73𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ1 𝑈(1.38𝑒 − 3, 1.69𝑒 − 3) 

Fin Thickness (m) 𝛿1 𝑈(0.92𝑒 − 4, 1.12𝑒 − 4) 

Heat Transfer Area/Volume Between Plates 

(m2/m3) 
𝛽1 𝑁(2231, 111.55) 

Fin Area/Total Area (𝐴𝑓/𝐴)1 𝑀𝐺(0.8,0.9,0.03,0.03,0.59,0.41) 

Pre-cooler 

Heat Transfer 

Surface (Ram 

Air side) 

Plate spacing (m) 𝑏1𝑟
 𝑈(11.07𝑒 − 3, 13.53𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ1𝑟
 𝑈(3.07𝑒 − 3, 3.75𝑒 − 3) 

Fin Thickness (m) 𝛿1𝑟
 𝑈(0.92𝑒 − 4, 1.12𝑒 − 4) 

Heat Transfer Area/Volume Between Plates 

(m2/m3) 
𝛽1𝑟

 𝑁(1115, 55.75) 

Fin Area/Total Area (𝐴𝑓/𝐴)1𝑟
 𝑀𝐺(0.8,0.9,0.03,0.03,0.38,0.62) 

Main Heat 

Exchanger 

Length (m) 𝐿𝑥2
 𝑈(0.09,0.11) 

Width (m) 𝐿𝑦2
 𝑈(0.315, 0.385) 

Height (m) 𝐿𝑧2
 𝑈(0.2781, 0.3399) 

Wall Thickness (m) 𝑡𝑊2 𝑈(5.4𝑒 − 4, 6.6𝑒 − 4) 

Sheet Fin Thermal Conductivity (W/(m∙K)) 𝑘𝑊2 𝑀𝐺(20,22,0.5,0.5,0.6,0.4) 

Main Heat 

Exchanger 

Heat Transfer 

Surface (Main 

Stream side) 

Plate spacing (m) 𝑏2 𝑈(4.69𝑒 − 3, 5.73𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ2 𝑈(1.38𝑒 − 3, 1.69𝑒 − 3) 

Fin Thickness (m) 𝛿2 𝑈(0.92𝑒 − 4, 1.12𝑒 − 4) 

Heat Transfer Area/Volume Between Plates 

(m2/m3) 
𝛽2 𝑁(2231, 111.55) 

Fin Area/Total Area (𝐴𝑓/𝐴)2 𝑀𝐺(0.8,0.9,0.03,0.03,0.59,0.41) 

Main Heat 

Exchanger 

Heat Transfer 

Surface (Ram 

Air side) 

Plate spacing (m) 𝑏2𝑟
 𝑈(11.07𝑒 − 3, 13.53𝑒 − 3) 

Hydraulic Diameter (m) 4𝑟ℎ2𝑟
 𝑈(3.07𝑒 − 3, 3.75𝑒 − 3) 

Fin Thickness (m) 𝛿2𝑟
 𝑈(0.92𝑒 − 4, 1.12𝑒 − 4) 

Heat Transfer Area/Volume Between Plates 

(m2/m3) 
𝛽2𝑟

 𝑁(1115, 55.75) 

Fin Area/Total Area (𝐴𝑓/𝐴)2𝑟
 𝑀𝐺(0.8,0.9,0.03,0.03,0.38,0.62) 

Miscellaneous Main Stream Diffuser Efficiency 𝜂𝑑 𝑇𝑟𝑖(0.85, 0.97, 0.95) 

Air Cycle Machine Compressor Efficiency 𝜂𝑐 𝑇𝑟𝑖(0.7, 0.8, 0.75) 

Air Cycle Machine Turbine Efficiency 𝜂𝑡 𝑇𝑟𝑖(0.7, 0.9, 0.8) 

Ram Air Section (m2) 𝐴𝑖 𝑈(1.08𝑒 − 2, 1.32𝑒 − 2) 

Ram Air Diffuser Efficiency 𝜂𝑟𝑑 𝑇𝑟𝑖(0.85, 0.97, 0.95) 

Ram Air Nozzle Efficiency 𝜂𝑛 𝑇𝑟𝑖(0.85, 0.97, 0.95) 

 



 

 

39 

 

Table 7. Part of output variables 

 Output Symbol 

Main stream Bleed Temperature (K) 𝑇1 

Temperature at the Exit of Pre-cooler (K) 𝑇2 

Temperature after the Compressor (K) 𝑇  

Temperature at the Exit of Main Heat Exchanger (K) 𝑇4 

Temperature after the Turbine (to the Cabin) (K) 𝑇5 

Pressure at the Exit of Pre-cooler (kPa) 𝑃2 

Pressure after the Compressor (kPa) 𝑃  

Pressure at the Exit of Main Heat Exchanger (kPa) 𝑃4 

Pressure after the Turbine (to the Cabin) (kPa) 𝑃5 

Ram Air Temperature at the Exit of Ram Air Diffuser (K) 𝑇1𝑟  

Temperature at the Exit of Main Heat Exchanger (K) 𝑇2𝑟  

Temperature at the Exit of Pre-cooler (K) 𝑇 𝑟  

Temperature at the Exit of Ram Air Nozzle (K) 𝑇4𝑟 

Pressure at the Exit of Ram Air Diffuser (kPa) 𝑃1𝑟  

Pressure at the Exit of Main Heat Exchanger (kPa) 𝑃2𝑟  

Pressure at the Exit of Pre-cooler (kPa) 𝑃 𝑟  

Pressure at the Exit of Ram Air Nozzle (kPa) 𝑃4𝑟 

Overall Performance Entropy Generation Rate 𝑁𝑆 

Total Volume of Heat Exchangers (m3) 𝑉𝑇 

 

 


