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Abstract 

 

Paper mills yield large volumes of sludge materials which pose an environmental and economic 

challenge for disposal, despite the fact that they could be a valuable source for cellulose nanofibres 

(CNF) production. The aim of the study was to evaluate the production process and properties of CNF 

prepared by mechanical fibrillation of never-dried and dried paper mill sludge (PMS). Atomic force 

microscopy (AFM) showed that average diameters for both never-dried and dried paper sludge 

nanofibres (PSNF) were less than 50 nm. The never-dried and dried sludge nanofibres showed no 

statistical significant difference (p > 0.05) in strength ~92 MPa, and ~85 MPa and modulus ~11 GPa 

and ~10 GPa. The study concludes that paper mill sludge can be used in a dried state for CNF 

production to reduce transportation and storage challenges posed on industrial scale.  

 

1. Introduction  

 

Biopolymeric materials derived from environmentally friendly sources are gradually becoming 

competitive with traditional polymers derived from non-renewable sources (Pickering et al., 2015; 

Montoya et al., 2014; Thakur, 2014). Agricultural crops have been suggested as a raw material to 

produce biodegradable polymers. However, in the present era of limited resources, there is a 

competition of using land to grow lignocellulose biomass instead of food crops (Valentine et al., 

2012). The circular economy principles promote the optimisation of resources by extracting valuable 

biochemical feedstocks from existing industrial processes. For example, agro-industry waste such as 

sugar cane bagasse, carrot residue and brewery waste has been used to produce nanocellulose 

(Berglund et al., 2016; Golbaghi et al., 2017; Nuruddin et al., 2016).  

 

Ideally, nanocellulose is produced from cellulose sources such as plants, wood, tunicate and algae 

by the breakdown of their structure, either by chemical and/or mechanical means to produce cellulose 

nanofibres (CNFs), or by acid hydrolysis to form cellulose nanocrystals (CNCs) (Eichhorn et al., 

2010; Hsieh et al., 2008; Moon et al., 2011). These cellulose nanofibres are characterised by their 

high aspect ratio, high stiffness and crystallinity. The elastic modulus of the crystalline regions of 
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cellulose was first determined from the deformation of bleached ramie fibres resulting in a value of 

137 GPa for the crystal modulus (Sakurada et al., 1962), further research on modulus of cellulose 

reported values ranging from 100-140 GPa (Northolt et al., 2005; Sturcova et al., 2005). The specific 

mechanical properties, when divided by the density of cellulose (~1.5 g cm
-3

), are comparable to 

engineering materials such as steel, glass or aluminium. Hence, they can be used in high value 

applications such as automotive, packaging materials, biomedical applications, sensors and 

membranes (Trache et al., 2017). However, the application of CNF in industry is limited by 

availability as the mass production of nanocellulose is hindered mainly due to its high production 

costs (Delgado-Aguilar et al., 2015; Oksman et al., 2016).  

 

Nevertheless, to reduce cost and scale up production of nanocellulose, Paper mill sludge (PMS). 

has been proposed as a cheap and sustainable raw material for producing CNFs. PMS is an industrial 

effluent of paper mills produced in large volumes; one million tonnes is produced in the UK alone. 

Disposal of PMS poses an economic challenge of £82.60/tonne and risks potential release of 2.60 

tonnes of CO2 if not managed to environmental disposal standards (Adu and Jolly, 2017; Faubert et 

al., 2016; Likon et al., 2011). Despite being rich in cellulose, PMS is currently used in low value 

applications for land spreading (Monte et al., 2009; Phillips et al., 1997) and animal bedding (Villagrá 

et al., 2011). Moreover, using PMS means no chemical pre-treatment is required to dissolve lignin 

unlike other biomass residues, and it can be obtained free of charge from the mill thereby reducing 

cost. However, a foreseeable industrial challenge of processing large quantities of PMS into cellulose 

nanofibres is the high chance of microbial activity during storage and transportation as the sludge is 

often obtained never-dried/wet from the paper mills with up to 80% moisture content (Ghribi et al., 

2016).  

 

In the literature, never-dried sludge has been used to produce CNF with widths  5-30 nm by high 

pressure defibrillation at 138 kPa and chemical bleaching with NaOH (Leão et al., 2012). Never-dried 

sludge from a dissolving cellulose mill was also used to produce CNF (< 100 nm) by mechanical 

fibrillation (Jonoobi et al., 2012). The use of never-dried/wet cellulose material is highly desirable for 

CNF production in comparison to once dried material. This is because of the phenomenon known as 

hornification, which promotes an irreversible bonding between fibrils thus leading to reduced 

mechanical properties in dried pulp (García et al., 2002; Spinu et al., 2011). However, the use of dried 

sludge provides an advantage to prevent bacterial degradation, reduces transportation costs and 

storage challenges. The use of dried sludge as opposed to never-dried sludge for producing CNF has 

not been investigated in the literature. Thus, this study draws a comparative evaluation between the 

production process and properties of CNFs obtained from never-dried and dried paper mill sludge. 

The nanofibres obtained from the sludge are referred to as paper sludge nanofibres (PSNF); never-

dried (PSNFND) and dried (PSNFD). 



 

2. Materials and methods 

 

2.1. Material 

Never-dried sludge was obtained from a paper mill producing kitchen towel rolls with hardwood 

and softwood pulps such as eucalyptus or pine. One batch of the same sludge was also dried for 24 hrs 

in an oven and stored for 3 months. The paper mill yields 4000 tonnes of PMS annually, which is used 

for agricultural land spreading or animal bedding. 

 

2.2. Chemical composition of sludge 

The ash content of the sludge sample was determined using TAPPI 211 standards ash in wood, 

pulp and paperboard at 525 °C (TAPPI, 2004). Hemicellulose, cellulose and lignin were tested using 

direct chemical methods (Moubasher et al., 1982). Ethanol was used to treat 2 g of PMS, two parts of 

1g each. Part 1 is dry weighed as fraction A, while part 2, namely fraction B, was treated with 24% 

KOH. After dry weighing, fraction B was further treated with 72% H2SO4 and refluxed with 10% 

H2SO4; this was labelled as fraction C. After each stage, all fractions were washed thoroughly in 

distilled water and dried overnight at 80 °C before weighing. Deductions of the weighed fractions (A, 

B and C) were used to calculate the organic composition of the sludge. The cellulose content is given 

by fraction B-C, hemicellulose (A-B) and lignin (C itself). The morphology of the PMS was studied 

using Scanning Electron Microscopy (SEM) JSM-6490LV, JEOL (Japan) with a 12 kV acceleration 

voltage, in back-scatter electron (BSE) detector mode, to obtain a chemical analysis of inorganic 

minerals in the sample. Oxford instruments Aztec
TM

 EDS element mapping software was used to 

process the data. Thermogravimetric analysis (TGA) was also used to confirm the organic 

composition of the sludge, and the presence of inorganic material (Lin et al., 2015; Yang et al., 2006). 

TGA of PMS was determined in accordance with the ASTM-E1131-03 standard test method for 

compositional analysis of thermogravimetry using a Mettler Toledo TGA/DSC analyser. TGA/DSC 

was used to measure the mass change of the specimen in an increasing temperature range from 25 - 

600 °C, at a heating rate of 10 °C /min.  

 

2.3. Processing of cellulose nanofibres from never-dried and dried PMS 

 

Never-dried and dried PMS was fibrillated using a super mass collider MKCA6-3 (Masuko 

Sangyo Co, Japan), at a consistency of 2 wt.%. Prior to the ultrafine grinding process, the suspension 

was dispersed in deionised water using a shear mixer Silverson L4RT (Silverson Machine Ltd. 

England). The dried PMS required a 24 hrs soaking before dispersion in deionised water. The 



grinding stones used were coarse silicon carbide (SiC) with several grooves on the surface. 

Centrifugal forces from the repeated cyclic pressure and shearing stress cause the microfibre 

suspension to move outwards from the grooves. The forces on the fibre suspension result in the 

defibrillation of the fibres by setting the grinding stones in contact mode after the initial feeding and 

gradually adjusting them to -90 µm. The rotor speed was set to 1500 rpm. The energy consumption 

for the mechanical separation was based on the direct measurement of power in Watts, using a power 

meter produced by Carlo Gavazzi (model, EM24 DIN, Italy). The energy consumption for the 

grinding process is converted to kWh per kg of the nanofibres’ dry weight, calculated using the 

equation. 

Energy (J) = power (W) × time (h)       (1) 

 

To assess the degree of fibrillation, viscosity measurements were carried out using a Vibro 

Viscometer SV-10, (A&D Company, Ltd., Japan). The details of the fibrillation process are shown in 

Fig.1. The viscosity measurements were conducted at room temperature (22.5 ℃) based on testing 

three samples each collected from different intervals during the fibrillation process until reaching a 

plateau in the viscosity. The plateau viscosity was reached after a 150 min processing time. 

 

 

 

 

 

 

 

Fig.1. Schematic of the preparation steps for a cellulose nanofibre suspension produced from paper 

mill sludge with mechanical ultrafine grinding (suspension appears the same for both sample). 

 

The microstructure of both materials was also studied during fibrillation at different time intervals 

using polarised microscopy (Nikon Eclipse LV100N POL, Japan) and the imaging software NIS-

Elements D 4.30. The PMS fibre dimensions were measured with a Metso FS5 fibre image analyser 

(Metso Automation, Finland) in accordance with the ISO 16065-2:2007 determination of fibre length 

by automated optical analysis, using unpolarised light.  



 

2.4. Preparation of nanofibres networks  

 

Nanofibre networks were prepared by using the CNF suspension to fabricate nanopaper sheets. 

The CNF suspension was adjusted to 0.2 wt.%, after which it was dispersed at 10,000 rpm for 10 min, 

using a shear mixer, IKA T25, UltraTurrax, (IKA-Werke GmbH & Co., Germany). The dispersed 

CNF solution was de-gassed and vacuum filtration undertaken with a 0.45 µm and 125 mm diameter 

membrane filter. The gel formed was placed between two metal plates lined with a stainless-steel 

mesh and hot pressed at 110 °C and 1.1 MPa for 30 min using Fortune presses, LP300, (Fontijne 

Grotnes, The Netherlands). Under the same conditions, but for 10 mins, a surface finishing was 

carried out by replacing the mesh lining with polyester films. 

 

2.5. Characterisation of paper sludge nanofibre  

 

The PSNFs were characterised to obtain fibre dimensions and mechanical properties of sheets of 

the material. Atomic force microscopy (AFM) was carried out using a digital instruments Dimension 

3100 AFM equipped with Veeco Nanoscope IV controller (Bruker, UK). AFM was performed in 

tapping mode at the resonance frequency of the cantilever with a scan rate of 0.4 Hz and a scan size of 

8.8 µm. Samples for AFM were prepared by depositing a dilute drop of 0.01 wt.% fibrillated sludge 

fibres on a freshly cleaved mica plate, and allowing this to dry at room temperature. The fibre 

dimensions were measure from the AFM using Veeco Nanoscope analysis software and images were 

collected from independent scans. AFM measures the diameter of the fibres by scanning the tip across 

the surface of the specimen with a scan size of 30 µm. Height measurements were taken from 

individual fibres protruding out of a network within four different scan areas with 100 fibres measured 

in total. Areas with agglomerated fibres were not considered in the measurement analysis. X-ray 

diffraction analysis of the nanopaper was conducted using a Bruker D8 ADVANCE X-ray 

diffractometer (Bruker Co., Germany), multiple nanopaper samples were mounted and exposed to Cu 

Kα radiation with a step size of 0.03° at 2 = 5-40°. The diffraction pattern for never-dried and dried 

PSNF were used to calculate crystallinity index (CrI) based on Segal’s method (equation 2) (Segal et 

al., 1958) 

 

𝐶𝑟𝐼 (%) =
𝐼𝑡𝑜𝑡𝑎𝑙−𝐼𝑎𝑚

𝐼𝑡𝑜𝑡𝑎𝑙
          (2)  

 



where Itotal is calculated from the maximum scattered intensity from the main peak (110) and Iam is the 

minimum scattered intensity between the main and secondary peaks for cellulose. A peak fitting 

method (equation 3) has also been used to calculate Crl as Segal’s method has been known to 

underestimate the amorphous fraction. This method deconvolutes each peak using a Gaussian function 

after which the amorphous region is subtracted and the CrI is calculated by dividing the total scattered 

intensity area of each crystalline peak by the total scattered intensity area of the diffraction spectra 

(Park et al., 2010). 

 

𝐶𝑟𝐼 (%) =
𝐴𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒

𝐴𝑡𝑜𝑡𝑎𝑙
          (3) 

 

The transmittance of a PSNF suspension (0.2 wt.%) was measured using a UV-VIS-NIR extended 

range FLAME-S-XR1 spectrophotometer (Ocean Optics, UK) set in the range of 200-1000 nm with 

distilled water used as a reference. The opacity of the nanopaper was measured using a Elrepho 070 

spectrometer (Lorentzen and Wettre, Sweden). Tensile tests were conducted on the nanopaper 

samples using a universal testing machine manufactured by Shimatzu AG-X (Japan) using a 1 kN 

load cell, and an extension rate of 2 mm/min and a 20 mm gauge length between the clamps. All 

samples were conditioned in an environmental cabinet, which maintained 50% relative humidity (RH) 

and 23 °C, 24 hrs before testing. The reported results were obtained from 8 test specimens that failed 

in the middle of the gauge length. Tensile strength was calculated from the force and cross-sectional 

area of the paper. Tensile index was calculated in accordance with (TAPPI, 2006) standards which 

considers the weight per unit area of the paper (g/m
2
) instead of the thickness. Results of tensile index 

for mechanical fibrillated CNF have been reported by Yousefi et al. (2013) as 87.7 Nm/g.  

 

3. Results and discussions  

 

3.1. Chemical composition and thermal analysis of sludge 

 

A summary of the PMS chemical composition is illustrated in Table 1, The composition results of 

both never-dried and dried samples of PMS are the same as they were collected from the same batch. 

 

Table 1  

Chemical composition of paper sludge. 

Ash  Cellulose Hemicellulose Lignin Ca Si 



1.3% 74% 2.6 1.3 2.4 <1% 

 

The EDX spectrum in Figure 2 (left) shows that the major component of the sludge is organic (C, 

O) although trace elements of magnesium (Mg), aluminium (Al), Silicon (Si) and Calcium (Ca) are 

present. These inorganic components may come from fillers, sizing agents, possible contaminants and 

trace elements present in the waste-water. The TGA analysis in Figure 2b is as expected for the 

sludge. The organic content of PMS, which is mainly cellulose and hemicellulose, thermally 

decomposes at ~300 ℃, whilst the mineral fillers remain thermally stable after 500 °C. 

 

 

 

Fig.2. A typical EDX spectrum showing peaks of elements contained in a PMS sample (left), 

themogravimetric traces and a deriviative curve (dotted line) of the PMS showing the highest 

degradation peak at 353 ℃ attributed to the thermal decomposition of cellulose (right) 

 

3.2. Microscopy of nanofibres 

Polarised light micrographs of the paper sludge showed changes in the fibre size at different time 

intervals during fibrillation (Fig. 3). After 45 min fibrilation the dried PMS fibre showed no obvious 

reduction in fibre size compared to the never-dried PMS at 45 min. The microscopy image for the 

dried sludge presented a few large fibres circled in red at 120 min and 150 min. 



 

Fig.3. Typical polarized microscopy images of PMS fibres at fibrillation time intervals showing a 

reduction in fibre/nanofibre widths for never-dried sludge (above) and dried sludge (below). 

 

During the mechanical grinding process, an increase in viscoity gives an indication of the degree of 

fibrilation. The viscocity and energy consumption of never-dried and dried PMS at differing intervals 

of fibrillation is shown in Fig.4.  

 

Fig.4. Increases in viscosity (left) and increase in energy consumption (right) as a function of 

processing time for never-dried and dried PMS (to convert MJ/kg to kWh/kg divide by 3.6). 

 

The starting viscocity for the never-dried PMS (5 mPa.s) was lower than the dried PMS (28 mPa.s). 

Both PMS showed an exponetial increase in viscocity until reaching equilibrium. The never-dried 

PMS showed a higher viscocity (1256 mPa.s) than the dried PMS (1124 mPa.s). The energy 



consumption of never-dried PMS was 30.6 MJ/kg whereas the dried material consumed 33.5 MJ/kg of 

energy due to a higher rotor speed required to process it.  

 

3.3. AFM imaging of paper sludge nanofibres 

 

Fig. 5. shows the morphology and width distributions of the paper sludge nanofibres (PSNFs). 

The average nanofibre diameter for PSNFND was found to be 34 ± 15 nm, with more than 60% of 

these values being between 20-50 nm whilst the PSNFD showed comparable fibre width of 41± 13 nm.  

 

 

 

Fig.5. AFM height of paper sludge nanofibres (PSNFs) and width distribution of PSNF; PSNFND 

(above) and PSNFD (below). 

 



3.4. Powder X-ray Diffraction (XRD) analysis of sludge nanofibres 

The X-ray diffraction patterns for both PSNFND and PSNFD exhibited a number of intensities 

within the 2θ angle range (Fig.6 left). The intensities labelled (a), (e) and (g) are attributed to 

crystalline talc (MgSi4O10(OH)2), which is a common filler used in the paper industry; the presence 

of this compound can also be confirmed by the observation of these elements in the EDX spectrum. 

Similar peaks have also been identified in XRD of paper sludge (Frías et al., 2015) and talc used as a 

filler in polylactic acid (PLA) exhibited the same intensities (Buzarovska et al., 2016). 

 

 
 

 

Fig.6. X-ray diffraction patterns of nanopapers prepared from PSNFND and PSNFD highlighting 

crystalline peaks from talc (left) and X-ray diffraction pattern of PSNF nanopaper after peak fitting 

(right) 

 

Fig. 6 (right) shows the deconvolution of cellulose intensities used to calculate the CrI. The intensity 

(1̅10) at 12.8º is indicative of a cellulose II structure. The (101) intensity at an angle 14.8º and 16.8º 

respectively are related to intermolecular hydrogen bonds. Both PSNF show an intensity (110) at an 

angle 22.5º which is characteristic of a cellulose I structure; this becomes a double peak around 20.6
o
 

if regeneration occurs and the cellulose structure changes to cellulose II (Sharma et al., 2015). A 

broad peak at 20.6° was chosen for the amorphous region. The CrIs for PSNFND and PSNFD were 

calculated as 69% and 67%, based on Segal’s method, whereas the peak fitting method resulted in 

CrIs of 43% and 46% respectively. 

 

 



3.5. Optical properties of paper sludge nanofibres 

Nanopaper exhibits excellent transmittance properties depending on how small the nanofibre 

diameters are, in comparison to the wavelength of visible light. Additionally, if the CNFs are densely 

packed, air scattering can be supressed thereby improving the transparency of the material. Fig.7. 

shows the transmittance spectrum of 0.2wt.% suspension of PSNF. Both nanopapers prepared from 

never-dried and dried PSNF showed a low visible light transmittance of 32.4% (at 600 nm 

wavelength). CNFs has shown up to 90% transmittance in other studies making materials suitable for 

applications in electronic devices (Alila et al., 2013; Isogai et al., 2011; Nogi et al., 2009). 

Nevertheless, the PSNF nanopapers exhibit 15.8% transmittance of UV light at 300 nm, which is a 

desirable property for UV absorption in packaging applications. This low UV transmittance has been 

previously noted by other work on nanopapers made from bacterial cellulose impregnated with gelatin 

(Quero et al., 2015). Hot pressing the PSNF suspension into nanopaper increases the transparency of 

the sheet as shown in Figure 7; the opacity test resulted in 44 ± 0.3%. The increased transparency is 

due to capillary action during water evaporation from the sheets causing the fibres to be densely 

packed together allowing more light to pass through the sheets. In addition the surface roughness is 

also reduced (Nogi et al., 2013). 

 

 

  

 

Fig.7. (From left) Typical light transmittance spectra of PSNF suspension (green line) with water 

(blue line) for reference, and typical images of nanopaper prepared from PSNFND and PSNFD 

 

3.6. Mechanical properties of paper sludge nanofibres network 

PSNF samples were collected at different time intervals and prepared into sheets for tensile tests 

as shown in Fig 8. All samples exhibited non-linear stress-strain curves typical for nanopaper sheets. 

An increase in the fibrillation time resulted in a proportional increase of tensile strength in the 



nanopaper sheets. PSNFND showed double increases in tensile strength after 45 mins of fibrillation 

whereas the PSNFD increased slightly as larger fibres were still present. After 150 mins of fibrillation 

tensile strength values of ~ 92 MPa and ~ 85 MPa were ultimately achieved for dried and never-dried 

sludge. An increase in the mechanical properties of the cellulose paper is attributed to an increase in 

the amount of fibril-fibril bonding; this effect is thought to be due to an increased surface to volume 

ratio of the fibrils as they are processed. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Typical stress-strain curves of nanopapers produced from PSNFs collected at different 

fibrillation times showing the effect of a decrease in fibre/fibril width (from 20-50 µm to <50 nm) on 

tensile strength PSNFND (left) and PSNFD (right). 

 

Mechanical properties of paper sludge nanopapers were found to be similar to a previous study on 

nanocellulose derived from dissolving cellulose sludge (Jonoobi et al., 2012); data are shown in Table 

2. Previous studies of cellulose nanopapers prepared from chemical treatment of wood pulp have 

reported values of 135 MPa and 11 GPa for tensile strength and elastic modulus (González et al., 

2014). Additionally, different variations in the tensile modulus of cellulose nanopapers have been 

reported in the literature; values range between 9.4 GPa to 14 GPa (Henriksson et al., 2008; Lee et al., 

2012; Quero et al., 2010). 

 

Table 2  



Average mechanical properties of paper mill sludge sheets 

 Modulus 

E [GPa] 

Tensile Strength 

[Mpa] 

Tensile Strain 

[%] 

Tensile Index 

[Nm/g] 

PMSND 1.7 ± 0.3 8.2 ± 0.3 1.8 ± 0.1 16.4 ± 0.9 

PMSD 1.5 ± 0.4 7.9 ± 0.2 1.9 ± 0.3 14.3 ± 0.7 

PSNFND 10.6 ± 1.2 91.5 ± 8.8 2.4 ± 0.4 71.9 ± 5.6 

PSNFD 10.1 ± 1.0 85.4 ± 10.2 2.2 ± 0.4 71.5 ± 5.6 

(Jonoobi et al., 2012) 8.0 ± 1.0 96 ± 4 1.5 ± 0.5 - 

 

Figure 9 shows that the PSNFD exhibited mechanical properties comparable to PSNFND, the results 

show an 8-fold increase in the mechanical properties of nanopapers from raw sludge fibres to 

nanofibres. Based on the null hypothesis that there is no significant difference between the mechanical 

properties of the PSNFND and PSNFD samples. A Students T-test revealed P values of 0.32, 0.11, 0.85, 

0.37 for tensile modulus, tensile strength, tensile index and tensile strain. The (p > 0.05) indicated no 

statistical significant difference in the mechanical properties.  

 

 

 

 

 

 

 

 

 

 

 

Fig.9. Mechanical properties of the nanopapers derived from paper mill sludge; tensile modulus, 

tensile strength, maximum strain and tensile index. 

 

 

3.7. Cost evaluation  



The end-use price of CNF remains difficult to assess due to varying production methods 

influencing costs. The average selling price of CNF is estimated to range between $700-$1200/ton 

(Nechyporchuk et al., 2016). Moreover, market research has shown that the production of 

nanocellulose is currently valued at $65 M with an annual growth rate of 30% estimated to reach $530 

M by 2021 (Zion research analysis, 2016). Thus the 4000 tonnes of PMS produced annually at the 

mill has a potential revenue worth $2.8 M. Sludge can also be considered a free raw material which 

makes up for some of its production cost. A major barrier for the commercialisation success of CNF is 

the high energy cost required for mechanical disintegration. The energy consumption of the PMS 

fibrillation process was recorded as 30.6 MJ/kg (8.5 kWh/kg) for never-dried sludge and 33.5 MJ/kg 

(9.3 kwh/kg) for dried sludge. These results are similar to fibrillating process of various wood pulps 

which averaged 36 MJ/kg (10 kWh/kg) (Lahtinen et al., 2014). However, in comparison to a previous 

study of nanocellulose derived from dissolving pulp sludge, less energy was reported 4.68 MJ/kg (1.3 

kWh/kg) (Jonoobi et al., 2012). Nevertheless a higher energy consumption of 108 MJ/kg has also 

been reported for wood pulp fibrillated using a homogeniser (Eriksen et al., 2008). The cost for 

processing CNF from never-dried and dried sludge is £425/ton and £465/ton respectively based on 

average the UK wholesale electricity market price of £50/MWh (1,000 kWh) (OFGEM, 2018). The 

high water content in PMS up to 60% largely determines transport and storage (Ochoa de Alda, 

2008). The cost evaluation is shown in Table 3, where the cost of transportation is 0.53 £/ton-km 

calculated based on a UK-based average heavy goods vehicle consumption of 15 mpg (Department 

for Transport, 2016), a labour rate of £10/hr and a fuel cost of £1.10/litre. The cost of storage was 

calculated based on an energy consumption of 180 kWh/ton for cold storage and 360kWh/ton for 

drying based on a specific energy consumption of 0.6 kWh kg
-1

 H2O (Mäkelä et al., 2017).   

 

Table 3 

Cost evaluation of never-dried and dried PMS 

 PMSND PMSD    

Transport 

(£/ton-km) 

1.33 0.53 

Storage 

(£/ton) 

9 18 

Fibrillation 

(£/ton) 

425 465 

Total Cost 

(£/ton) 

435 483 



 

Fig.10. Payback evaluation for producing CNF from dried PMS in comparison with never-dried PMS 

To highlight the advantage of using dried PMS over never-dried PMS, the cost savings made during 

transportation of dried sludge must pay back the £40/ton increase when fibrillating dried PMS. The 

payback is calculated in Fig.10, by plotting the transport distance against total cost of producing 

PSNF from PMSND and PMSD. The evaluation revealed that the use of dried sludge for CNF 

production is favourable over never-dried sludge in situations when the sludge material is transported 

over 50 km from the mill for processing or kept in cold storage longer than 14 days. 

 

4. Conclusions  

A major limitation of industrial scale utilisation of biomass waste is in the transportation cost and 

microbial degradation. This study draws comparison between the production of CNF from dried and 

never-dried paper mill sludge which showed no significant difference in these materials in terms of 

their mechanical performance. Hence, dried sludge offers an economic advantage to alleviate 

challenges of microbial activity, storage and transportation, without compromising on the properties 

of the CNF. The nanopapers produced from both never-dried and dried PSNF showed high stiffness 

(~11 GPa and ~10 GPa.) which could be used to improve mechanical properties of polymers limited 

by low mechanical strength such as polyvinyl alcohol (PVA). The low opacity (44%) and low UV 

transmission of the PSNFs sheets also reveal potential application in the packaging field. Sludge 

obtained from various paper mills creates an opportunity for largescale valorisation to produce CNF 

with a free raw material. However, the variability in sludge composition from different mills poses a 

disadvantage in scaling up production. Thus, further investigation on the effect of the fillers contained 

in the sludge will provide more knowledge on developing a consistent product.  
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