
2212-8271 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientifi c Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair – Ashutosh Tiwari
doi: 10.1016/j.procir.2013.07.009

 Procedia CIRP 11 (2013) 400 – 405

2nd International Through-life Engineering Services Conference

Unicellular Self-Healing Electronic Array
 Mohammad Samie1*, Gabriel Dragffy2, Tony Pipe2, Suresh Perinpanayagam1

1School of Applied Sciences,Cranfield University, UK
2Bristol Robotics Labortory, Bristol, UK

* Corresponding author. Tel.: +44-; E-mail address: m.samie@cranfield.ac.uk

Abstract

This paper presents on-line fault detection and fault repair capability of our Unitronics architecture, based on a bio-inspired prokaryotic
bacterial colony model. At the device programming level, it appears as a cellular FPGA-like system; however, underlying structures transpose
it into an inherently self-healing and fault tolerant electronics system. An e-puck object avoidance robot controller was built to demonstrate all
the underlying theories of our research. The robot successfully demonstrated that it was able to cope with multiple, simultaneously occurring
faults on-line whilst the robot was being controlled to move in a „figure 8‟-like manner. Integrity of the system is continuously monitored on-
line, and if a fault is detected its location is automatically identified. Detection will trigger an on-line self-repair process. The amount of repair
only depends on the number of spare cells the system is equipped with. The embedded fault repair mechanism uses significantly less memory
for gene storage and considerably less hardware overall for target system implementation than any previously proposed bio-inspired
architecture.

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientific Committee of the "2nd International Through-life Engineering
Services Conference" and the Programme Chair – Ashutosh Tiwari.

Keywords: Self-Healing; Fault-Detection; Fault-Repair; Cellular electroincs

1. Introduction

The early 90’s saw the first attempts [1, 2] to construct bio-
inspired electronics systems using a cellular array type
architecture. They were based on properties and characteristics
of, and used mechanisms found in, multi-cellular eukaryotic
organisms. Here, similar to nature, all the cells of the system,
in order to configure them for a specific function, contained a
full or a partial copy of the organism’s DNA (genome). This
approach has invariably resulted in a large amount of DNA
memory in each cell. The task of the memory is to store the
genetic behaviour (DNA) of each cell of the system, in the
form of configuration bits (genes) for both its functional
characteristic and for the necessary interconnects. Embryonics
and the POEtic projects are examples of eukaryotic bio-
inspired systems [3, 4]. CellMatrix offers an alternative
approach for cellular implementation of systems [5].

Self-healing properties, immunological protection and
learning abilities are amongst the advantages offered by the

eukaryotic model. All previously proposed Embryonic
systems suffer from several disadvantages in silicon area
consumption, redundancy, storing large amount of redundant
information (each cell required a copy the entire DNA of the
system or a large part of it) increases the probability of
hardware faults and information mutation in the memory cells.

We suggest that if a model with at least similar
performance advantages but based on a simpler form of
biological life could be developed, then there is a chance that
it might provide a solution to the above problems. We believe
that the Unitronic artificial system, which is inspired by
primitive unicellular beings called prokaryotes, in particular,
bacteria, with its structure and characteristics does indeed
offer the answer. It combats the problem of high genome
redundancy, thus increases system reliability and is in all
respect superior to all Embryonics based systems.

The novel artificial prokaryotic model we have proposed
[6, 7] is a solution to build efficient fault tolerant hardware
systems. It offers: efficient optimisation of genome

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientifi c Committee of the “2nd International Through-life
Engineering Services Conference” and the Programme Chair – Ashutosh Tiwari

Available online at www.sciencedirect.com

ScienceDirect

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cranfield CERES

https://core.ac.uk/display/188365141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

401 Mohammad Samie et al. / Procedia CIRP 11 (2013) 400 – 405

redundancy, smaller silicon area, smaller memory for the
storage of redundant (back-up) configuration information and
requiring less logic support [6]. In our prokaryote model, the
cell is only required to store its own configuration bits and
some non-configuration bits that support self-repair and not a
large part or the entire DNA of the system. Self-repair is
achieved by a simple cell elimination process. A new self-test
methodology was proposed [8] that offers an acceptable
overhead compromise between time and hardware redundancy
and guarantees that not only functionality, but all interconnect
lines of the cellular system, are also tested.

1.1. Prokaryotic Bio-Inspired Model

The prokaryotic bio-inspired model [6, 7] offers a multi-
layer architecture of programmable universal cells. Each cell
consists of a function unit (FU), a communication block and a
memory block. The latter contains the configuration bits
(gene) of the cell that define the required behaviour of both
the function unit and that of the communication block, and
non-configuration bits which assist self-repair if a fault is
detected. Since the task of the gene in the configuration
register (CR) is to code the behaviour of a cell so it is termed
as a coding gene, while the gene in the non-configuration
register (non-CR) that assists self-repair is a non-coding gene.
Thus each cell’s genome could be viewed as consisting of one
coding and one non-coding gene. The non-coding genes are
assisting the functionality and the recovery of the coding
genes both for the cell in which they reside and for other cells.

In a multi-layered prokaryotic model, cells form clusters,
which in turn form colonies and on the top level biofilm
communities are formed by colonies. Although the individual
bacterial cells' genomes, in a family of species, are the same,
due to continual evolution that takes place, mutation will
differentiate them. Disregarding these small amounts of
differences there will always be a strand in their DNA which
they all share and is common to them all. Similarly therefore,
in an artificial system family, clusters could be formed with
cells that demonstrate similarity in their configuration bits.
These cells, although they are unique and different in their
own rights, do display similarity through a shared value (Csv)
that is common to every cell in a cluster. Characteristics of
artificial cells are stored in the form of bits in their
configuration register and form its configuration vector (Ccv).
Therefore every cells’ configuration vector is made up of a
value that the cells share (Csv) and is common to them all,
and by a differential value (∆g) that distinguishes the cells
from another. The configuration vector of a cell can therefore
be described by Equation 1.

Ccv = Csv + ∆g (1)
or generally as:
Ccv = f(Csv, ∆g)
where f in refers to the evolutionary function and in the

simplest form could be considered as XOR or subtraction
functions.

A cluster forms the first community layer. It is a
convenient collection of cells to aid self-repair. A cluster is a
community of genetically related entities that need not have
any functional relationship. In the simplest form, two different

types of clusters may be defined: as shared value cluster (sv-
cluster), and gene difference value cluster (∆g-cluster). The
first one refers to those cells in the colony that have the same
shared value of their configuration bits and hence originate
from the same species. The second one refers to those cells
that have the same genetic difference from their base species.
Components of cells and clusters are shown in Fig. 1.

Fig. 1, Prokaryotic Bio-Inspired Model.

1.2. Self-Repair

Cell division requires a ‘new’ cell that, during the repair
process, will be configured the same as the eliminated faulty
cell. Since, unlike in nature, our current technology does not
facilitate birth of hardware cells, artificial systems must have
some redundancy through the availability of spare cells. If a
system consists of n available cells of which a specific
application uses m cells, then the number of available spare
cells is n-m.

Consider that cell k (between cells 1 to m) is detected as
faulty. In this case all cells located between k+1 to m are
shifted one cell forward to cells k+2 to m+1, where cell m+1
is part of the system’s redundant available cells. Cell k+1 will
act as a ‘spare cell’ and will replace the faulty cell. Cell
division is a two-step process: Shifting prepares a spare cell
adjacent to the faulty one; and, Calculating and loading the
shared value of faulty cell into the spare cell.

These will be followed by a differentiation process where,
from the shared value the cell’s configuration, vector (Ccv)
will be evolved. Lack of the shifting process is the only
difference between hardware and software fault repair. If
several faulty cells simultaneously develop a fault then,
following their elimination, the same shifting process will
take place and the number of available redundant cells will be
accordingly reduced. During shifting, cells are individually
checked for integrity and simply by-passed if they were
previously killed, while their neighbours will serve as spare
cells and will take over the functionality of the faulty ones.

We mentioned previously that clusters are communities of
software related cells that have the same shared value, or the
same differential parameter. The genome (CGen) of a sv-

402 Mohammad Samie et al. / Procedia CIRP 11 (2013) 400 – 405

cluster is made up as a union () of the genes (g) of its
individual cells and can be expressed as:

CGen(Tsvi) = g(Tsvi, TΔgj), (2)
i {1, 2, ..., v} & j {1, 2,..., w}
where j refers to the individual cells in the cluster having

the same shared value addressed by Tsvi and i refers to the ith
sv-cluster, Tsvi. These clusters are shown by the vertical lines
in the Fig. 2. A similar equation can be formulated for Δg-
clusters that have the same differential parameters:

CGen(TΔgj) = g(Tsvi, TΔgj), (3)
i {1,2, ..., v} & j {1, 2, ..., w}

where i refers to the individual cells in the cluster having

the same differential parameters addressed by TΔgj and j
refers to the jth Δg-cluster, TΔgj. These clusters are shown by
the horizontal lines in Fig. 2. It also shows an example of how
the physical placement of a faulty cell in the array differs
from its placement in T-Space. Every cell in Fig. 2 has its
place both in the sv-cluster and in the Δg-cluster. When faults
are detected, for as long as one healthy cell exists in both
CGen(Tsvi) and in CGen(TΔgj), the gene of faulty cell can
always be recovered with Tsvi and TΔgj. Fig. 2 also shows
that cells do not need to be physically sorted when comparing
their locations in T-Space.

Fig. 2, An example of faulty cell, its physical placement in the array, and in
the T-Space.

Equation 2 shows that how, in a prokaryotic model based

system, clusters compress the system’s genome. Every cell in
the appropriate clusters of CGen (Tsv) (vertically sorted in
Fig. 2) is expressed with a same shared value and some
differential parameters. The self-repair process uses this
shared value during cell division by copying that of the faulty
cell into the spare cell. It is only the differential parameter
(Δg) that distinguishes the cell now from other cells in the
cluster. The healthy configuration vector can be recovered by
differentiating this shared value with the faulty cell’s Δg. It
can be extracted from the Δg-cluster of CGen(TΔg) by TΔg,
where the faulty cell belonged. Since all cells in a sv-cluster
have the same Csv, it is readily available from any of its cells.
It is a calculable entity and therefore requires no storage.
Finally, the configuration vector of the faulty cell can be
calculated as CCVi = CSVi + Δgj. For safety and for easy
self-repair purposes neither Δg nor TΔg is saved in the cell’s

own non-configuration register but another cell will host
them. In this way, every cell in the cluster has a back-up
memory in the form of a non-configuration register that stores
information for other cells. Self-repair process takes place in
three steps:

i. Cell division.
ii. Identifying the species of the faulty cell, the sv-

cluster and the actual shared value.
iii. Differentiating the shared value with Δg obtained

from, Δg-cluster.
Steps 2 and 3 can only be executed if the faulty cell’s tags

remains healthy. Since the bit requirement of the tags is
considerably less than that of Ccv and Δg, this condition is not
difficult to meet. However, should the tag values still mutate,
additional safety storage is provided by fault tolerant RAMs
in an external backup memory.

1.3. Self-Test

The bio-inspired self-test we are proposing is based on two
characteristics of biological systems:

• In nature, the DNA is a double helix, a duplicated
sequence of complementary genes. It means that both
sequences define exactly the same organism with exactly the
same features. Therefore one strand is sufficient for the
growth and development of an organism [9].

• Transposons (formally termed jumping genes) are
sequences of DNA that can move around to a different
position within the genome of a single cell. Such mobile
genetic elements can move within the genome from one
position to another using a “cut and paste” mechanism [10].

These two characteristics found in nature can be used to
inspire the development of a bio-inspired self-test model for
artificial systems by observing that:

i. If we could guarantee that by configuring the processing
elements of an artificial cell with both its gene and
complementary gene, their functionality would remain the
same and

ii.That using the concept of the jumping genes mechanism
could offer a solution to switch over and substitute input
signals of such processing elements and interchange their
outputs.

1.4. Unitronics Architecture

Embryonics, inspired by multi-cellular eukaryotic
organisms, was the first project that attempted to map
biological processes to electronic hardware. A newly
emerging field that uses models of prokaryotic organisms
such as bacteria to create bio-inspired man-made systems is a
related but different architecture. Here, we name the artificial
electronic systems inspired by these unicellular creatures,
‘Unitronics’ [6, 7, 8]. The Unitronics system uses two
different types of cells; core cells (C-cell), surrounded by
peripheral cells (P-cell) around its perimeter (Fig. 3).

Core cells are configured to implement specific functions,
as defined by the genes in their configuration register.
Peripheral cells on the other hand only manage the input and
output information flow, including signal swapping during

403 Mohammad Samie et al. / Procedia CIRP 11 (2013) 400 – 405

test mode. Unitronics adapts a ‘see-of-gates’ architecture (Fig.
3) similar to that used by commercial FPGAs but partitions
the system into prokaryotic islands. Islands are formed by
groups of C-cells surrounded by P-cells. Peripheral cells (Fig.
4) of the array provide an interface between the island of C-
cells and the outside world. They consist of two flip-flops and
a signal controller. They have four bi-directional pins, two of
which (P1 and P2) provide communication with the peripheral
bus (P-BUS), and the other two (E1 and E2) provide
communications with the global bus (G-BUS). Signal
directions in E and P are defined by the appropriate
configuration bits for the P-Cell. The flip-flops receive their
data either from the External (E) or from the Peripheral (P)
bus lines, under the control of two multiplexers. External
communication can be disabled in order to swap data of P1
and P2. This is accomplished by the two flip-flops; connected
in this case as a circular shift register.

Fig. 3, Schematic diagram of Unitronics

Fig. 4, Peripheral cell, P-Cell

During test mode, data from the P-lines are loaded into the
flip-flops are swapped round, and placed back onto the same
lines. As a result the lines now have swapped data, as
compared with what they had before. Fig. 4 shows only those
components of the peripheral cell that provide data switching
between P1 and P2 lines.

The array has 2 different types of buses: G-BUS, P-BUS
and P-BUS (Peripheral Bus). G-BUS is used for distant
communication between C-Cells in different islands via their
own P-Cells where signal swapping is also possible.

P-Cells provide flexible connection between any two lines
of the G-BUS to any two P-BUS lines. Lines are grouped in
pairs, so that once a line is selected as input/output from G-
BUS to P-BUS, the second line provides switch over when

(e.g. in test mode) required. For self-repair there are
additional redundant spare P-Cells.

P-BUS, on entering the array of C-Cells, is divided to C-
BUS (Configurable Bus) and L-BUS (Local Bus). They are
interconnecting wires, lines and channels, similar to
commercial FPGAs. C-BUS provides the required cell to cell
interconnect. It is configured by the core cells according to
their functional and communicational requirements. Lines of
the configurable bus can be grouped, cut, joined and swapped.
The bus also supports cell elimination during self-repair if a
cell developed a hardware fault. In this case, the faulty cell is
killed, its functionality is shifted to the next cell along the
configurable bus and all preceding cells are also shifted until a
healthy stand-by cell is found. The L-BUS, though can be
divided to sub-sections, usually passes through the cells and
only makes connection to those with which long distance data
communication is required. It is local to the island, and would
normally connect to the P-BUS only at the first and the last
cell of the island.

C-Cells are the processing and communication elements of
the system and as such they provide processing Function (F),
signal Routing (R), information storage as Memory (M), and
switching as Void (V) tasks. The two slices of the cell can
work in tandem and undertake any combination of the above
tasks as for instance FF, FR, MV, RM and etc. The detailed
architecture of configurable bus is beyond the scope of this
paper. The cell’s Connection Box (CB) manages how the cell
should be connected to the network of other cells in the
island. Inputs to the cell’s Function Unit (FU) are provided
either from the bus via the CB or from the cell’s neighbours
via dedicated neighbouring connections lines.

FU includes two 2-bit slices. Each slice is supported by the
cell’s genome, which is essentially an LUT. It can either
define the precise function the slices should execute, or can
configure them for signal routing. Slice function can either be
logical or algebraic. When for example a cell is configured as
RF then slice 2 will undertake signal routing, while slice 1
will execute a function on its output. FF set-up enables the
cell for a more sophisticated function.

The cell can be used as a memory to implement registers,
counters and, in case of a distributed memory, an 8, 16, 24 or
32-bit RAM. It is called a distributed memory because one
cell can only provide up to two memory locations. The
configuration bit (Ccv) register is not an addressable memory.
To allow such functionality a distributed memory feature has
been designed. In this case another cell is used as a memory
controller. When the cell acts as a “Void” it provides a
connection between C-BUS and L-BUS. If a cell is used for
M or V the functionality of its slices’ is reduced.

In summary the Unitronic architecture, inspired by
biological colonies and the circulatory system of a Biofilm, is
a network of colonies supported by adequate routing and
communication facilities for the cellular array. Both hard and
‘soft’ entities of the architecture demonstrate biological
inspiration. Cells, islands and the circulatory system are the
hardware components, and clusters, colonies and biofilms are
the ‘software’ components of the Unitronic system. There is
no physical location in the array that can be identified as
being a cluster, or colony. Both are ‘soft components’

404 Mohammad Samie et al. / Procedia CIRP 11 (2013) 400 – 405

providing immune protection for the system for fault
detection and repair. The architecture in Fig. 3 is a substrate
where cells, cluster, colonies and biofilms are grown in the
islands located in the network of voids and circulatory system.

1.5. Robot Controller

In this example, to demonstrate the self-healing and self-
repair capability of Unitronics, the timer part of a movement
controller for an e-puck object avoidance robot from EPFL
[11] is implemented on a Unitronics array. The Unitronic
timer part is synthesised on a Xilinx XUPV5-LX110T
development board [12], while the movement part of the
controller and the interface between the robot and the
Unitronics system is provided by Matlab. Using hardware co-
simulation, data from the Unitronics array is transferred to
Matlab in a 2-bit data. One bit defines whether a right or left
turn is required from the robot, while the other is a fault
indicator for the Unitronic system.

The timer is a 16-bit up counter the implementation of
which required eight Unitronic cells. Fig. 5 shows the cells’
genomes that implement the timer. The slices of all the cells,
in this example, are configured as function-function (FF) and
define a full adder. In reality the circuit offers a 16-bit full
adder, but with inputs set to ‘0’ and carry-in set to ‘1’, it
behaves as a 16-bit counter. MSB bit of this counter describes
whether robot should turn right or left. Combination of
turning right and left makes the robot to move in a figure 8-
like manner. Since the genome of every cell is the same, their
identical CSV translates into one sv-cluster and their Δg
(equalling to zero) into one Δg-cluster. TΔg, and Tcv tag
values are chosen arbitrarily as “10” and “11” respectively.

Fig. 5. Unitronic timer implementation (values shown in hex)

Since all cells are located in the same sv-cluster and in the

same Δg-cluster, fault recovery is always guaranteed for as
long as there is one healthy cell in the system. This example
uses the simple algebraic function in Equation 4:

Ccv(Tsv, TΔg) = Csv(Tsv) + Δg(TΔg) (4)

Since in this example Δg = 0 means that CCV = CSV.

Consider a situation when seven out of the 8 cells are faulty
and only one functions correctly. If we assume that all tags
are correct and cell 5 is the faultless cell then after eliminating
the faulty cells the next step is a shift process. With this, if the

cells are sequentially placed along the bus, cell1 will assume
the position of cell5 and the remaining cells occupy positions
cell 9 to cell 15 of the stand-by cells.

The next step is to search in the sv-cluster space and
identify the faulty cell’s shared value. This is achieved by
sending a token that will locate the first faulty cell, in this case
cell 15. In order to find the shared value of this cell its Tsv tag
is sent to all cells in the cluster. Since only cell 12 is healthy,
the tag requests the extraction of its shared value using the re-
arranged form (i.e. Csv = Ccv - ∆g) of equation 4. This here
will coincidentally yield the same as the Ccv value of cell 12
and be released to the bus. All those cells which need the
recovery of their shared value and have the same Tsv as cell
15, will receive it. In this case it will affect all cells of the
cluster except cell 12. The final step of the repair process is to
differentiate it with all the faulty cells’ Δg. Since Δg is zero
for them all, their configuration vector can now be
simultaneously recovered, using equation 4.

In this example cluster identification is trivial due to the
repetitive nature of the cell functions required. This in larger
digital systems becomes more difficult. These however are
typically composed of regular building blocks, i.e., registers,
counters, multipliers etc; where this regularity can be
exploited to simplify cluster formation.

Another example of a PD controller is shown in Fig. 6. The
waveform illustrates the actual behaviour of the hardware (not
simulation results!) and the fault recovery process of the
controller. The PD controller was also implemented, also as
an interim step before VLSI implementation, on a Xilinx
XUPV5-LX110T development platform. The controller
required 40 Unitronic cells and a ‘soft’ fault was injected in
the genome of cell 3.

Fig. 6, Implemented robot controller fault recovery

During the operation of the robot controller a fault was
inserted into cell3. Fig. 6 shows the fault recovery process of
the implemented system:
 1. Fault is injected at fault injected point into the system.
 2. The effect of the fault causes the gene to mutate at

CodingGenes_ConfigurationVector.
 3. Simultaneously self-test using input data and control

sequence complementation recognises it, identifies the
faulty cell and initiates self-repair.

 4. Self-repair requests the mutated faulty cell’s CSV at
sv_Cluster_Request. For this TSV at Put_Tsv_on_BUS
identifies the cluster and the cells that share the same
portion of the configuration vector with the faulty cell.

405 Mohammad Samie et al. / Procedia CIRP 11 (2013) 400 – 405

With the aid of the cluster’s cells, CSV is calculated at
Shared_Value_is_availabe.

 5. Recalculation of the faulty cell’s corrupted CCV
configuration vector also requires its Δg.

 6. Δg’s address TΔg is triggered at
Put_dgTag_on_the_BUS in order to locate the same Δg.

 7. When Δg is also available, using Equation (4) the faulty
cell’s CCV can be calculated (dg_Value_is_available=’1’).

 8. With its recovery, on-line repair of the faulty cell is
complete and the recovered correct response result of the
cell is now allowed to propagate to its final output.

 9. Normal system operation (at System repaired) in the
next machine cycle resumes as if fault never occurred.

1.6. Conclusion

On-line fault detection and fault repair capability of our
Unitronics architecture, based on the bio-inspired prokaryotic
model, is demonstrated using an e-puck object avoidance
mobile robot. Implementation of the robot required 8
Unitronic cells appropriately interconnected and then mapped
onto a Xilinx XUPV5-LX110T development board. The fault
tolerance model of the system guarantees that “if similarities
and differences between healthy and faulty cells are known
then, full recovery of any Unitronic implemented system is
possible”. The system is able to cope with and repair any
number of simultaneously occurring dynamic (SEU) or static
(hardware) faults. The amount of fault repair only depends on
the number of spare cells the system is equipped with. Its fault
repair uses significantly less memory for gene storage and
considerably less hardware overall for target system
implementation than any previously proposed bio-inspired
architecture.

Acknowledgements

This research work is supported by the Engineering and
Physical Sciences Research Council of the United Kingdom
under Grant Number EP/F062192/1.

References

[1] Garis, H. de. (1993). Evolvable Hardware. The Genetic Programming of
Darwin Machines [C].In Proceeding of Artificial Neural Nets and Genetic
Algorithms, pages 441-449.

[2] Mange, D. (1996). Embryonics: a new family of coarse-grained FPGA
with self-repair and self-reproducing properties. Towards Evolvable
Hardware: An evolutionary approach. Springer Verlag. Pages 197-220.

[3] Mange, D. and Sipper, M. and et al. (2000). Towards Robust Integrated
Circuits: The Embrynics Approach. Proceedings of the IEEE, vol.88,
no.4, pages 516-541.

[4] Barker, W., Halliday. D. M., Thoma. Y., and et al (2007). Fault Tolerance
using Dynamic Reconfiguration on the POEtic Tissue, IEEE Transactions
on Evolutionary Computation, Vol. 11, No. 5, pages 666-684.

[5] Macias, N. Durbeck, L. Prokopenko, M. (2008). Advances in Applied
Self-organizing Systems. Springer.

[6] Samie, M., Dragffy, G. Pipe, T. and et. Al (2009). Prokaryotic Bio-
Inspired Model for Embryonics. AHS’09 - NASA/ESA Conference on
Adaptive Hardware and Systems, pages 163-170.

[7] Samie, M. Dragffy, G., Pipe, T. and et al (2009). Prokaryotic Bio-Inspired
System. AHS’09 - NASA/ESA Conference on Adaptive Hardware and
Systems, pages 171-178.

[8] Samie, M., Dragffy, G., Pipe, T. (2010). Bio-Inspired Self-Test for
Evolvable Fault Tolerant Hardware Systems. AHS2010 - NASA/ESA
Conference on Adaptive Hardware and Systems. pages 325 – 332.

[9] Jacob, F., Brenner, S., Cuzin, F. (1963). The Regulation of DNA
Replication in Bacteria. Cold Spring Harbor Symposia Quantitative
Biology. pages 329–348.

[10] Kidwell, M. G. (2005). Transposable elements. In ed. T.R. Gregory. The
Evolution of the Genome. San Diego: Elsevier. Pages 165–221. ISBN 0-
12-301463-8

[11] Mondada, F., Bonani, M., Raemy, X. and et al. (2009). The e-puck, a
Robot Designed for Education in Engineering. Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, vol. 1,
num. 1, pages 59-65.

[12] XUPV5 - LX110T User manumal, http:// www.xilinx.com/ univ/ xupv5-
lx110T-manual.htm

