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Abstract.

An extensive analytical model to determine behaviour of curved sandwich plates with variable

stiffness cores and face-sheets under low velocity impact with foam core is presented in this

paper. A developed method is introduced to determine effective dynamic stiffness of the face-

sheets and core with variable stiffness. A modified spring-mass-dashpot model was used to

obtain the contact force function related to effective dynamic stiffness and effective dynamic

frequency to determine the contact force histories by impact of a hemispherical-nose impactor.

A parametric study was also performed to understand the effects of several factors such as

impactor velocity, face-sheet thickness, core thickness (constant and variable stiffness), layup

orientation and curvature on the contact force histories of curved sandwich plates. Different

geometries of curved sandwich plates are analysed to study their performance under impact

loading. Numerical analysis was performed in LS-DYNA to further validate with the developed

analytical models.

Keywords: Analytical; Impact; Variable Stiffness; Sandwich, LSDYNA

Nomenclature

E Young’s Modulus (GPa)

12G Shear Modulus (GPa)

� Poisson’s ratio of plate/impactor

� Density of plate/impactor
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b Width of plate

M0 Mass of impactor

a Length of plate

��� Dynamic bending of facesheet

G13 Shear modulus of core

h Total thickness of facesheet

ℎ� Thickness of ply

H Height of core

����� Effective dynamic global stiffness of simply supported panel

����� Effective dynamic local stiffness of top face sheet

�� Effective mass of top facesheet

�� Total dynamic core crushing strength

����,���� = ���� Transverse shear stiffness of sandwich

� Local indentation of top face-sheet

∆ Global plate bending

�� Mass of sandwich plate

�� Mass of impactor

��,�� Radiuses of plate

��� Natural frequency of face-sheet

�� Mass of face-sheet

���� Sandwich bending stiffness matrix

� Indentation force
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1. Introduction

Sandwich structures with honeycomb or foam cores are widely used in aerospace, marine,

automotive applications mainly due to the advantages such as greater strength and stiffness,

increased energy absorption and corrosion resistance. These structures experience low velocity

impact events caused by tool drops, runway stones, hails, etc, thus reducing the strength of the

structure [1-2]. Therefore, accurate prediction of the impact response of sandwich structures is

vital in aerospace industry.

It was observed that most researches on the impact behaviour of sandwich panels were either

numerical or experimental. Few analytical models have been developed, since modelling the

interactions between the facesheets and core during impact is a complex process [3]. Abrate

[4] outlines analytical modelling approaches to model impact on sandwich panels by

incorporating contact laws, plate theories and dynamic mass-spring systems.

Hoo Fatt and Park [3] used single and multi-degree of freedom systems to predict the impact

response of sandwich panels subjected to various boundary conditions. An analytical force

function to determine the impact response of simply supported and clamped panels were

derived. The analytical solutions matched well with the experimental work on flat sandwich

panels. However, this work was limited to impact response flat sandwich plates. In another

work [5] they investigated the failure modes associated with sandwich panels and derived that

the main failure modes associated are core shear failure, shear and top face-sheet failure and

bottom face-sheet tensile failure.

Malekzadeh et al. [6] adopted an improved higher order sandwich plate theory (IHASAPT) to

predict the low velocity impact of sandwich panels that comprised of a transversely flexible

core and composite face-sheets. Analytical solutions for the contact force histories and

deflection of the panel were developed through a new system consisting of spring-mass-

damper-dashpot or spring-mass-damper.

Drop weight impact tests on glass/polyester sandwich panels were performed by Caprino et al.

[7] and effects of different core densities and core thicknesses on the impact histories were

examined. Similar studies were carried out by Anderson [8] to compare analytical predictions

with experimental work for different facesheet and core arrangements.
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Crushing of the core and large deflections of the facesheet were incorporated by Olsson and

McManus [9] in their analytical model. In another study, Olsson [10] suggested a method for

the prediction of impact response and damage in sandwich panels considering the effects of

core crushing, delamination and large deflections of the facesheet. Studies on the bending

behaviour of sandwich beams were conducted by Frosting et al [11-12] by using the higher

order theory.

The effect of impactor shape on the impact response of foam core sandwich panels were studied

by Flores-Johnson and Li [13]. They showed that the impact behaviour of sandwich panels

were largely affected by the shape of the impactor and the density of the foam core. Hosseini

et al [14] analytically studied impact response of sandwich panels with rigid plastic core and

constant stiffness face-sheets.

Zhou and Stronge [15] derived analytical solutions for circular sandwich panels impacted by a

spherical indenter. According to their results denting depends on the kinetic energy,

compliance and nose shape of the colliding body as well as the compliance and mass density

of the sandwich panel. Yurddaskal and Baba [16] studied curvature effects on impact response

of sandwich panels. They discovered that contact force increases as impact energy increases

for flat and curved plates and that curved plates exhibit more damage at the upper face-sheet.

Arachchige et al. [17] derived analytical solutions by using first order shear deformation theory

to analyse low velocity impact response of variable stiffness curved composite plate. Their

method was based on calculating natural frequency of the plate under impact and this method

has been used in this study to determine natural frequencies of the variable stiffness face-sheets

in the sandwich plate in the present work. Feng et al. [18] performed low velocity impact tests

on sandwich panels with graphite/epoxy skins and PVC foam cores. They found that higher

core densities resulted in stiffer force-displacement curves and higher peak loads.

Review of these works suggested that a study related to analysis of low velocity impact on a

curved sandwich plate with variable stiffness face-sheets and cores were necessary since most

of structural applications consist of variable thicknesses within their structures; and it is

therefore required to evaluate the behaviour of such structures under impact loading. The

stiffness variation is achieved by variation in thickness of either face-sheet or core section. The

present study develops an analytical model for a curved sandwich panel with variable facesheet

thicknesses and variable stiffness foam core with constant transverse crushing resistance. A

developed approach introduces a dynamic stiffness of facesheets and core to analyse sandwich
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plate geometries with variable stiffness face-sheets and core sections. This analytical model is

also applicable for studying impact response of doubly curved sandwich plates. Different cases

of sandwich plate geometries are analysed to study their response under low velocity impact.

Numerical models are also developed in LSDYNA for validation of analytical models for both

constant stiffness core and variable stiffness core sandwich plates. Therefore, this analytical

model would serve as a useful tool for future design of curved sandwich structures.

2. Analytical models

A curved sandwich plate with dimensions, length �, width, � and radius, �� is impacted in the

centre by a rigid hemispherical nose cylinder with radius R and length, L (see Figure 1(a)).

Different sandwich plate geometries which are studied in this research are shown in Figure 1a,

1b & 1c.

Figure 1. Idealised modes of curved sandwich plates (a) constant stiffness facesheets and core

model (b) and (c) variable stiffness core, constant stiffness facesheet model, (d) variable

stiffness top facesheet, constant stiffness core model subjected to central impact.

(a) (b)

(c) (d)
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3. Theoretical formulations

In this research, studying the impact response of curved composite sandwich plates involves

relating natural frequency of the top face-sheet and effective frequency of whole sandwich

plate to derive the contact force function. First order shear deformation theory is used to express

the equations of motion in a symmetric laminate. Then, double Fourier series is used to solve

the equations to define Fourier coefficients for the impact problem. The effect of curvature is

also included in the formulation. These formulations are also applicable for doubly curved

sandwich plates.

Equations of motion of the symmetric composite laminate is expresses as [19]:

��� �
����

���
� +

�

��

���

���
� + ��� �

����

������
+

�

��

���

���
� + ��� �

����

������
+

����

���
� �+ ����� �

����

���
� +

����

������
�+ ������ �

��

��
+

�

��

���

���
−

��

��
�� +

����
�

���
+

���
�

��
�
���

���
−

��

��
�− ��

����

���
− ��

����

���
= 0 (1)

��� �
����

������
+

�

��

���

���
� + ��� �

����

���
� +

�

��

���

���
� + ��� �

����

���
� +

����

������
�+ ������� �

��

��
+

�

��

���

���
−

��

��
���− ����� �

���

������
+

���

���
��+

����
�

���
+

���
�

��
�
���

���
−

��

��
� = ��

����

���
+

����

���
(2)

������ �
����

���
� +

���

���
−

�

��

���

���
� + ������ �

����

���
� +

���

���
−

�

��

���

���
�−

�

��
���� �

���

���
+

��

��
� +

��� �
���

���
+

��

��
�� +

�

��
���� �

���

���
+

��

��
� + ��� �

���

���
+

��

��
�� +

�

���
����

� �
���

���
−

��

��
�� +

�

���
����

� �
���

���
−

��

��
��+ � = ��

����

���
(3)

��� �
����

���
� �+ ��� �

����

������
� + ��� �

����

������
+

����

���
� �− ������� ��� +

���

���
−

��

��
�� = ��

����

���
+

��
����

���
(4)

��� �
����

������
+

����

���
� �+ ��� �

����

������
�+ ��� �

����

���
� �− ������� ��� +

���

���
−

��

��
�� = ��

����

���
+

��
����

���
(5)



7

Deflections and rotations of a flat composite plate using Double Fourier series are expressed

as:
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In equations [6] to [10], � and � represents the length and width of the plate respectively and

���,���,���,���,��� are the time-dependant constants that needs to be evaluated.

The terms of the Fourier series can be expressed as:
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By substituting equations (6) to (10) in equations (1) to (5), the following relationship is

obtained:
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The equations of ��� are described in [19]

Equation (13) can be simplified as:

�̈��(�) + ���
� ���(�) =

���(�)

��
(14)

��� is broken down into three separate natural frequencies in order to incorporate variable

stiffness top face-sheets for a sandwich plate with three variable stiffness sections (either core
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or face-sheets or a combination). A typical geometry of this nature is shown in Case D under

section 4.4. For a variable stiffness top facesheet model, natural frequencies are expressed as:

Natural frequency of top face-sheet section 1.
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���������������������������������������
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(15)

Natural frequency of top face-sheet section 2.
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Natural frequency of top face-sheet section 3.
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(17)

Then, the dynamic contact stiffness of the top face-sheet for section 1, 2 and 3 can be

determined from:
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Effective dynamic contact stiffness of top facesheet with three different thicknesses can be

expressed as:

����� = ���� + ���� + ���� (21)

The effective mass of face-sheet for a core with three equally spaced variable stiffness cores
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5. Stiffness matrices of sandwich plates

The main novelty of the study is the analysis of variable stiffness face-sheets and cores on the

impact response of curved sandwich plates. The global stiffness matrices are different for the

sandwich panel with variable stiffness facesheets and cores as shown in Table 1. These matrices

are evaluated on the assumption that thickness of the core remain constant under loading and

that in-plane stiffness of the core are negligible [20]. Stiffness matrices of the face-sheet and

sandwich plate have an effect on the natural frequency of the facesheets and dynamic global

stiffness of the sandwich plate. The stiffness matrices are modified to adopt for sandwich plates

with varying core heights and facesheet thicknesses. These stiffness matrix values are used in

the calculation of the effective dynamic global stiffness of the sandwich plate. Table 1 shows

the stiffness matrices of a sandwich plate with three variable core sections.

Table 1. Modified Stiffness matrices of sandwich plates for a plate with three variable

stiffness cores

6. Global force-indentation response of sandwich panel

For the sandwich plate with variable stiffness core sections, separate dynamic global stiffness

are determined for the different sections. In the case of a core with three unequal sections, the

total effective dynamic global stiffness of the sandwich plate is expressed as:

Stiffness matrix of
sandwich plate

Section 1 Section 2 Section 3

[�����] [��]� + [��]� [��]� + [��]� [��]� + [��]�

[�����] [��]� − ���[��]�

+ [��]�

+ [��]�

[��]� − ���[��]�

+ [��]�
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− 2���[��]�

�����
�

[��]�
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����� = ���� + ���� + ���� (25)

where,

���� ,����,���� are dynamic global stiffness’s of section 1, 2 and 3 of the sandwich plate

respectively. The method to obtain dynamic global stiffness of the sandwich plate with a

constant stiffness core is given in reference [3]. This technique is applied in obtaining separate

dynamic global stiffnesses of the sandwich plate with a variable stiffness core section.

4. Sandwich plate models

This paper considers the local indentation of the top face-sheet and core crushing. In a simply

supported sandwich plate, two types of deformation occur: the local indentation of the top face-

sheet into the core material, δ, and the global plate bending and shear deformation, ∆. Most 

models determined the local indentation through Hertzian contact methods. However, the local

deformation considered in this study causes transverse deflections of the entire top face-sheet

and core crushing and therefore Hertzian contact laws are invalid in determining the local

indentation response. Three consecutive regimes are reflected for the local indentation of the

plate. I- Plate on elastic foundation; II- Plate on a rigid-plastic foundation; III- Membrane on a

rigid-plastic foundation. The plate on an elastic foundation can be used to determine the

indentation response when the indentation is very small. The plate on rigid-plastic foundation

can be used as the face sheet indentation becomes larger, but still less than half the thickness

of the plate. The membrane on a rigid plastic foundation is used to find the indentation response

when the face sheet indentation is greater than the face sheet thickness. The local indentation

response of a simply supported plate on an elastic foundation is presented by Eq. 26.

δ��

= � × � ��4Psin �
mπ

2
� sin �

nπ

2
�� �a� �

π

a�
(D��m� + 2(D�� + 2D��)m�n� + D��n�) + k���� �

�

���,�,…

�

���,�,…

(26)

The present model is capable of predicting top facesheet failure and core crushing, but not the

damage in bottom facesheet at higher impact energies. Thus, the analytical method is only valid

for low impact energies.
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Different cases of sandwich plate geometry are studied. In all models, length, width and

curvature are constant.

4.1. Case A (Constant stiffness face-sheet and core model)

The first case which is the baseline model involves a sandwich plate geometry with the constant

thickness top and bottom facesheets.

• �� = ��

• Constant stiffness core with thickness, c

Figure 2. Schematic for constant top/bottom facesheet and constant thickness core

4.2. Case B (Unequal top and bottom face-sheets)

In this case, total thickness of the top facesheet is changed, keeping bottom facesheet thickness

constant. Core thickness is constant

�� < �� or �� > ��

4.3. Case C (Variable stiffness core model)

In this model, thickness of facesheets are equal with varying core height across the width of

the plate. This type of geometry is shown in Figure 3. The main parameter changed here is the

thickness of the centre core section that is subjected to the impact. It is assumed that in the case

of the plate with three varying stiffness cores, they are equally spaced (see Figure 3).
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• �� = ��

• �� > �� and �� < ��

�� is the distance from centre of core section to the mid plane of the facesheet.

��� =
��

�
+

��

�
(27)

��� =
��

�
+

��

�
(28)

��� =
��

�
+

��

�
(29)

Figure 3. Schematic for constant top/bottom facesheet and variable thickness core.

4.4. Case D (Variable stiffness top face-sheet model)

In this model, the stiffness of the facesheet of centre section subjected to impact loading is

varied by changing its thickness. Height of core is constant.

��� > ��� and ��� < ���
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Figure 4. Schematic for variable top facesheet with constant core section.

7. Low velocity impact of simply supported plates

This section describes the analytical models for predicting the impact response of simply

supported sandwich plates. This model introduces an effective dynamic global stiffness of the

facesheet and sandwich plate, ����� and ����� respectively. Therefore, this model is applicable

for sandwich plates with variable stiffness facesheets and core sections.

Figure 5. Modified two degree of freedom spring-mass-dashpot system for three section

variable stiffness facesheet and core plates.

Both local and global deflections occur for a simply supported plate. A two degree of freedom

system is used to derive the function for the contact force (Figure 5).

Two degree-of-freedom system equations of motion are expressed as:

��� + ����∆̈ + �̈� + ��(�) + �� = 0 (30)

and
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�� + ��(�) = ��∆̈ + �����∆ (31)

By linearizing the local spring response

��(�) ≈ ������ (32)

The equations (30) and (31) can be simplified by assuming that the mass of the sandwich panel

is insignificant related to the mass of the hemispherical impactor.

�� �∆̈ + �̈ + ������ + �� = 0� (33)

and

�� + ������ = �����∆ (34)

Total Dynamic core crushing strength, Qd is defined by:

�� = ����� (35)

where �� is dynamic crushing strength. Compressive strength of the core is determined

experimentally and this value is ��.	� is radius of projectile.

Differentiating both sides two times respect to time � gives:

∆̈=
�����

�����
�̈ (36)

Substituting ∆̈ into equation (33) gives:

�� �1 +
�����

�����
� �̈ + ������ + �� = 0 (37)

Equation (37) is subjected to initial conditions �̇(0) = �̇� = ����� ������ + ������� and

�(0) = 0

The solution for � is given by:

� =
�̇�

����
�������� +

��

�����
�������� −

��

�����
(38)

For a sandwich plate with three varying stiffness sections:

���� = �� + �� + �� (39)

where, �� frequency of vibration of section 1 sandwich plate, �� frequency of vibration of

section 2 of sandwich plate, �� frequency of vibration of section 3 of whole sandwich plate
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where ���� which is effective frequency of vibration due to impact for the whole sandwich

plate is:

���� = ∫ �
��������

�������������
+ ∫ �

��������
�������������

+ ∫ �
��������

�������������

�

�/��

�/��

�/��

�/��

�
(40)

���� also considers the position of the variable stiffness section in the top facesheet.

The impact force is expresses as:

�(�) = −��(∆ + �) = −�� �1 +
�����

�����
� �̈ (41)

�̇ = �̇��������� − ����
��

�����
�������� (42)

�̈ = −�����̇��������� − ����
� ��

�����
�������� (43)

Therefore, expression for the impact force is expressed as:

F(t) = −M� �1 +
�����

�����
� �−����δ�sin����t�−

������
�

���
cos����t (44)

where,

�̇� =
�������

�������������
(45)

8 Validation of the developed analytical models

The present analytical model is first validated with experimental work performed by

Yurddaskal and Baba [16] performed experimental studies on low velocity impact response of

foam based curved sandwich plates. In the calculation of the effective dynamic global stiffness,

����� of the panel, the equations for the simply supported boundary conditions were used. It is

noted that in the proposed analytical model, only top face-sheet damage is considered. In

reality, the bottom face-sheet could also be damaged at higher impact energies, thus resulting

in two force drops in contact force history plots. Therefore, the present analytical model is

applicable at very low impact energies. Material and geometrical properties of face-sheets, core

and impactor are presented in Tables 2-4. These properties are the initial baseline for the

analytical model and corresponds to Case A of the impact models in section 4.
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Table 2. Material properties of uni-directional E-glass/epoxy face-sheet [16].
Properties Ref (16)

Density (kg/m3) 60

Compressive strength (MPa) 0.90

Compressive Modulus (MPa) 69

Tensile strength (MPa) 1.3

Tensile Modulus (MPa) 45

Shear strength (MPa) 0.85

Shear Modulus (MPa) 22

Table 3. Mechanical properties of Airex C70.55 foam core [16].

Material Property Ref (16)

E11 (GPa) 31

E22 (GPa) 12

E33 (GPa) 12

G12 (GPa) 3.2

��� 0.3

LTS (MPa) 706

TTS (MPa) 123

LCS (MPa) 472

TCS (MPa) 183

SS (MPa) 77

Properties Ref (16)

Core thickness(mm) 15

Total ply thickness(mm) 0.75

Ply orientation [90°/45°/45°/90°]

Length of panel(mm) 100

Width of panel(mm) 100
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Table 4. Geometrical properties of facesheets and core.

Table 5. Dimensions and loading conditions of the impactor.

In this experimental study, the plate was impacted at 10J, 25J and 80J impact energies. At

impact energy of 10J corresponding to impact velocity of 2.1m/s, only the top facesheet was

damaged. The specimens were impacted by a 4.926kg hemispherical nose impactor having a

12.7mm diameter. The core of the sandwich panel was 15mm and radius of the plate were

changed within the range of R=100 and 160mm. Since, data for the maximum contact force

were available; it is considered as a method for comparison with the present developed

analytical model. As presented in Table 6, the analytical model was proven to be accurate

where the difference between the maximum contact force when compared with experimental

results was less than 10% for two instances of plate curvatures (see Figure 6).

Property Ref (16)

Mass (kg) 4.926

Diameter (mm) 12.7

Velocity (m/s) at 10J

impact energy

2.1
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Figure 6. Impact force against time for simply-supported plate with different radius.

Table 6. Analytical and experimental results comparison.

9. Parametric studies

After validating the present model with experimental studies for curved sandwich panels, a

parametric study is performed to analyse the effects of different factors affecting the low

velocity impact response of curved sandwich panels with foam core. For this study, a foam

core plate with glass/epoxy face-sheets are considered. Material properties for the glass/epoxy

facesheets and impactor are presented in [16]. The radius of curvature of the panel 160mm.

Boundary conditions of the plate are simply supported. The following sections analyses effects

of impact velocity, layups, facesheet thickness (constant and variable thickness), core thickness

(constant and variable thickness), and curvature on impact response of the sandwich panel

models discussed in section.

Radius (mm) Maximum Impact Force (N) % difference

Experiment [16] Present Model

160 2100 1990 5%

100 1900 1750 8%
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9.1. Impactor velocity

In case A, a sandwich plate model were studied with constant facesheet and core thickness.

The face-sheets were oriented at [90°/45°]s configuration for each velocities considered in the

study. It was observed that the contact duration slightly takes longer when the impact velocity

increases. A 20% increase in velocity gives rise up to 21% in the impact force and contact time

by only 4%. The main reason is related to the initial velocity of top facesheet, �̇� which is

directly proportional to the impactor velocity (see Figure 7).

Figure 7. Effect of impactor velocity on impact response.

9.2. Layups

The effect of layups presented in Table 6 on the impact response of curved composite sandwich

plates in Case A was investigated. The results predicted that the stacking sequence of the

facesheets played a minor role in the impact response. Negligible effect was observed in the

contact duration. However, the maximum impact force of layup 1 was slightly higher than the

other layups. Through the analysis, it is seen that 45° plies in the laminate increased the

maximum contact force, even though interchanging the positions resulted in a negligible

change (see Figure 8). The effect of layups have been incorporated into the analytical model

by the fact that it has a direct effect on face-sheet stiffness properties, thus it can affect natural

frequency and dynamic contact stiffness of the face-sheet.
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Table 6. Various layups for the parametric studies.

Figure 8. Effect of layups on impact response.

9.3. Effect of facesheet thickness

9.3.1 Constant stiffness facesheets and core (Case A)

Facesheet thickness also plays a key role in impact response of sandwich panels. In all studies,

four facesheets were used with the thickness of ply changed keeping the orientation constant.

Higher facesheet thicknesses results in greater maximum contact force and lesser contact

duration. For instance, a 33% increase in facesheet thickness results in a 17% rise in impact

force and 5% decrease in contact duration. It is also noted that the drop in the maximum contact

force occurs earlier when at higher thicknesses. This force drop implies failure of the top face-

Layup Fibre Orientation

1 [90°/45°/45°/90°]

2 [-45°/90°/90°/-45°]

3 [0°/90°/90°/0°]

4 [0°/30°/30°/0°]
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sheet and therefore confirms that thicker face-sheets fail quickly since higher energy is

absorbed during the impact (see Figure 9).

Figure 9. Effect of facesheet thickness on impact response for constant stiffness facesheet and

core model (Case A).

9.3.2. Unequal thickness top and bottom facesheets (Case B)

The effect of unequal thickness face-sheets are analysed in this section. This corresponds to

Case B of the sandwich plate models. In this analysis, total thickness of the top and bottom

facesheets are varied as shown in Table 7. It is observed that both top and bottom facesheet

contributes to the overall stiffness of the sandwich panel. Increase of thickness gives rise to an

enhancement of stiffness. Combinations 2 and 3 corresponds to decrease of top facesheet

thickness and combinations 4 and 5 corresponds to decrease of bottom facesheet thickness. The

analysis proves that the top facesheet thickness has a greater effect on the maximum contact

force than the bottom facesheet thickness. This is demonstrated by the higher drop in maximum

contact force when compared with the sandwich panel with constant thickness facesheets. A

0.1mm reduction in thickness of only top facesheet reduces impact force by 4.9% whereas

0.1mm reduction in thickness of only bottom facesheet gives a 1.4% reduction in maximum

impact force.

Combination Top facesheet
thickness (mm)

Bottom facesheet
thickness (mm)

Maximum
contact force/N

% decrease in
maximum

contact force

1 (Constant
thickness

facesheets)

0.75 0.75 1978 -
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Table 7. Combinations for unequal thickness top and bottom facesheets.

9.3.2 Variable stiffness top facesheet and constant stiffness core (Case D)

Here, the stiffness of the top facesheet is varying across the width of the plate as shown in the

model in Case D. The stiffness of the facesheet section subjected to the central impact is varied

in this study. Thickness of the adjacent facesheets are kept constant at 0.75mm throughout the

analysis. The analysis shows that similar to increasing stiffness of the central core section,

increasing stiffness of the central facesheet yields higher maximum contact force. Increase of

central facesheet thickness to 0.8mm improves contact force by 5% when compared to the same

facesheet thickness increase for the constant stiffness facesheet plate.

Figure 10. Effect of variable stiffness facesheet thickness on impact response for constant

stiffness facesheet and core model (Case D).

2 (Top facesheet
thickness < Bottom
facesheet thickness)

0.65 0.75 1880 4.9%

3 (Top facesheet
thickness < Bottom
facesheet thickness)

0.55 0.75 1700 14%

4 (Top facesheet
thickness > Bottom
facesheet thickness)

0.75 0.65 1950 1.4%

5 (Top facesheet
thickness > Bottom
facesheet thickness)

0.75 0.55 1935 2.2%
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9.4. Effect of core thickness

9.4.1. Constant stiffness core section (Case A)

The core thickness has also a major contribution to the impact response which is analysed here.

As seen from Figure 11, as the core thickness increases, the maximum contact force increases.

However, the contact duration decreases. It is also observed that the rise in the contact force

decreases as the thickness increases. For instance, as the core thickness is raised from 10mm-

12.5mm, the contact force increases by 22%, whereas when it is increased from 17.5mm-

20mm, only 4% increase of contact force is observed. The pattern is similar for the contact

duration. Therefore, it is proved that even though the maximum contact force increases with

core thickness, it becomes insignificant at higher core thickness values.

Figure 11. Effect of core thickness on impact response for constant stiffness core plate.

9.4.2. Variable stiffness core section (Case C)

In this study, the core is of varying stiffness. This stiffness variation is achieved by changing

thickness of the centre core section as shown in Case C earlier. Thickness of adjacent core

sections are kept constant at 15mm. The results prove that increasing stiffness of the core region

subjected to the central impact yields a higher maximum contact force. Increasing core

thickness of the centre section to 17.5mm yields a maximum contact force which is 10% higher

than increasing thickness of the whole core section to 17.5mm as shown in Figure 12. Similarly,
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an increase of core thickness at the centre section to 20mm improves maximum contact force

by 22%.

Figure 12. Effect of increasing central core thickness on impact response on variable stiffness

plate

9.5. Effect of sandwich plate curvature (Case A)

The final parametric study focusses on the effect of panel curvature on the impact response of

the curved plate with constant stiffness core section (Case A). Sandwich plate with constant

facesheet thickness and core is considered for this study. Results depict that increase of

curvature increases the maximum contact force of the plate. The drop in the impact force occurs

earlier, thereby indicating that at higher curvatures, the top facesheet fails earlier. A 7%

increase in the plate curvature gives rise to a 5% rise in the maximum impact force and 2%

decrease in the contact duration (see Figure 13).

Figure 13. Effect of plate curvature on impact response (Single curvature).
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The present analytical model is also applicable to doubly curved sandwich plates. Therefore,

the effect on doubly curvature is also analysed. The analysis proved that double curvature

increases maximum impact force of the plate. It was observed that double curvature increases

the natural frequency of the top facesheet and this results in an impact force increase. Another

observation made is that this increase is higher at larger curvatures. For example, maximum

force difference for a plate of 160mm (doubly curvature and single curvature) is 9% when

compared with maximum force difference for a plate of 80mm (doubly and single) is 4% as

shown in Figure 14.

Figure 14. Comparison of single curvature and doubly curved composite sandwich plates.

9. Validation with Finite Element Modelling

A numerical finite element model of the curved sandwich plate is developed in finite element

program, LS-DYNA. The main aim of this numerical model is to validate the analytical model

and compare with available experimental data from impact tests performed by Yurddaskal and

Baba [16] for a curved sandwich plate. The facesheets were made using glass/epoxy and

modelled using 4-node 1.5mm shell elements with Belytschko-Tsay element formulation with

four integration points to define the four layers in the facesheet. The foam core is modelled

using 2mm×2mm×2mm solid elements similarly to the impactor (see Figure 15a). Material

model 54 (ENHANCED_COMPOSITE_DAMAGE) of LS-DYNA was selected to model the

intralaminar failure of curved composite plate. The Chang-Chang failure criterion which is the

modification of the Hashin’s failure criterion was chosen for assessing lamina failure. The post-

failure conditions in the Material 54 model are somewhat different from the original Chang-
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Chang equations. In this model four failure modes are categorised. These failure indicators are

appointed on total failure for the laminas, where both the strength and the stiffness are set equal

to zero after failure is encountered. In this model as described below all material properties of

lamina are checked using the following laws to determine the failure characteristic. Material

model 54 assesses intra-laminar failure of the composite. Properties of the facesheets are

obtained from Table 2. Material model 63 (Crushable Foam) was used to model the core. This

material model is used to characterise the properties of isotropic crushable foam and also

includes optional damping and a tensile cut-off stress. Stress strain behaviour of the Airex foam

core used in the study was entered through a load curve.

The material failure was simulated with the aid of MAT ADD EROSION based on the plastic

strain and tensile stress. In the present model, the maximum strain criteria is used without

introducing failure in material model, the crushable foam deformation due to the localized force

shows problematic furrowing and an unrealistic dent shape as shown in Figure 15. The brittle

failure mode cannot be obtained without using an appropriate failure criterion. The existing

model was improved to avoid the negative volume error which occurs due the large

deformation in the foam. To prevent this error, the stress strain curve was extended

exponentially at large strains.

Fig. 15. Deformation of EPS foam without using failure criterion.

Mass of the rigid hemispherical impactor was 4.926kg and impact energy was 10J

corresponding to an impact velocity of 2.1m/s. An automatic nodes to surface contact

behaviour is defined for contact between the impactor and facesheets. Surface to surface

contact was used to bond the facesheets to the foam core. Simply supported boundary

conditions were used. In order to prevent negative volume errors due to element distortion,

stress-strain curve of foam was exponentially extended at larger strains and one point element

solid integration with hourglass control. FE model to investigate effect of variable stiffness

cores was also developed (Figure 16).
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9.1 Constant stiffness core model

Initially, FE model is developed for the curved sandwich plate with a constant stiffness core.

Thickness of the core was 15mm similar to the experimental work [16]. Curvature of FE

models are constant at 160mm. The numerical analysis is performed for an impact energy

corresponding to 10J. It is noted that this numerical study corresponds to Case A of the

analytical model where curvature, facesheet thickness are kept constant. The comparison

between the analytical and numerical model is shown in Figure 16. It is concluded that at an

impact energy of 10J (2.1m/s impact velocity) damage is observed only in the top facesheet.

The fluctuations in the numerical study depicts the initiation of matrix cracking and the sudden

load drop indicates failure of the top facesheet. The maximum contact force difference between

the analytical and numerical studies is 7%. A certain level of core crushing was visible from

the contact force history plot as shown in Figure 17. It was also observed that only top facesheet

damage occurs at low impact energies such as 10J (Figure 18).

Figure 16. Numerical model (a) constant stiffness core model, (b) variable stiffness core model

Figure 17. Contact force history comparison for curved sandwich panel of 15mm core

thickness

Core
crushing

(a) (b)
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Figure 18. (a) Damage in top facesheet (b) core crushing (c) no damage in bottom facesheet.

Further validation between numerical and analytical models are made by changing the core

thickness of the constant stiffness core model. FE models as shown in Figure 18 are developed.

Impact energy is kept constant at 10J. Core thicknesses of 10mm, 12.5mm, 17.5mm and 20mm

are investigated. Appreciable comparison was achieved in which the difference between

analytical and numerical models were less than 10%. A certain level of core crushing was

observed in the numerical model (see Figures 19 and 20).

Figure 19. FE models (a) H=10mm, (b) H=12.5mm, (c) H=17.5mm, (d) H=20mm.

(a) (b)

(c)

(a) (b)

(c) (d)
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Figure 20. Model validation for constant stiffness core sandwich plate.

9.2 Variable stiffness core models

FE models to validate effect of variable stiffness core sections are developed. In the models

shown in Figures 21 and 22, the thickness of the mid core section is changed and the adjacent

cores are kept constant at 15mm.

(d)

(a) (b)

(c)

Force at
core

crushing
initiation

a b

c d



30

Figure 21. Variable stiffness core sandwich plate. Centre section core thickness is (a) 10mm,

(b) 12.5mm, (c) 17.5mm, and (d) 20mm

Figure 22. Impact on variable stiffness core curved sandwich plate. (a) top facesheet damage

(hiding mid-core section) and (b) core crushing.

(a)

(b)
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Analysis of results proves that as the core thickness is increased, the maximum contact force

at top facesheet failure increases. Larger core thicknesses are able to resist larger impact loads

before top facesheet damage occurs and core crushing initiation. This phenomenon is shown

in Tables 8 and 9 for both constant stiffness and variable stiffness core sandwich plates. The

numerical model also proves that increasing thickness of the centre region of impact has a

greater effect on the maximum contact force. For instance, an increase of centre core thickness

from 17.5mm to 20mm increases maximum contact force at top facesheet failure by 12% when

compared to the 6% increase for the constant stiffness core model. Numerical analysis results

shows that contact force at core crushing initiation is higher for plates with greater stiffness at

impact location.

Table 8. Effect of core thickness on top and bottom maximum contact force for constant

stiffness core plate.

Model Centre
Core

thickness
(mm)

Maximum Contact
Force at top facesheet

failure (N)

Analytical Numerical

(a) 10 1512 1581

(b) 12.5 1762 1990

(d) 17.5 2703 2854

(e) 20 3055 3206

Table 9. Effect of varying centre core thickness on top and bottom maximum contact force for

variable stiffness core plate.

Model Total
Core

thickness
(mm)

Maximum Contact
Force at top facesheet

failure (N)

Analytical Numerical

(a) 10 1590 1697

(b) 12.5 1943 2020

(d) 17.5 2412 2470

(e) 20 2517 2620
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10. Conclusions

This paper presented an analytical model to predict the low velocity impact response of curved

sandwich plates with a foam core with constant transverse crushing resistance. The impact

problem is studied through the use of a modified spring-mass-dashpot model which is modified

to incorporate variable stiffnesses of facesheets and cores through use of effective dynamic

contact stiffnesses. Transverse flexibility and other important parameters such as the natural

frequency of the plate were used in deriving closed form solutions for the low velocity impact

analysis. The present analytical model is effectively validated with the experimental and

numerical work on curved sandwich plates. A parametric study is performed to study the effects

of impactor velocity, stacking sequences, facesheet thickness, core thickness and plate

curvatures on the impact response of curved sandwich plates. The analytical model was also

extended to study the effect of variable stiffness cores and facesheets on impact response of

curved sandwich structures which was the main novelty of this study. It is observed that higher

impactor velocities increase the impact force. Stacking sequence of the facesheets have a

negligible effect on the impact force and contact duration. Increase of core thickness raises the

impact force. The analysis proved that increasing stiffness of the centre core region subjected

to impact has a greater effect than increasing stiffness of the whole plate. Similar results were

obtained for increasing facesheet stiffness at the impact region. The analysis also proved that

top facesheet thickness has a greater effect on impact force than the bottom facesheet and that

increase of plate curvature increases energy absorption of curved sandwich structures. Finite

element models developed to study impact response of curved foam based sandwich plates

validated the analytical models. Contact force at core crushing initiation was higher for plates

with greater stiffness at impact location.
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