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Abstract 

This study determined biotransformation rates (kbio) and sorption-distribution coefficients (Kd) 

for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic 

activated sludge collected from two different biological nutrient removal (BNR) treatment 

systems located in Nevada (NV) and Ohio (OH) in the United States (US).  The NV and OH 

facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using 

microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured 

in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all 

three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-

diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic 

activated sludge from both treatment plants; however, anoxic biotransformation of these three 

compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant 

in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater 

biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had 

a higher biotransformation rate in activated sludge with a lower SRT (8 days).  The remaining 

compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids 

were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive 

compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The 

sorption-distribution coefficients were similar across redox conditions and sludge sources. The 

biotransformation rates and sorption-distribution coefficients determined in this study can be 

used to improve fate prediction of the target TOrCs in BNR treatment systems. 

Keywords: Trace organic compounds, pharmaceuticals and personal care products, 

biotransformation, sorption, biological nutrient removal treatment  
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1. Introduction 

Consumer product ingredients have been identified as a contributor to anthropogenic 

pollution.  With the advancement of analytical techniques, a wide range of trace organic 

compounds (TOrCs) are now being detected in different environmental matrices. While these 

compounds are introduced into the environment through a number of pathways, wastewater 

treatment plant (WWTP) effluents are a major source of these chemicals in receiving waters 

(Drewes and Shore, 2001). Since wastewater treatment plants were originally designed to 

remove conventional pollutants (solids, bulk organics, and nutrients), the removal of TOrCs 

occurs to various degrees by virtue of the treatment process and the physico-chemical properties 

of the compound (Rogers, 1996). The major mechanisms of removal are biotic transformation or 

abiotic processes such as sorption, volatilization, isomerization, and hydrolysis (Pomies et al., 

2013). 

Mathematical models for assessing the fate of TOrCs in wastewater treatment are effective 

tools for process design, optimization of existing processes, or augmentation using tertiary 

treatment processes for improved effluent quality (Clouzot et al., 2013). Several modeling 

frameworks such as ASTREAT (McAvoy et al., 1999), TOXCHEM+ (Melcer et al., 1999), 

WATER9 (U.S. EPA, 2001), and SimpleTreat (Struijs et al., 2016) have been developed to 

predict the removal of organic compounds in conventional activated sludge (CAS) systems. The 

ASM-X model has also been developed to include an anoxic process for denitrifying systems 

(Plosz et al., 2010).  

Biotransformation and sorption are typically the two important fate mechanisms for assessing 

the removal of organic compounds in WWTPs. These fate processes have predominantly been 

studied in aerobic activated sludge from CAS treatment systems. State-of-the art reviews by 

Clouzot et al. (2013) and Pomies et al. (2013) have discussed the absence of fate parameters in 
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different redox conditions for micropollutant modeling. Biological nutrient removal (BNR) 

treatment processes, like the A
2
O design, employ anaerobic and anoxic zones in addition to an 

aerobic zone to promote the growth of phosphorus accumulating organisms (PAO) and 

denitrifiers, which are responsible for the removal nitrogen and phosphorus from wastewater. It 

has been hypothesized that BNR treatment systems may create favorable conditions for TOrC 

removal because of the different redox regimes that harbor a diverse consortium of 

microorganisms and enzyme pools to promote biotransformation (Xue et al., 2013). Nutrient 

removal processes may also be more effective in reducing the toxicity of treated effluents on 

aquatic life forms when compared to CAS treatment systems (Parker et al., 2014). In particular, 

the removal of estrogenicity has been reported in anaerobic, anoxic, and aerobic redox conditions 

in a pilot-scale University of Cape Town BNR (UCT-BNR) design (Ogunlaja and Parker, 2015).  

Hence, it is worthwhile to study fate mechanisms of TOrCs in BNR treatment systems and model 

these systems to advance our current understanding of their removal. 

In this study seven TOrCs were chosen for investigation: atenolol (ATN), benzotriazole 

(BTA), carbamazepine (CBZ), N, N-diethyl-3-methylbenzamide (DEET), sulfamethoxazole 

(SMX), trimethoprim (TMP) and triclosan (TCS). These TOrCs were selected because they: (1) 

are commonly detected in wastewater effluents throughout the world including Europe (Loos et 

al., 2013), Germany (Ternes et al., 1998), South Korea (Behera et al., 2011), Spain (Rosal et al., 

2010; Santos et al., 2007), Switzerland (Eggen et al., 2014), and the United States (Salveson et 

al. 2012); (2) have been identified as priority contaminants of concern in several priority lists 

(Higgins et al., 2010; Diamond et al. 2010), and (3) exposure to these compounds has been 

known to elicit toxic effects in aquatic life forms. DEET, a biocide used in insect repellants, has 

been shown to cause reproductive disorders after prolonged environmental exposures 
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(Manikkam et al., 2012). Isidori et al. (2005) reported sulfamethoxazole, an antibiotic, to cause 

chronic toxicity to aquatic organisms at part-per-billion levels. Tatarazako et al. (2004) has 

shown triclosan, an antibacterial agent, to be highly toxic to aquatic biota. The corrosion 

inhibitor benzotriazole has been shown to present an estrogenic response in bioassays (Harris et 

al., 2007) and exert toxicity to plants (Cancilla et al., 1997), while the accumulation of 

carbamazepine and triclosan have been observed in fish liver tissue (Diamond et al. 2010).  

The primary objective of this study was to experimentally derive biotransformation kinetic 

rates and sorption-distribution coefficients of a select group of TOrCs in activated sludge 

collected from three redox conditions at two different BNR treatment plants with an A
2
O 

configuration. In activated sludge systems, the mechanism of biodegradation is often a topic of 

contention (Pomies et al., 2013). Most studies measure biotransformation only in the aqueous 

phase, while the biodegradation of an organic compound may occur in the aqueous phase or on 

the solids while being sorbed. Compounds may also desorb from the solids and become 

bioavailable for degradation in the aqueous phase. Identifying the biodegradation compartment is 

challenging because the compound, depending on its physical properties, may be present in both 

the solid and aqueous phases at a given time. Hence in this study, biotransformation rates were 

determined as the total compound loss in the mixed liquor by using microwave-assisted 

extraction. The sorption-distribution coefficients were determined using lyophilized, heat 

inactivated sludge solids to reduce the occurrence of biotransformation during sample 

equilibrium. The effect of redox conditions and solids retention time (SRT) were also assessed 

with respect to biotransformation and sorptive fate of the target TOrCs. 
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2.  Methodology 

2.1 Materials  

All of these compounds were purchased from Sigma Aldrich (Purity > 97%). The structure of 

these target compounds, their physico-chemical properties, and location of the isotopic labels in 

the internal standards are provided in the Supplementary Material (Table S-1 and S-2). Activated 

sludge for the biotransformation and sorption experiments were obtained from two BNR 

treatment plants located in Ohio (OH) and Nevada (NV). Both treatment plants were configured 

in the A
2
O process design (Figure 1). NV is a 30 MGD BNR treatment facility operated at an 

SRT of 8 days, while OH is a 9 MGD BNR treatment facility operated at an SRT 23 days. The 

influent wastewater to both of the wastewater treatment plants is primarily residential. The 

activated sludge samples were collected from the effluent of each unit process (anaerobic, 

anoxic, and aerobic) when the treatment plants were operating under normal, steady state 

conditions. The operational parameters reported by the treatment plants during the time of 

sampling are provided in the Supplementary Material (Table S-3 and S-4).  Activated sludge 

from both NV and OH were transported to the laboratory on ice and processed within 24 hours 

of collection.   
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Figure 1. Process diagram for A
2
O BNR treatment 

2.2 Biotransformation Experiment 

2.2.1 Experimental Procedure  

After receiving samples in the laboratory, 10 L of activated sludge was placed in four 

separate stainless steel reactors. Two of the four reactors were used as duplicate biotic reactors, 

one was used as an abiotic reactor (biocide solution containing 10 mM each of NaN3, BaCl2 and 

NiCl2), and the other as an experimental control (deionized water). All of the reactors were 

buffered with NaHCO3 to a final equivalence of 3 mM. A nutrient solution was spiked in the 

aerobic reactors (5 mg NH3-N/L and 10 mg/L PO4-P/L) to assess nitrification and phosphorus 

uptake, and in the anoxic reactors (30 mg NO3-N/L every 12 hours) to ensure denitrification. 

Relevant redox conditions (DO > 4 mg/L for aerobic and DO < 0.1 mg/L for anaerobic and 

anoxic) were maintained by bubbling compressed air or nitrogen gas through the reactors. The 

reactors were equilibrated for an hour prior to spiking the target TOrCs. The TOrC stock solution 

was prepared in 100% methanol and stored at 2 °C in amber glass bottles until use. The stock 

solution was brought to room temperature prior to preparation of the spiking solution, which was 
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prepared in ultrapure water to achieve an equivalent of 10 μg/L of each TOrC in the reactors at 

time zero. The methanol addition from the TOrC spiking solution contributed about 7.5 mg-C/L 

in the system. At specific time points, samples (500 mL) were collected for TOrC analysis in 

amber bottles containing a final equivalence of 1 g/L NaN3 and 0.5 g/L ascorbic acid as a 

preservative. Aerobic and anoxic experiments were run for 1-3 days, while the anaerobic 

experiments were run for 7 days because of expected slower kinetics. The buffer, nutrient spike, 

laboratory water, and activated sludge were also analyzed for the target TOrCs to determine 

background concentrations. The TOrC concentrations (C) measured at different time points were 

then divided by the measured initial TOrC concentration in the reactor and plotted against time. 

The results were fit to the following kinetic model: 

𝑑𝐶
𝑑𝑡⁄ =  −𝑘𝑏𝑖𝑜[𝐶][𝑋]                                     (1) 

where, kbio  is the pseudo first-order biotransformation rate constant (L/g-day) with aa assumed 

constant biomass concentration in the system (X as TSS or VSS).   

2.2.2 Analytical Methods 

Conventional Parameters: The conventional parameters pH, dissolved oxygen (DO), total and 

volatile suspended solids (TSS/VSS), dissolved organic carbon (DOC), soluble and particulate 

chemical oxygen demand (sCOD/pCOD), ammonia (NH3-N), nitrite (NO2-N), nitrate (NO3-N) 

and phosphate (PO4-P) were analyzed at various time points in the biotic reactors using Standard 

Methods (provided in the Supplementary Material, Table S-7). Presence of the biocide in the 

abiotic control reactor interfered with the COD, NO2-N, NO3-N, and PO4-P analysis. Hence, only 

pH, DO, TSS/VSS, and DOC were analyzed in the abiotic control. The conventional parameter 

samples were preserved at pH 2 with concentrated sulfuric acid and stored at 2 °C until being 
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analyzed. The samples for soluble conventional parameters analyses were filtered using a 1.2 µm 

glass fiber filter (Whatman GF/C).  

TOrC Analysis: TOrC extraction and analysis in the total mixed liquor sample consisted of three 

steps. Firstly, the internal standard solution was added to 10 mL of sample and mixed with 10 

mL of methanol. The target compounds were then extracted from the activated sludge/methanol 

mixture using microwave-assisted extraction (MAE) at 120 °C for 20 min using an EthosUp high 

performance microwave digestion system from Milestone (Shelton, CT). The MAE liquor was 

then diluted to 1-L in reagent-grade water and the analytes were isolated via automated solid-

phase extraction (ASPE) using HLB (6-mL and 200-mg) cartridges from Waters Corporation 

(Milford, MA) and an AutoTrace™ ASPE (Dionex Corporation, Sunnyvale, CA). The SPE 

cartridges were sequentially preconditioned with 5 mL of methyl tert-butyl ether (MTBE), 5 mL 

of methanol, and 5 mL of reagent-grade water. Each sample was loaded onto a cartridge at 15 

mL/min and then rinsed with 5 mL of reagent-grade water and subsequently dried under a 

nitrogen stream for 30 min. Each cartridge was eluted with 5 mL of methanol followed by 5 mL 

of 10/90 (v/v) methanol/MTBE and the extract was evaporated under a N2 stream to a 500 µL 

final volume. The final step was instrumental analysis of the ASPE extracts using isotope 

dilution liquid chromatography-tandem mass spectrometry (Vanderford and Snyder, 2006). All 

analytes were separated by a 100 × 4.6 mm Onyx Monolithic C18 column (Phenomenex, 

Torrance, CA) at 40 °C. Chromatographic separation was accomplished with a binary gradient of 

5 mM ammonium acetate (v/v) in reagent-grade water (A) and 100% methanol (B) at a flow rate 

of 0.8 mL/min. The target analytes and isotopic surrogates were quantified by tandem mass 

spectrometry using an API 4000 triple-quadrupole mass spectrometer (Applied Biosystems, 

Foster City, CA). Depending on the compound, either an ESI negative mode (TCS) or ESI 
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positive mode (ATN, BTA, CBZ, DEET, SMX, TMP) was used for quantitation. The analytical 

parameters for the target compounds are provided in the Supplementary Material (Table S-5).  

2.3 Sorption  Experiment 

2.3.1 Sludge Handling Procedure 

The inactivation of activated sludge was carried out following the procedure described in 

Kerr et al. (2000). Upon receipt of the activated sludge samples in the laboratory, the solids were 

allowed to settle for an hour in their sample containers and the supernatant was discarded. The 

remaining thickened solids solution was centrifuged at 2800 g for 5 min in 50 mL polypropylene 

centrifuge tubes. The supernatant was discarded and 30 mL of deionized (DI) water was added. 

The centrifuge tubes were then shaken by hand and centrifuged again at 2800 g for 5 min. This 

DI water washing step was done three times. After the final washing and decantation, the solids 

were placed in a freeze drying dish and pre-frozen at –20 °C. Pre-frozen solids were then 

lyophilized in a benchtop LABCONCO freeze dryer at –60 °C for at least 24 hour. After 

lyophilization the freeze dried solids were ground lightly using a mortar and pestle to break 

down the bulk solids. For inactivation, the solids were placed in an oven at 103 °C overnight 

prior to being stored in clean amber glass bottles. Prior to being used in the sorption experiments, 

a portion of the freeze dried solids were again heated at 103 °C in an oven overnight. A 90 mg 

sample of the dried solids were carefully weighed into 50-mL polypropylene centrifuge tubes 

and 30 mL of synthetic wastewater was introduced to achieve a final solids concentration of 

approximately 3 g/L. The synthetic wastewater was composed of: 6.5 mg/L KH2PO4; 22 mg/L 

K2HPO4; 33 mg/L Na2HPO4; 2 mg/LNH4Cl; 22 mg/L MgSO4; 36 mg/L CaCl2; 0.3 mg/L FeCl3; 

300 mg/L NaHCO3. The samples were centrifuged at 2800 g for 5 min and the supernatant 

removed using a pipet. This procedure was repeated two more times to remove any dissolved 
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organic carbon that was released from the solids. The inactivated sludge was then re-suspended 

in synthetic wastewater and used immediately in the sorption experiments to minimize the 

potential for biodegradation.   

2.3.2 Sorption Experimental Procedure 

After the third washing step, synthetic wastewater was added to maintain a solids-to-liquid 

ratio of 3 g/L. A spike solution was prepared similar to the biotransformation experiment except 

that only five of the seven compounds (BTA, CBZ, DEET, SMX, TCS) were added in the 

sorption experiment.  The reactors were spiked at five different concentrations (0.5, 1, 2.5, 5 and 

10 µg/L) to develop sorption isotherms. After spiking the test compounds, the centrifuge tubes 

were thoroughly mixed by end-over-end hand rotation for approximately 30 s.  The centrifuge 

tubes were then equilibrated in a rotational tumbler at room temperature (~23 °C) for 4 h 

(equilibrium time determined by Steven-Garmon et al. (2011) and Kerr et al. (2000)).  Following 

equilibrium, the test vessels were centrifuged (2800 g for 5 min) and 50 mL of centrate (aqueous 

phase) was transferred via a pipet into clean 60 mL sampling vials. The TOrC concentrations 

were measured only in the aqueous phase, and the solid phase TOrC concentrations were 

assumed to be the difference between the spiking concentration and the aqueous phase 

concentration. The solid phase concentrations were plotted against the measured aqueous phase 

concentrations and a linear regression analysis was performed to determine the sorption 

distribution coefficient (slope of the line fit through the origin) for each compound.   

𝐾𝑑 =  
𝐶𝑠𝑜𝑟/(𝑀𝐿𝑆𝑆×10−3)

𝐶𝑠𝑜𝑙
     (2) 

where, Kd is the sorption-distribution coefficient (L/kg), MLSS – concentration of the mixed 

liquor suspended solids (g/L) , Csor – concentration of TOrCs in the sorbed phase (µg/L) Csol – 

Concentration of TOrCs in the aqueous phase (µg/L).  
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2.3.3 TOrCs Extraction and Analysis 

Analytes from the aqueous phase were extracted using 150-mg hydrophilic-lipophilic balance 

(HLB) cartridges from Waters Corporation (Milford, MA). The SPE cartridges were first 

preconditioned with 10 mL of reagent-grade water followed by 50 mL of sample loading at 15 

mL/min. The analytes were then eluted using 10 mL of acetonitrile in two 5 mL elution steps and 

collected in 10 mL calibrated centrifuge tube. The extracts were then concentrated by a gentle 

stream of nitrogen to a volume less than 1 mL and then brought up to exactly 1-mL with 

acetonitrile. An Agilent G6410A Triple Quadrupole mass spectrometer was used for quantitation 

of the analytes.  All of the compounds, except triclosan, were measured in ESI positive mode.  

Triclosan was measured in ESI negative mode.  The analytes were separated using an Agilent 

ZORBAX C18 column (2.1x100 mm) at 25 °C.  Chromatographic separation was accomplished 

using a binary gradient of 0.1% formate in reagent-grade water (A) and 0.1% formate in 

acetonitrile (B) for the positive mode method and 5 mM ammonium acetate in reagent-grade 

water and 5 mM ammonium acetate in methanol for the negative mode method. An injection 

volume of 5 μL at 500 μL/mL flow rate was used for all analyses. The analytical parameters for 

the target compounds are provided in the Supplementary Material (Table S-6). 

3. Results and Discussion 

3.1 Biotransformation Kinetics 

3.1.1. Analysis of Conventional Parameters 

The conventional parameters in six biotransformation experiments are discussed in the 

Supplementary Material (Section 4, Table S-8 and Figures S-1, S-2 and S-3). The conventional 

parameter monitoring revealed that the microbial process for each of the redox conditions 

(nitrification in aerobic, denitrification in anoxic, fermentation or phosphorus release in 
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anaerobic) were operating properly. Monitoring these parameters also ensured that the biomass 

was active throughout the experiment.  

3.1.2 TOrCs Kinetics 

The pseudo first-order biotransformation rates (kbio) were normalized with the average TSS 

and VSS concentration over the duration of the experiment (Table 1). While the concentration of 

VSS better represents the biomass concentration, TSS was also included so that the rates could 

be compared with literature values.  The biotransformation profiles for all the experiments can be 

seen in Figure S-4 (a-n) in the Supplementary Material. Minimal residual values (< 10% most of 

the times) and R
2
 values > 0.8 show very good data fit for the kinetic model.    

Results from the abiotic reactor, experimental control, and activated sludge before spiking 

are also provided in the Supplementary Material (Figures S-5 and S-6). Except for atenolol, all of 

the compounds remained stable in the abiotic kill control (10 mM NaN3 + NiCl2 + BaCl2 biocide) 

with activated sludge.  Atenolol degradation of approximately 40% occurred in the abiotic 

control during the course of the experiments (Supplementary Material, Figure S-1 c, d), 

suggesting either that the biocide used was ineffective for this compound or another fate 

mechanisms were involved.  Hydrolysis was ruled out because atenolol was relatively stable in 

the experimental control reactor with buffered DI water. Sorption to activated sludge was also 

ruled out because the TOrCs analysis determined total mixed liquor concentration (i.e., inclusive 

of aqueous and solid phases). It was hypothesized that the enzymes responsible for degradation 

of atenolol was not inactivated with the biocide. To evaluate this hypothesis, methanol (8% final 

concentration) was added to the abiotic control reactor and the kinetics were studied. Results 

from this experiment (Supplementary Material, Figure S-7) showed the atenolol concentration to 

decrease by only 15% over the course of 7 days, which is much less than the 40% loss observed 
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without the methanol addition.  These results confirm that the biocide used in this study only 

arrested the microbial respiration and the addition of methanol was needed to denature the 

enzymes responsible for degrading atenolol. 
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Table 1. Biotransformation rates (kbio ± 95% CI in L/gTSS -day and L/gVSS-day) of the target TOrCs in activated sludge from three 

redox conditions in two BNR treatment plants, and a comparison with literature values.    

 

TOrC 
Kinetic 

Parameter 

Kbio 

OH (SRT = 23 days) NV (SRT = 8 days) Literature  kbio in L/gTSS-day 
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Anaerobic Anoxic Aerobic Anaerobic Anoxic Aerobic Anaerobic Anoxic Aerobic 

Group 1 

(Biotransformation 

under all conditions) 

ATN 

L/gTSS -day  0.14 ± 0.19 2.56 ± 0.01 2.92 ± 0.00 0.17 ±0.06 0.39 ± 0.02 1.61 ± 0.12 

1.7
c 

0.43
c 1.5

a
, 3.28

b
. 5.28

c
, 

1.1-1.9
d
 

L/gVSS-day   0.42 ± 0.18 3.36 ± 0.004 3.58 ± 0.12 0.24 ± 0.08 0.54 ± 0.05 2.26 ± 0.20 

R
2

 (RMSE) 0.83 (0.14) 0.99 (0.08) 0.85 (0.11) 0.96 (0.07) 0.89 (0.03) 0.99 (0.02) 

TMP 

L/gTSS -day  0.072 ± 0.08 0.14 ± 0.02 0.11 ± 0.00 0.24 ± 0.02 0.60 ± 0.05  0.53 ± 0.04 

0.22
c
 NA 

5.04
c
, 0.22

f
, 

0.05-0.09
g
, 0.15

h
 

L/gVSS-day   0.024 ± 0.01 0.19 ± 0.009 0.14 ± 0.00 0.33 ± 0.03 0.81 ± 0.11 0.75 ± 0.07 

R
2

 (RMSE) 0.95 (0.09) 0.96 (0.04) 0.94 (0.03) 0.98 (0.04) 0.99 (0.04) 0.92 (0.12) 

SMX 

L/gTSS -day  0.01 ± 0.02 0.04 ± 0.00 0.14 ± 0.02  0.03 ± 0.05 0.06 ± 0.03 0.07 ± 0.02 

0.41
j
 NA 

0.19-0.2
f
 , 0.15

h
 , 

0.41
j
 

L/gVSS-day   0.02 ± 0.01 0.05 ± 0.009 0.17 ± 0.02 0.05 ± 0.07 0.09 ± 0.03 0.11 ±  0.02  

R
2

 (RMSE) 0.88 (0.03) 0.82 (0.04) 0.92 (0.04) 0.83 (0.09) 0.94 (0.02) 0.84 (0.04) 

Group 2 

 (No 

biotransformation) 

CBZ 

L/gTSS -day  

NB NB NB NB NB NB < 0.02
c 

< 0.02
c
 

< 0.02
c
, < 0.1

d
,           

< 0.005
f
, 0.01

g
,  

< 0.06
h
  

L/gVSS-day   

R
2

 (RMSE) 

Group 3 

(Biotransformation 

dependent on redox 

condition and SRT)  

BTA 

L/gTSS -day  

NB NB 

0.16 ± 0.14 

NB 

0.15 ± 0.02 0.11 ± 0.04 

0.24
e
 NA 0.22

e
 L/gVSS-day   0.19 ± 0.17 0.21 ± 0.04 0.15 ± 0.06 

R
2

 (RMSE) 0.54 (0.11) 0.96 (0.04) 0.81 (0.06) 

DEET 

L/gTSS -day  

NB NB 

4.43 ± 0.05 

NB 

0.02 ± 0.03 0.62 ± 0.05 

NA
 

NA 0.3
a
, 0.98

c
, 5.76

i
 L/gVSS-day   5.43 ± 0.12 0.04 ± 0.04 0.87 ± 0.09 

R
2

 (RMSE) 0.98 (0.10) 0.59 (0.03) 0.99 (0.08) 

TCS 

L/gTSS -day  

NB NB 

0.49 ± 0.09 

NB 

0.17 ± 0.16 0.31 ± 0.02 

< 0.02
c 

< 0.02
c 

0.82
c
, 1.3

i
 L/gVSS-day   0.60 ± 0.13 0.23 ± 0.19 0.44 ± 0.04 

R
2

 (RMSE) 0.97 (0.06) 0.92 (0.19) 0.82 (0.03) 

NB - No biotransformation, NA – Not Available, RMSE – Root Mean Squared Error.  References: a) Helbling et al. (2010); b) Horsing et al. (2011); c) Inyang et al. (2016); d) Wick et 

al. (2009); e) Mazioti et al. (2015); f) Abegglen et al. (2009); g) Fernandez-Fonataina et al. (2013); h) Suarez et al. (2010); i) Salveson et al. (2012); j) Polz et al. (2010) 
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The compounds were classified into three groups based on their biotransformation fate in 

different redox conditions and activated sludge source. It should be noted that this classification 

is based only on the biotransformation fate and the degradation rates vary in each group. 

Group 1: Compounds that biotransformed under all three redox conditions and both sludge 

sources. Atenolol readily biotransformed under all three redox conditions in both treatment 

plants. The biotransformation rates of atenolol were highest under aerobic conditions in both the 

OH (3.58 L/gvss-day) and NV (2.26 L/gvss-day) activated sludge. The anoxic biotransformation 

rate of atenolol in OH (3.36 L/gvss-day) was similar to the aerobic rate in OH. Inyang et al. 

(2016) also observed the biotransformation of atenolol in activated sludge under three redox 

conditions in BNR treatment (aerobic = 5.28 L/gTSS-day, anaerobic = 0.43 L/gTSS-day and anoxic 

= 1.7 L/gTSS-day), but their rates were higher than the kbio (in L/gTSS-day) values seen here in both 

the treatment plants (Table1). 

Trimethoprim biotransformed under all three redox condition in activated sludge collected 

from both treatment plants, but the biotransformation rates were slower than atenolol (TMP OH: 

aerobic = 0.14 L/gvss-day, anaerobic = 0.24 L/gvss-day, anoxic = 0.19 L/gvss-day and TMP NV: 

aerobic = 0.75 L/gvss-day, anaerobic = 0.33 L/gvss-day, anoxic = 0.81L/gvss-day). The 

biotransformation rates of trimethoprim in NV were greater than OH for all three redox 

conditions. Conflicting observations has been seen in the literature with studies reporting 

trimethoprim being recalcitrant or being biotransformed (Fernandez-Fontaina et al., 2016; Deng 

et al., 2016).  Inyang et al. (2016) observed the biotransformation of trimethoprim only in 

aerobic and anoxic activated sludge with no biotransformation in anaerobic activated sludge. 

Saurez et al. (2010) studied the biotransformation of trimethoprim under nitrifying and 

denitrifying conditions and reported a biotransformation rate of 0.15 L/gTSS-day under aerobic 
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nitrifying conditions, which is similar to the aerobic biotransformation rate for OH (0.11 L/gTSS-

day), but they did not observe any biotransformation of trimethoprim in anoxic activated sludge. 

Sulfamethoxazole biotransformed at rates similar to trimethoprim. The highest 

biotransformation rate for sulfamethoxazole was in OH aerobic activated sludge (0.17 L/gvss-d) 

and the lowest was in the OH anaerobic activated sludge (0.025 L/gvss-d).  Plosz et al. (2010) 

reported both aerobic and anoxic biotransformation rates of 0.41 L/gTSS-day for 

sulfamethoxazole, which is greater than the rates normalized with TSS in this study. 

Group 2: No biotransformation under any condition. Carbamazepine was recalcitrant to 

biotransformation in activated sludge from both sources under all three redox conditions. Others 

have also reported the recalcitrance of carbamazepine in aerobic activated sludge. (Jelic et al., 

2011; Majewsky et al., 2011; Radjenovic et al., 2009; Salveson et al., 2012).   However, Hai et 

al. (2011) observed an exceptionally high removal of carbamazepine (68% removal) under near 

anoxic (DO = 0.5 mg/L) operational condition in a laboratory scale membrane bioreactor 

(MBR). The removal observed under aerobic condition (20 %) was also higher than those 

reported in the literature (Hai et al. 2011). They hypothesized that their MBR may harbor 

microbes that might degrade carbamazepine, but further microbial community analysis is needed 

to substantiate their hypothesis (Hai et al. 2011).  
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 Group 3: Compounds whose biotransformation was dependent on the redox condition and the 

sludge source. In this group, there were three compounds, namely benzotriazole, DEET, and 

triclosan, that biotransformed under aerobic and anoxic conditions in NV, but only under aerobic 

conditions for OH. The aerobic biotransformation rate of benzotriazole was comparable (0.19 

L/gvss-d in OH and 0.15 L/gvss-d in NV) in activated sludge from both treatment plants. Mazioti 

et al. (2015) reported biotransformation rates of benzotriazole under aerobic and anoxic 

conditions to be 0.38 L/gTSS-d and 0.24 L/gTSS-d, respectively, at rates slightly higher than this 

study. 

Triclosan had aerobic biotransformation rates of 0.49 L/gTSS-d in OH and 0.31 L/gTSS-d in 

NV activated sludge. Triclosan is well known to biodegrade under aerobic conditions (Inyang et 

al., 2016; McAvoy et al., 2002; Salveson et al. 2012).  Inyang et al. (2016) reported significant 

removal of triclosan in batch degradation studies using anaerobic and anoxic activated sludge, 

but the mechanism was predominantly sorption. Similarly, Phan et al. (2016) attributed the 

anoxic removal of triclosan in a laboratory scale anoxic-aerobic membrane bioreactor to be 

mostly due to sorption on the biosolids. Chen et al. (2011) observed biodegradation of triclosan 

to methyl-triclosan in anoxic activated sludge, but they did not study the kinetics of the reaction. 

To our knowledge this is the first study to report an anoxic biotransformation rate for triclosan.  

 DEET biotransformed rapidly in OH aerobic activated sludge (5.43 L/gvss-d), but no 

biotransformation was observed under anaerobic or anoxic conditions in OH activated sludge. In 

NV activated sludge, DEET biotransformed under aerobic and anoxic conditions, although the 

rate was much slower in anoxic activated sludge (0.04 L/gvss-d).  Inyang et al. (2016) observed 

the biotransformation of DEET only in aerobic activated sludge.  
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The target compounds were also classified into rapid biotransformation rates (kbio > 1 L/gvss-

d), moderate biotransformation rates (1 L/gvss-d > kbio > 0.1 L/gvss-d) and slow biotransformation 

rates (0.1 L/gvss-d > kbio > 0.01 L/gvss-d). DEET and atenolol were the only two compounds to 

biotransform rapidly.  All of the other compounds biotransformed either moderately or slowly. 

All the anoxic and anaerobic biotransformation rates were either moderate or slow, except for 

atenolol that biotransformed rapidly in anoxic activated sludge from NV.  

3.1.3  Impact of Redox Condition on Biotransformation 

All of the compounds evaluated except carbamazepine biotransformed in aerobic activated 

sludge collected from both treatment plants. Compounds such as benzotriazole, DEET, and 

triclosan biotransformed only in aerobic activated sludge and not in anoxic or anaerobic 

activated sludge from OH. Thus, aerobic redox conditions may be more favorable for 

metabolization of the target TOrCs due to maximum free energy available for substrate 

utilization (Inyang et al., 2016). Moreover, it has been shown that improvement in removal of 

TOrCs in wastewater treatment can be achieved under high DO conditions (Xue et al., 2010), 

nitrifying conditions where NH3 oxidation is catalyzed by ammonia monooxygenase (AMO) 

enzymes (Anderson et al., 2003; Joss et al., 2004; Li et al., 2011; Suarez et al., 2010; Phan et al., 

2014) and the presence of archaea (Helbling et al., 2012). The AMO enzyme is known to 

catalyze the biotransformation of compounds like bisphenol A (Sun et al., 2012), synthetic and 

natural estrogens (Khunjar et al., 2011a), iopromide (Batt et al., 2006), and ibuprofen and 

naproxen (Fernandez-Fontaina et al., 2016). While the AMO enzyme has very low substrate 

specificity (Rsche et al., 1991), its catalytic effect is highly dependent on the structure of the 

compound. For example, catalyzation by AMO is hampered by the presence of specific 

functionalities in the chemical structure like heterocyclic rings, aromatic rings, amide groups, 
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and amine groups that occur in sulfamethoxazole, trimethoprim, and carbamazepine (Boethling 

et al. 1994, Keener and Arp 1994, Fernandez-Fontaina et al. 2016). Hence, action of the AMO 

enzyme on any observed biotransformation of these compounds is highly unlikely. Other 

ammonia oxidizing enzymes (Helbling et al., 2010; Men et al., 2017) or heterotrophic bacteria 

(Fernandez Fontaina et al., 2016; Khunjar et al., 2011a) may be responsible for the 

biotransformation of TOrCs in aerobic activated sludge. For example, atenolol with a primary 

amide is known to undergo enzymatic hydrolysis to atenololic acid under aerobic conditions by 

amide hydrolyzing enzymes (e.g., amidase) that are abundant in activated sludge microbial 

communities (Radjenovic et al., 2008; Helbling et al., 2010). Also, hydrolysis does not require 

oxygen in the biochemical reactions (Stadler and Love, 2016) and thus enzymatic hydrolysis 

may explain the anoxic and anaerobic biotransformation of atenolol in this study. This finding is 

also supported by the methanol inhibition test of atenolol whereby the enzymes responsible for 

hydrolysis transformation were denatured (Supplementary Material, Figure S-7). 

There are instances where the biotransformation rate is comparable or even greater in anoxic 

activated sludge than aerobic activated sludge (Table 1: ATN and TMP in OH, BTA and TMP in 

NV). Thus, the absence of oxygen does not necessarily limit biotransformation of TOrCs in 

activated sludge where other electron acceptors such as nitrate are present. In BNR treatment 

plants with A
2
O design, the return activated sludge and the internal recycle activated sludge 

circulates biomass from aerobic conditions to anaerobic and anoxic conditions, respectively 

(Figure 1). This recirculation creates a unique environment where facultative heterotrophs and 

their enzyme pools are shared between redox conditions enabling biotransformation even under 

low DO conditions (Gomez-Silvan et al., 2014; Phan et al., 2016). This transfer of enzymes may 

explain the biotransformation of atenolol, sulfamethoxazole, and trimethoprim under all three 
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redox conditions from both the treatment plants. Several heterotrophic strains of bacteria like 

Pseudomonas sp., Rhodococcus sp., Microbacterium sp., Rhodococcus sp., Achromobacter sp., 

Ralstonia sp., Tsukumurella sp., Brevundimonas sp., and Variovorax sp. have been identified 

from aerobic activated sludge that can biotransform or even mineralize sulfamethoxazole 

(Larcher and Yargeau 2011; Bouju et al. 2012; Herzog et al. 2013). Ogunlaja and Parker (2018) 

studied the removal of trimethoprim in UCT-BNR design and concluded that ammonia oxidizing 

bacteria, heterotrophs and PAOs work collaboratively in the overall removal of trimethoprim. 

But their individual contribution is at different proportions in the order of heterotrophs > 

ammonia oxidizers > PAOs in aerobic activated sludge and heterotrophs > PAOs in anoxic and 

anaerobic activated sludge (Ogunlaja and Parker, 2018). Phan et al. (2016) studied the bacterial 

communities grown in an anoxic-aerobic MBR and observed a high similarity in structural and 

phylogenetic relationships because of the recycling of aerobic activated sludge. A better 

understanding of the microbial communities may help explain the anoxic biotransformation of 

Group 3 compounds (benzotriazole, DEET and triclosan) in NV activated sludge. However, 

anoxic activated sludge from OH was not able to biotransform these compounds. This lack of 

transformation could be because the facultative microbes responsible for the biotransformation 

of these compounds in NV activated sludge may not be present in the OH activated sludge. 

Metagenomic studies on the microbial community for each redox condition at both of the 

treatment plants would be required to confirm the absence or presence of biotransforming 

bacterial communities.  

3.1.4  Impact of Solid Retention Time on Biotransformation 

The average retention time of the microbes held in the system dictates the microbial 

community structure of activated sludge. Changes in SRT have been shown to shift the 
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community structure by increasing or reducing the abundance of a taxa (Vuono et al., 2015; Phan 

et al., 2016). If the SRT is not sufficiently long, slow growing microbes that can potentially 

degrade a particular compound could be washed out of the system. A positive correlation 

between longer SRT and better removal of TOrCs has been reported for: (a) bisphenol-A, 

ibuprofen, benzafibrate, and natural estrogens (Clara et al. 2005); (b) fluoxetine, naproxen, 

citalopram, natural and synthetic estrogens (Suarez et al. 2010), (c) trimethoprim (Gobel et al. 

2007); and (d) atenolol, DEET and sulfamethoxazole (Gerrity et al., 2013). In this study, atenolol 

and DEET showed better biotransformation performance under the higher SRT (OH SRT = 23 

day). The biotransformation rate of DEET in OH aerobic activated sludge (5.43 L/gvss-day) was 

more than five times greater than the rate in NV aerobic activated sludge (0.87 L/gvss-day). 

Similarly, the biotransformation rates of atenolol under all three redox conditions were greater in 

OH when compared to NV (Table 1).   

Better degradation with higher SRT was not consistent for all of the TOrCs studied.  For 

example, a higher biotransformation rate occurred with a lower SRT (NV SRT = 8 days) for 

trimethoprim (Table 1). Since the activated sludge was procured from a BNR treatment plant 

with biological phosphorus removal, one could expect an abundance in phosphorus accumulating 

organisms (PAO) in the system that would be favorable under lower SRT conditions.  PAOs 

belonging to bacteria taxa Rhodocyclales and Pseudomonadales have been shown to have greater 

abundance following a decrease in SRT (Vuono et al., 2015; Phan et al., 2016).   Thus, the 

biotransformation of trimethoprim at NV may be related to PAOs that thrive under lower SRT 

conditions. However, this relationship would need to be verified with detailed microbial 

community structure analysis.  The SRT did not affect the biotransformation rates of 

benzotriazole, sulfamethoxazole, and triclosan with rates for a given redox condition comparable 
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between the two BNR treatment plants.  This non-effect of a higher SRT on the 

biotransformation of benzotriazole, sulfamethoxazole, and triclosan may be due to: (a) slower 

growing microorganisms are not responsible for their biotransformation, (b) shorter SRT is 

sufficient to support the microbes responsible for biotransforming these compounds; or (c) the 

difference in SRT between the treatment plants (NV 8 days and OH 23 days) is not significant 

enough to observe any difference.  

3.2 Sorption distribution coefficient 

Five compounds (TCS, SMX, CBZ, DEET and BTA) were chosen for determining their 

sorption-distribution coefficient (Table 2). These compounds were classified on their average log 

Kd values as highly sorptive (log Kd > 3), moderately sorptive (2 < log Kd < 3), and lowly 

sorptive (log Kd < 2).   

Highly sorptive (log Kd > 3):  Triclosan was the only highly sorptive compound in this study 

with Kd values ranging from 6,516 to 10,541 L/kg-MLSS (log Kd = 3.81-4.02). Hyland et al. 

(2012) reported log Kd values for triclosan to range between 3.28 and 3.98 for aerobic activated 

sludge, which are slightly lower than the values found in this study.  
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Table 2.  Sorption-distribution coefficients (at pH = 7.5) in aerobic, anoxic, and anaerobic activated sludge for two BNR 

treatment plants (OH and NV). Kd ± 95% CI. Literature measured Kd values are also provided for comparison. 

Sorption 

Capacity 

TOrC 

OH (SRT = 23 days) NV (SRT = 8 days) Literature  Kd in L/kg 

Anaerobic Anoxic Aerobic Anaerobic Anoxic Aerobic 

Anaerobic Anoxic Aerobic 

L/kg log Kd L/kg log Kd L/kg log Kd L/kg log Kd L/kg log Kd L/kg log Kd 

High TCS 

8058 

± 

2107 

3.91 

8828 

± 

1895 

3.95 

6515 

± 

2115 

3.81 

9351 

± 

1524 

3.97 

10541 

± 1309 

4.02 

9053 

± 

 844 

3.96 NA NA 1905-9550a 

Moderate 

SMX 

241 

 ± 20 

2.38 

189  

± 14 

2.28 

26*  

± 4 

1.42* 

104* 

± 20 

2.02* 

162 

 ± 25 

2.21 

188 

 ± 14 

2.27 NA NA 
269a, 11b, 40-50c, 

<30d, 77e, 17-18l 

CBZ 

302 

 ± 22 

2.48 

208  

± 10 

2.32 

68*  

± 5 

1.83* 

134  

± 8 

2.13 

251  

± 21 

2.40 

250  

± 28 

2.40 3870i 6550i 

86a, < 1b, <8c, 36-

65d, 135e, 1f, 17g, 

28-66h, 940i, 52-76l 

DEET 

224  

± 55 

2.35 

149 

 ± 14 

2.17 

62 

 ± 12 

1.79 

146 

 ± 11 

2.17 NA NA NA NA 1550i 1950i 81a, < 31 -< 100d, 

850i 

Low BTA 

59 

 ± 5.2  

1.77 

86 

 ± 11 

1.94 

14*  

± 8 

1.17* 

123  

± 32 

2.09 71 ± 7 1.86 

58  

± 20 

1.76 NA NA 220j, 133k 

*indicates the Kd values were determined from single point calculation. NA - Not Available. References: a) Hyland et al. (2012); b) Fernandez-Fontaina et al. (2013); c) Abegglen et al. 

(2009); d) Stevens-Garmon et al. (2011); e) Radjenovic et al. (2009); f) Ternes et al. (2004); g) Wick et al. (2009); h) Urase and Kikuta (2005); i) Xue et al. (2010); j) Mazioti et al. 

(2015); k) Stasinakis et al. (2013); l) Yan et al. (2014) 
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Moderately sorptive (2 < log Kd < 3):  Sulfamethoxazole, carbamazepine, and DEET were 

classified as moderately sorptive. The Kd values for sulfamethoxazole ranged from 188 to 241 

L/kg-MLSS (log Kd = 2.27-2.38), which were similar to the value 269 L/kg-MLSS reported by 

Hyland et al. (2012) and the value 256±169 L/kg-MLSS reported by Gobel et al. (2005).  The Kd 

values for carbamazepine ranged from 134 to 302 L/kg-MLSS (log Kd = 2.13-2.48) with an 

average log Kd value for all redox conditions and treatment plants of 2.34 ± 0.13 (n=5).  Other 

studies reported much lower sorption distribution coefficients (< 86 L/kg-MLSS) for 

carbamazepine (Fernandez-Fonataina et al. 2013; Abegglen et al. 2005; Ternes et al., 2004; 

Urase and Kikuta, 2005; Stevens-Garmon et al., 2011; Hyland et al., 2012; and Wick et al. 

2009). Radjenovic et al. (2009) reported a Kd value of 135 L/kg-MLSS for carbamazepine, 

which is similar to the values reported herein. The Kd values for DEET ranged from 62 to 224 

L/kg-MLSS (log Kd = 1.79-2.35). The average log Kd value for all redox conditions and 

treatment plants was 2.12 ± 0.24 (n=4).  Xue et al. (2010) reported sorption distribution 

coefficients (log Kd) for DEET of 2.93 (aerobic), 3.29 (anoxic), and 3.18 (anaerobic), which are 

slightly higher than the values found in the current study. 

Lowly sorptive (log Kd < 2): The Kd values for benzotriazole ranged from 86 to 123 L/kg-MLSS 

(log Kd = 1.94-2.09) with an average log Kd value for all redox conditions and treatment plants 

of 1.88 ± 0.14 (n=5).  Mazioti et al. (2015) and Stasinakis et al. (2013) reported higher sorption 

distribution coefficients for benzotriazole of 220 L/kg-MLSS and 133 L/kg-MLSS, respectively.  

3.2.1 Impact of Redox Condition and SRT 

It has been established that there are significant differences in sorption affinity among 

primary, activated sludge and digested sludge because of the variation in their composition 
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(Berthod et al., 2016; Horsing et al., 2011). However, it is not clear if any differences occur in 

the sorption behavior of TOrCs due to different redox conditions of activated sludge. Due to 

internal recycle rates and different redox conditions within a BNR treatment system, there are 

changes in the microbial composition of the sludge (Vuono et al., 2015) that could affect the 

sorption capacity. 

 Regression plots of log Kd values for the different redox conditions and two treatment plants 

are shown in Figure 2. Variability in log Kd values of low to moderately sorptive compounds 

(BTA, CBZ, DEET and SMX) were more than the highly sorptive compound triclosan (Figure 

2). All four plots showed high correlation (R
2
 > 0.8) between redox conditions. The highest 

correlation was between anoxic and anaerobic activated sludge (R
2
 = 0.95) with a slope 

coefficient close to 1. Horsing et al. (2011) found similar log Kd values for sulfamethoxazole in 

activated sludge with SRTs of 3 days and 10 days.  Hyland et al. (2012) did not observe a 

significant effect of SRT on the sorption capacity for both ionic and neutral TOrCs. They also 

characterized the aerobic sludge solids used in their Kd estimations and found no significant 

change in the cation exchange capacity or the organic carbon fraction among six different 

activated sludge sources. Other sludge characteristics like particle size distribution, zeta 

potential, and availability of extracellular polymeric substances (EPS) have been shown to 

influence the sorption of TOrCs like trimethoprim (Khunjar and Love, 2011b).  Further studies 

are required to explore how sludge morphology varies among redox conditions, SRT, and 

treatment plant configurations and how these factors impact the sorption process.  
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Figure 2 – Plots of log Kd values between Aerobic vs Anoxic (Anoxic log Kd = 0.78 × 

Aerobic log Kd + 0.79, R
2
 = 0.89, n=9), Aerobic vs Anaerobic (Anaerobic log Kd = 

0.73 × Aerobic log Kd + 0.89, R
2
 = 0.82, n=9), Anoxic vs Anaerobic (Anaerobic log 

Kd = 0.96 × Anoxic log Kd + 0.09, R
2
 = 0.95, n=9) and OH vs NV (NV log Kd = 0.83 × 

OH log Kd + 0.54, R
2
 = 0.85, n=13). Solid line indicates 1:1 (y=x) plot. 

3.2.2 Hydrophobicity as a predictor for sorption-distribution coefficient 

 Several studies have proposed that sorption of TOrCs to sludge solids is a function of 

their hydrophobicity and empirical models based on the octanol-water partition coefficient (Kow) 

have been developed to predict the sorption distribution coefficient. These estimations take the 

general form of log Kd = a × log Kow + b, where a and b are empirical constants determined from 
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an experimental dataset. Several models derived from experiment data using activated sludge 

solids and their predictions are provided in Table 3. Mattermuller et al. (1980) consistently under 

predicted the log Kd value. Stevens-Garmon et al. (2011) and Hyland et al. (2012) proposed 

models to predict the organic-carbon distribution coefficient (Koc) for neutral compounds such as 

triclosan, DEET, and carbamazepine.  While the model by Stevens-Garmon et al. (2011) under-

predicts the sorption of these compounds, the model by Hyland et al. (2012) shows good 

prediction (RMSE = 0.16) for triclosan and carbamazepine. The model by Jacobson et al. (1993) 

(a = 0.58, b = 1.14) showed very good predictions for most compounds with RMSE = 0.25. It is 

interesting to note that empirical constants and predictions from Jacobsen et al. (1993), where the 

compounds studied were chlorinated phenols and chlorinated benzene, were similar to the 

constants using data from this study (measured log Kd vs log Kow, a = 0.54, b=1.18). Given the 

differences in the suite of chemicals studied by Jacobsen et al. (1993) that had log Kow > 3.5 and 

the compounds evaluated in this study with log Kow values ranging from 0.89 to 4.76, the 

similarity between the two equations could be entirely coincidental. While these single parameter 

models provide a plausible estimate of sorption distribution coefficient, it has been proposed that 

multi-parameter models with descriptors of the chemical and the solid phase might provide more 

reliable predictions (Horsing et al., 2011; Sathyamoorthy et al., 2013).     
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Table 3. Comparison of measured sorption-distribution coefficients (mean log Kd ± SD) 

with predicted values using empirical models based on hydrophobicity. 

 

3.3 Uncertainties in Parameter Estimation 

There are several factors that may contribute to uncertainty in the measurement of 

biotransformation rates. For example, the biotransformation of Group 3 compounds in this study 

occurred only under anoxic conditions. The difference in design and operational conditions 

renders each treatment plant with different biotransformation potential.  The concentration of the 

target compound being spiked may also be different from one study to another, which can result 

in variability of the results. Some experimental procedures involve synthetic wastewater (Joss et 

al., 2006; Pomies et al., 2014) that could effectively change the mode of metabolism and even 

the biotransformation pathway (Muller et al., 2013).  

TOrC 
log 

Kow 

Measured 

log Kd 

Predicted log Kd 

From 

this 

study 

Jacobsen 

et al. 

(1993) 

Mattermuller 

et al.(1980) 

Stevens-

Garmon et 

al. (2011) 

Hyland et 

al. (2012) 

TCS 4.76 3.94 ± 0.1 3.75 3.90 3.58 3.20 3.87 

CBZ 2.45 2.26  ± 0.2 2.50 2.56 2.03 1.81 2.05 

DEET 2.18 2.12 ± 0.2 2.36 2.40 1.85 1.65 1.84 

BTA 1.23 1.77 ± 0.3 1.84 1.85 1.21 - - 

SMX 0.89 2.04 ± 0.4 1.66 1.66 0.99 - - 

Root Mean Squared Error 0.24 0.26 0.57 0.43 0.16 

Correlation from this study: Log Kd = 0.53 × Log Kow + 1.18 

Jacobsen et al. (1993): Log Kd = 0.58 × Log Kow + 1.14 

Stevens-Garmon et al. (2011): For Log Kow < 2,  Log Koc = 0.6 × Log Kow + 0.69 

Hyland et al. (2012): For Log Kow < 2, Log Koc = 0.79 × Log Kow + 0.47 

Kd =  Koc × foc 

Koc  - Organic-carbon partition coefficient 

Foc – Fraction of organic carbon in activated sludge solids  = 0.44 from Hyland et al. (2012) 



32 
 

One source of uncertainty with the sorption-distribution coefficient estimations could be 

from differences in the sludge handling procedure. In particular, techniques of inactivation may 

vary among studies such as the addition of a chemical biocide (Hyland et al., 2012; Wick et al., 

2009), freeze drying and heat inactivation (Sevens-Garmon et al., 2011; Mazioti et al., 2015), 

and use of argon gas (Ternes et al., 2004). Other experiments avoided procedures to limit 

biotransformation during the sorption experiment and used a two phase models to predict the 

sorption-distribution coefficient through curve fitting (Xue et al., 2010), which may not be 

accurate for slowly sorbing compounds since instantaneous sorption equilibrium is assumed. On 

comparison of the Kd values for carbamazepine and DEET between Xue et al. (2010) and several 

others (Table 2), their model overestimated the measured Kd values in this study.  Thus, these 

factors of uncertainties should be carefully considered before adopting the fate parameters from 

model predictions.    

4. Conclusion 

This study determined biotransformation rates and sorption-distribution coefficients for 

select TOrCs in activated sludge from three different redox conditions in two BNR treatment 

plants configured in A
2
O process design. The biotransformation rates (kbio) were influenced by 

redox condition and solid retention time of the treatment plants as each treatment plant is unique 

in terms of its biological composition. A key finding was that a longer SRT may not necessarily 

mean better biotransformation if relevant microorganisms are not present (triclosan, DEET and 

benzotriazole) or if the structure of the compound is highly stable (carbamazepine). For 

compounds amenable to biotransformation by facultative heterotrophs, BNR treatment may be 

advantageous for their biotransformation (atenolol, trimethoprim and sulfamethoxazole) because 

the microbes responsible for degradation are circulated among the three redox zones (anaerobic, 



33 
 

anoxic and aerobic). This study has also identified areas of future study using metagenomics 

techniques to better understand the biotransformation behavior of TOrCs in activated sludge 

from different redox conditions and SRTs.  

There were high correlations between the sorption-distribution coefficients under different 

redox conditions, with the highest correlation seen between anaerobic and anoxic activated 

sludge. The impact of redox condition and SRT on the sorption distribution coefficient of the 

target TOrCs with activated sludge were compound specific. While the parameters measured in 

this study can be used as inputs to predictive BNR treatment models for estimating effluent 

concentrations, the biotransformation rates should be used with caution because of uncertainties 

associated with different activated sludge sources. The sorption-distribution coefficients do not 

vary much between activated sludge sources or among redox conditions, so their use in 

predictive models would have less uncertainty (particularly for the highly sorptive compounds).    
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1. Structure and Properties of Selected TOrCs 

Table S-1. Structure and physico-chemical properties of selected TOrCs (http://toxnet.nlm.nih.gov). 

TOrC Category Chemical  

Structure 

Molecular 

Formula 

Molecular 

Mass 

pKa Log Kow H 

(atm-

m
3
/mole) 

Atenolol Beta-Blocker 

 

C14H22N2O3 266.34 9.6 0.16 1.3  10
-18

 

Benzotriazole Corrosion 

Inhibitor 

 

C6H5N3 119.12 0.42/8.2 1.23 NA 

Carbamazepine Anticonvulsant 

 

C15H12N2O 236.27 13.9 2.45 1.1  10
-10

 

DEET Insect repellent 

 

C12H17NO 191.27 NA 2.18 2.1  10
-8

 

Sulfamethoxazole Antibiotic 

 

C10H11N3O3S 253.28 1.7/5.6 0.89 6.42  10
-13

 

Triclosan Antibacterial 

 

C12H7Cl3O2 289.54 8.1 4.76 4.99  10
-9

 

Trimethoprim Antibiotic 

 

C14H18N4O3 290.32 7.12 0.91 2.4  10
-14

 

 

  

http://toxnet.nlm.nih.gov/
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Table S-2. Source of Internal Standard and position of the deuterated label. 

  

TOrC Source of ISTD Structure of Deuterated Internal Standard 

Atenolol 

CDN Isotopes 

 

Carbamazepine 

 

DEET 

 

Triclosan 

 

Benzotriazole 

Toronto Research 

Chemicals, Canada 

 

Sulfamethoxazole 

 

Trimethoprim 
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2. WWTP Operational Data 

Table S-3. Treatment plant operating conditions during the sampling days for NV WWTP. 

Date Effluent Water Quality 

Flow 

(MGD) 

pH Temperature 

(⁰C) 

Ortho-P 

(mg-P/L) 

Total P 

(mg-P/L) 

NO3+NO2  

(mg-N/L) 

NH3   

(mg-N/L) 

TKN     

(mg-N/L) 

cBOD5 

(mg/L) 

22-Oct-15 39.4 6.85 26.8 0.02 0.06 N/A <0.10 N/A <2 

10/20/2015* 
     

12.5 
 

1.2 
 

19-Nov-15 39 6.78 23.3 0.04 0.08 N/A 0.27 N/A 2 

11/17/2015* 
     

17.2 
 

<1.0 
 

11-Jan-16 46.6 6.70 20.5 0.07 0.13 N/A 0.82 N/A 2 

1/12/2016* 
     

17.4 
 

2.2 
 

5-May-16 40.9 6.77 25.9 0.16 0.21 N/A <0.10 N/A <2 

5/3/2016* 
     

15.6 
 

1.1 
 

17-Oct-16 36.7 6.86 26.1 0.27 0.32 N/A <0.10 N/A <2 

10/18/2016* 
     

15.2 
 

<1.0 
 

*NO3+NO2 and TKN were not analyzed on sampling day, results are for the Tuesday of same week as sampled  

 

 

 

Table S-4. Treatment plant operating conditions during the sampling days for OH WWTP. 

Date Effluent Water Quality 

Flow 

(MGD) 

pH Temperature   

( ⁰C) 

Turbidity 

(NTU) 

Total P 

(mg-P/L) 

cBOD5  

(mg/L) 

NH3    

(mg-N/L) 

15-June-15 5.21 7.4 22 2.3 0.11 3 0.05 

19-July-15 11.23 7.7 22 2.2 NA NA NA 

19-Sep-15 4.36 7.9 22 1.2 NA NA NA 

NA – Not Analyzed 
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3. LC MS/MS Analysis Instrumental Parameters 

Table S-5. MRM transitions and MS operating parameters used for the analysis of TOrCs in 

positive mode (ESI+) and negative mode (ESI-) for biotransformation experiment. 

Target Analyte 
Q1 

Mass 

Q3 

Mass 

Retention 

Time (min) 

DP 

(V) 

EP 

(V) 

CE 

(V) 

CXP 

(V) 

Sulfamethoxazole 254 156 3.7 66 10 23 10 

Sulfamethoxazole 

confirmation 
254 92 3.7 66 10 41 6 

Sulfamethoxazole-d4 258 160 3.7 56 10 25 12 

DEET 192 119 7.9 76 10 25 10 

DEET confirmation 192 91 7.9 76 10 41 6 

DEET-d7 199 126 7.9 76 10 25 10 

Benzotriazole 120 92 4.6 45 12 29 10 

Benzotriazole confirmation 120 65 4.6 45 12 33 12 

Benzotriazole-d4 124 69 4.6 45 12 33 14 

Atenolol 267 145 3.3 65 10 35 10 

Atenolol confirmation 267 116 3.3 65 10 28 10 

Atenolol-d7 274 145 3.3 61 10 37 10 

Trimethoprim 291 261 5.0 81 10 35 8 

Trimethoprim confirmation 291 123 5.0 81 10 32 12 

Trimethoprim-d9 300 234 5.0 71 10 35 16 

Carbamazepine 237 165 7.7 90 10 57 10 

Carbamazepine 

confirmation 
237 194 7.7 90 10 27 10 

Carbamazepine-d10 247 204 7.7 61 10 31 20 

Triclosan 287 35 5.2 -45 -10 -30 -4 

Triclosan confirmation 289 37 5.2 -45 -10 -30 -4 

Triclosan-d3 294 37 5.2 -45 -10 -30 -4 
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Table S-6. MRM transitions and MS operating parameters used for the analysis of TOrCs in 

positive mode (ESI+) and negative mode (ESI-) for the sorption experiment. 

 

 

 

  

Compound Fragmentor 

Voltage (V) 

MRM 

Transitions 

(m/z) 

Collision 

Energy 

Dwell 

Time 

(msec) 

Group Retention 

Time 

(min) 

Benzotriazole 200 120 => 65 29 100 ESI+ 3.0 

Benzotriazole-d4 200 124 => 65 33 100 ESI+ 3.0 

Sulfamethoxazole 110 254 => 156 15 100 ESI+ 4.2 

Sulfamethoxazole-d4 110 258 => 160 25 100 ESI+ 4.2 

Carbamazepine 110 237 => 194 15 100 ESI+ 5.3 

Carbamazepine-d10 110 247 => 204 15 100 ESI+ 5.3 

DEET 110 192 => 119 15 100 ESI+ 5.9 

DEET-d7 110 199 => 126 15 100 ESI+ 5.9 

Triclosan 75 287 => 35 5 100 ESI- 7.2 

Triclosan-d4 75 294 => 37 5 100 ESI- 7.2 
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4. Analysis of Conventional Parameters 

Analytical methods for the conventional parameters are provided in Table S-7. Results of 

subsamples from the field-sample carboys prior to dosing are provided in Table S-8.  These 

samples were taken approximately 90 min prior to dosing the TOrCs. 

 

Table S-7. Analytical Methods for Conventional Parameters. 

Parameter Analysis Method 

pH Standard Method 4500-H B 

TSS /VSS Standard Methods 2540 D  

NO2/NO3/PO4 Standard Method 4110B Ion 

Chromatography 

NH3 Standard Method 4500-NH3 D  

TKN Method 8075 Total Kjeldahl, Hach 

Company 

COD Method 8000 COD, Hach Company 

DOC Standard Method 5310 B 

DO Standard Method 4500-O G 

 

Table S-8. Conventional parameter results for activated sludge collected from two BNR treatment 

plants (OH and NV). Results in Mean ± SD (n=3).  

Conventional  

Parameter 

(mg/L) 

OH NV 

Anaerobic 

(July 19, 

2015) 

Anoxic 

(September 

18, 2015) 

Aerobic 

(June 15, 

2015) 

Anaerobic  

(January 

11, 2016) 

Anoxic 

(Novembe

r 19, 2015) 

Aerobic  

(October 

22, 2015) 

pH 7.3 7.8 7.2 7.0 6.7 6.8 

TSS  1713 ± 90 3387 ± 116 3497 ± 67 1720 ± 87 3860 ± 296 2550 ± 71 

VSS 1427 ± 101 2453 ± 190 2613 ± 51 1328 ± 50 2713 ± 205 1910 ± 212 

Total COD  1897 ± 40 4070 ± 211 4837 ± 209 1867 ± 91 3317 ± 413 3783 ± 321 

sCOD  20 ± 5 22 ± 3.47 12.7 ± 2.1 60 ± 6 33 ± 1 31.3 ± 3.2 

pCOD  1876 4048 4824 ± 210 1807 3284 3752 

DOC  7.4 ± 0 10.7 ± 0 6.2 ± 0.1 NA 9.2 ± 0.1  8.5 ± 0.1 

sNH3-N  4.6 ± 1 3.6 ± 0.2 0.22 ± 0 24.7 ± 0.7 4.2 ± 0.3 0.9 ± 0 

sNO2-N  < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 

sNO3-N  < 0.1 0.61 ± 0 0.11 ± 0 < 0.1 2.4 ± 0 4.36 ± 0 

sPO4-P  3.5 ± 0.2 2.4 ± 0.2 < 0.1 1.6 ± 0.2 1.4 ± 0 0.9 ± 0.2 

NA – Not Analyzed 
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The conventional parameters results from the six biotransformation experiments are provided in 

Figures S-1 to S-3. A general observation for the conventional parameters in the biotic and 

abiotic reactors was that they behaved similarly over the time course of the studies. 

pH: Initial pH of the original activated sludge from OH was higher than NV for all three redox 

conditions (Table S-8). For the OH experiments, the buffer addition held the pH close to 8.0 in 

the two biotic reactors under all three redox conditions and between 7.1 - 7.5 in the abiotic 

controls for all three redox conditions (Figures S-1 to S-3). Results were similar for the NV 

activated sludge experiments, except the pH in the anoxic biotic reactors decreased from 8 to 6.9 

over the 72 h study period (Figure S-3 b, d). The abiotic controls in all of the NV activated 

sludge experiments decreased due to the presence of the biocide (aerobic: 7.4 – 6.9; anaerobic: 

7.6 – 6.9; anoxic: 7.3 – 6.7). This decrease in pH was due to the removal of alkalinity from 

solution via precipitation reactions with the biocide (as seen visually). 

Dissolved Oxygen: A DO > 4 mg/L was maintained in the aerobic experiment reactors and a DO 

< 0.1 mg/L was maintained in the anoxic and anaerobic experiments reactors.  

Total/Volatile Suspended Solids: Total and volatile suspended solids (TSS/VSS) were similar in 

the initial activated sludge from both treatment plants with the exception of VSS in the NV 

aerobic activated sludge (1910 ± 212 mg/L), which was less than the VSS in the OH activated 

sludge (2613 ± 51 mg/L). Generally, the TSS and VSS values decreased with time in all 

experiments indicating a decay of biomass. Also, the solids concentration values were higher in 

the abiotic control reactor when compared to the biotic reactors, which may be due to the 

formation of precipitates by the biocide (as seen visually). In the anaerobic experiment using OH 

activated sludge, the mixer in one of the biotic reactors failed on day 1 and it was not fixed until 

day 3. So the day 1 solids sample was not representative.  Since the reactor remained anaerobic 

during this time period, the lack of mixing was not expected to affect degradation of the target 

TOrCs. Thus, a day 5 sample was collected from biotic reactor B for conventional parameters 

and TOrC analyses. 

Chemical Oxygen Demand: An increase in total and soluble COD concentrations was observed 

for the time zero samples. This increase in COD was due, in part, to the addition of methanol in 

the TOrC spiking solution (30 mg of COD/L), but the methanol does not explain the entire 

increase in total COD, which may be due to hydrolysis of the solids during the 90 min 

equilibration period prior to the methanol addition. In general, the pCOD decreased over time 

which corresponded with a decrease in VSS over time. This decrease in pCOD and VSS suggests 

that bacterial cell lysis may be occurring during the experiments. The sCOD decreased in both 

the aerobic experiments (Figure S-1) indicating substrate utilization by heterotrophic 

microorganisms. The sCOD increased in the anaerobic experiments (Figure S-2) was possibly 

due to fermentation. In the anoxic experiment sCOD deceased overtime for NV activated sludge 

(Figures S-3 b, d), whereas in the OH anoxic experiment it either increased (Figure S-3a) or 

remained the same (Figure S-3c).   
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Dissolved Organic Carbon: Similar to sCOD, DOC in the reactors increased from the original 

aerobic activated sludge to the time zero sampling and was due, in part, to the methanol addition 

from the TOrC spiking solution (7.5 mg-C/L). However, this amount of DOC from methanol 

does not explain the observed increase of 15-20 mg-C/L over the 90 min equilibration period.  

During the experiments, DOC decreased over time in the aerobic and anoxic biotic reactors due 

to carbon utilization and by the end of the experiments the DOC concentration had dropped to 

background levels (Figures S-1 and S-3).  DOC in all of the abiotic controls increased over time, 

which was probably due to cell lysis by the biocide. Again, similar to sCOD, DOC increased in 

the biotic reactors of the OH anaerobic experiment (Figures S-2 a, c), which could be due to 

fermentation.  

Nutrients (NH3-N, NO3-N, NO2-N and PO4-P): Concentrations of soluble NH3-N (< 0.1 mg/L), 

NO2-N (< 1.0 mg/L), NO3-N (< 1.0 mg/L), and PO4-P (< 1.0 mg/L) in the original aerobic 

activated sludge from OH were quite low indicating that the BNR treatment process was 

operating properly for removing N and P from the wastewater.  In the OH aerobic experiment, 

the phosphate spike (10 mg PO4-P/L) was readily taken up during the 90 min equilibration 

period prior to time zero indicating the phosphate accumulating bacteria were active with 

phosphate values near the original activated sludge concentration of 1.5 mg/L. Phosphorus 

uptake was also observed in the NV aerobic experiment. A significant increase in NO3-N and 

decrease in NH3-N was seen in both the aerobic experiments (Figures S-1 a-d) indicating 

nitrification by nitrifying bacteria.  Nitrate uptake during the anoxic experiments are shown in 

Figures S-3 a-d. The nitrate concentration in the reactors increased overtime due to the addition 

of 30 mg NO3-N/L every 12 hours to maintain anoxic conditions.  Overall, the nutrient trends 

demonstrated not only that relevant redox conditions were maintained, but also relevant 

microbial population were active through the experiment. 
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Figure S-1. Conventional parameter results in aerobic biotransformation experiments. 
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Figure S-2. Conventional parameter results in anaerobic biotransformation experiments. 
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Figure S-3. Conventional parameter results in anoxic biotransformation experiments.  
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5. TOrCs Analysis 

 
 

Figures S-4 (a,b,c,d). Biotransformation profiles for atenolol and trimethoprim in biotic and abiotic 

reactors containing activated sludge from aerobic, anaerobic and anoxic redox conditions in OH 

and NV BNR treatment plants. 
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Figures S-4 (e,f,g,h). Biotransformation profiles for carbamazepine and sulfamethoxazole in biotic 

and abiotic reactors containing activated sludge from aerobic, anaerobic and anoxic redox 

conditions in OH and NV BNR treatment plants. 
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Figures S-4 (i, j, k, l). Biotransformation profiles of DEET, benzotriazole in biotic and abiotic 

reactors containing activated sludge from aerobic, anaerobic and anoxic redox conditions in OH 

and NV BNR treatment plants. 
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Figures S-4 (m,n). Biotransformation profiles for triclosan in biotic and abiotic reactors containing 

activated sludge from aerobic, anaerobic and anoxic redox conditions in OH and NV BNR 

treatment plants. 
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6. Analysis of Blanks and Controls 

The background concentration of the target compounds in the original activated sludge before 

spiking are provided in Figure S-5.  Benzotriazole, a corrosion inhibitor, was found to be 

occurring at very high concentrations in the activated sludge samples from both treatment plants. 

The background concentration of triclosan was higher in OH when compared to NV, whereas the 

background concentration of sulfamethoxazole was slightly greater in NV when compared to 

OH. The background concentrations of atenolol, carbamazepine, DEET and trimethoprim were 

always close to or below the reporting limit.  Little to no loss of the TOrCs was observed in the 

experimental control (DI water) reactors (Figure S-6), though some loss was observed for 

triclosan presumably due to sorption onto the reactor walls.  

 

 

Figure S-5. TOrCs background concentrations in aerobic, anaerobic and anoxic activated sludge 

from OH and NV BNR treatment plants. Reporting limit 250 ng/L for all experiments except 

aerobic NV where it was 2500 ng/L. 
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Figure S-6.  Relative percent difference in TOrC concentrations between the initial and final time 

point in Experimental Control Reactor containing buffered DI water. Error Bars indicate the 

standard deviation in measurements from six biotransformation experiments. 
 

 
Figure S-7. Atenolol biotransformation inhibition in abiotic control containing 

10 mM biocide solution and 8% methanol. Sludge source – Anaerobic NV. 

 


