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Abstract

Unconventional natural gas development (UNGD, e.g. shale gas) poses a threat to the

environment and human health. While the Member States of the European Union (EU) decide

whether to develop this resource, they require evidence to assess the associated risks. Much of

the evidence regarding the risks (e.g. contamination, exposure, disturbance) comes from the US,

and we argue this evidence cannot be used by the Member States to conduct risk assessments due

to demographic differences, geological differences, and differences in regulation. The EU, as a

whole, has recognized their need for evidence and has funded research partnerships to explore

the environmental effects of UNGD. We argue that such research efforts need to be extended

further in order to address the gaps in human health studies and to develop comprehensive

environmental baseline studies.

Introduction to the Problem

The development of unconventional fossil fuels could transform the energy landscape in Europe.

The European Commission's Joint Research Centre estimates the technically recoverable

potential of unconventional natural gas (UNG) to be approximately 16 trillion cubic meters.1 The

exploitation of UNG has been made possible by two engineering advancements: horizontal

drilling and high-volume hydraulic fracturing (HVHF). Of these techniques, HVHF has caused

considerable public concern because of the risks it poses to the environment and human health,

e.g. the release of fugitive methane emissions, contamination of surface and groundwater
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sources, induced seismicity, and noise.2,3 Because the risks to the European community are

uncertain, MS decision makers have hesitated over the decision to exploit UNG reserves.4,5 This

has led to different approaches to exploiting these resources within the EU: countries such as

France and Bulgaria have banned HVHF altogether, whereas others such as Poland and the

United Kingdom have granted permission to drill and hydraulically fracture test sites. It is not

likely that one unified approach to UNG development and regulation will be adopted. As

member States move towards making final decisions about UNG development, they will need

sound scientific evidence about the risks and benefits of development to inform their risk

assessments and environmental policies.

Such evidence about risks and benefits tends to be gathered from sites located in the US, largely

because this is where the shale gas revolution began in 2008.6 In this paper, we argue that the

evidence from the US is site-specific and should not form the basis for Member State policies

and risk assessments.7 In Section 1, we summarize the recent peer-reviewed evidence about

environmental and human health risks associated with UNGD, which is mostly US-driven. Then,

in Section 2, we critically review the relevance and limitations of this evidence with respect to

supporting risk assessments in the EU. In Section 3, we review the current and ongoing UNG

research activities in the EU.

SUMMARY OF CURRENT RESEARCH

In this paper, we focus on risks related to the environment and human health. In Table 1 we have

identified some recent empirical research on these risks. This list is not comprehensive; it is

meant to highlight recent relevant studies on UNG that have been conducted in the US and are

relevant to human health risks and the environment.

Table 1. Summary of evidence to support environment and human health risk assessments
Specific issues Relevant Evidence

Human Health Effects Noise from HVHF
activities (e.g. drilling,
compressors, heavy
vehicle traffic)

8,9,10
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Health effects due to
chemical exposure (e.g. air
emissions, contaminated
water)

11,12,13,14,15,16

Environmental
Contamination and
Disturbances

Wastewater treatment and
disposal of HVHF
flowback and produced
water

17,18

Water quality of surface
water and shallow aquifers

18,19,20,21

Spills and above ground
accidents affecting surface
waters and soils

22,23,24

Emissions such as
methane, and CO2 and CO
from heavy vehicles

25

LIMITATIONS OF CURRENT RESEARCH FOR EU POLICY

Below, we discuss three ways in which the current evidence about environmental and human

health risks linked to UNGD does not generalize to specific Member State settings. For example,

studies about the environment and human health largely emerge from the Marcellus shale

(Appalachian Basin), one of the five largest shale plays in the US.27 Moreover, these studies have

often focused on Pennsylvania, a region with a rich history of conventional oil and gas

development, coal mining, and heavy industry.35 Subsequently, we contend that policymakers

should be careful in their use of these studies to inform policy.

Link to human health exposure

To date, few studies investigate the impacts of HVHF on human health. These studies have

identified an association between UNGD and negative human health effects, but have not been

able to establish causality. Though these studies might assist Member State decision-makers in

arguing that UNG poses health risks, they have not firmly established causality, nor can they

narrow down the source of health effects to UNG exposure alone.
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For instance, using household proximity to natural gas wells as a surrogate for exposure to

UNGD hazards, researchers have found an association between proximity and prevalence of

dermal and respiratory conditions,15 and sinus, migraine headaches, and fatigue symptoms.11

Similarly, others have found an association between residential proximity to natural gas wells

and an increased risk in asthma exacerbations,13 increased inpatient prevalence,14 and prevalence

of congenital heart defects in infants.16 Findings from these studies fall short of establishing a

causal link between the hazards of UNGD and health effects for a number of reasons. First,

studies that use residential proximity as a surrogate for exposure cannot confirm that exposure

has occurred, nor account for the level or duration of exposure. Second, methods that use self-

reporting can be limited by awareness bias; being made aware of a possible association with

health issues increases the likelihood of reporting adverse health conditions.15 Third, as a

surrogate for exposure, proximity aggregates all environmental exposures into a single measure,

which makes it impossible to determine whether the hazard is responsible for eliciting the health

effect.

Biomonitoring studies can overcome these issues. Caron-Beaudoin and colleagues (2018)

evaluated the effects of exposure to VOC emissions from UNGD operations on pregnant women.

The results showed that there were elevated levels of VOC metabolites in participants’ urine,

compared to the general Canadian population. The narrow scope of this study – a specific hazard

- enables researchers to more closely understand the effects that an environmental hazard has on

a receptor. Further biomonitoring studies conducted in the EU can enable Member State decision

makes to assess and verify the risks of UNGD to human health.

Context Dependent Evidence – Pennsylvania ≠ Poland  

That Pennsylvania is not Poland goes without saying. Each region has a unique geology,

demography, and socio-economic character, and these differences mean that evidence generated

to assess risks in the US cannot be generalized to Member State risk assessments.29
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Take, for example, studies on water quality in shallow aquifers in the Marcellus shale. The

potential for HVHF to stimulate unintended transmission of brine, methane, and chemical

contaminants has been raised,30 yet recent work has found that the water quality of shallow

aquifers might not be affected by UNG activities.31 Further, water quality remains similar to

historic levels.32 That being said, in one study nearly all analyzed samples in the Marcellus

region failed on at least one water quality metric, and the cause of these failures were uncertain.33

Aquifer water quality is site specific: a function of, for example, geology, aquifer depletion,

agricultural activity.34 In order to assess change (and quantify risks) due to UNGD, Member

State policy makers require baseline studies of aquifers and surface waters, as well as a robust

monitoring program.

The differences in population density also make it difficult to generalize results from the US to

the EU. Projected regions for UNGD in the EU are more densely populated than corresponding

US regions,35 and this increase in population density will amplify the risk posed by hazards such

as noise. Noise is a biological stressor known to cause annoyance, sleep disturbance,

cardiovascular health problems,10 and is therefore of increasing regulatory concern in the EU.36

Noise is generated from UNG activities, due to drilling and heavy equipment, and is not limited

to well-pads. Populations some distance beyond the well-pad setback also tend to be affected

(due to roadways, pipelines, and compressors).8,9

US study sample demographics also make it difficult to generalize study results to the EU and

Member States. For example, Finkel (2016) reported higher-than-expected rates of some cancers

among populations living within the Marcellus region, but simultaneously acknowledged that the

observed higher frequency of cancer occurred before the introduction of HVHF (i.e. 2008). The

author suggested that confounding socio-economic factors in this region (e.g. wealth) might have

played a role, as these factors are also associated with poorer health outcomes. Another study

also concluded that there were no significant difference between observed and expected rates of

cancer in children in a UNGD region.37 Due to the variable findings of these and other studies

regarding the health risks associated with UNGD, we suggest that generalizing the results of

these studies to the EU, with its different demographics and historical environmental exposures,
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should be done cautiously. Therefore, Member States will need to conduct their own site-specific

studies to support health risk assessments.

Stringent Environmental Regulation

The European Commission’s environmental regulations are more stringent than those in the US.

Member States are responsible for administering the Commission’s comprehensive

environmental regulations (e.g. Directive 2010/75/EU (Industrial Emissions), Directive

2006/21/EC (Extractive Waste), and Directive 2000/60/EC (Water Framework)38, however,

Member States differ in their views on developing additional regulations to manage HVHF.

Because this robust and strict regulatory structure already exists and is meant to manage

environmental risks,39 some environmental issues that have occurred in the US (e.g. chemical

use, wastewater disposal) are less applicable in the EU.

Chemical use in the EU is highly regulated. Unlike in the US, chemicals used for HVHF must be

disclosed and registered under the EU Chemical Substances Regulation (REACH). Most of the

chemicals used in HVHF are registered in REACH40 and are currently used in conventional oil

and gas development.41 A study of HVHF chemicals used in the US suggested that most lack

reproductive or developmental toxicity data42, yet perhaps a more challenging issue for EU risk

assessors is the lack of data on how potential transformative products43 and endocrine

disrupters44 impact environment and human health.

Wastewater disposal activities precipitate many HVHF contamination events in the US45 but

would not even be permitted in the EU due to environmental regulations. Consider the storage

and treatment of HVHF wastewater: In the US, wastewater can be stored on site in open pits, and

95% of HVHF wastewater is injected into Class II deep wells.46 In some instances, wastewater is

disposed into receiving waters, which leave a chemical fingerprint in the sediments.19 By

contrast, in the EU, HVHF wastewater must be contained in a closed vessel on site and cannot be

reinjected into the subsurface. However, although treatment is mandated in the EU, it does not

assure removal of all contaminants, and studies find that there are contaminants in receiving

waters downstream from treatment facilities.17,18 Therefore, the EU still cannot claim that the
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impact of UNG wastewater has been fully mitigated. Further research is needed to monitor

wastewater effluent in the EU, and again, policies should not be informed by US studies alone.

Though EU environmental regulations address most environmental risks linked to HVHF,39

future environmental contamination is most likely to be caused by unpredictable and

unmanageable risks.23,24 For example, as UNGD scales up, elevated production levels will

generate greater volumes of wastewater, requiring increased numbers of transports and thus

potentially increasing the frequency of accidents and spills.

CURRENT RESEARCH IN THE EU

The Precautionary Principle is enshrined in the law and informs much European environmental

policy. The central tenant of the Precautionary Principle is to protect the public and the

environment from harms that might arise from the making of a decision in the absence of

adequate scientific information. In the US, environmental policy is risk-based, and decisions are

made that maximize benefit and manage risks to provide an appropriate level of protection. The

science behind the risks posed by HVHF is uncertain, and therefore these two ideologies can

illuminate the availability of evidence about UNGD in the EU versus the US.

EU policy makers want to overcome precaution by reducing uncertainty, but the majority of

scientific evidence about UNG risks comes from the US and it is uncertain how this evidence

will generalize to the EU. The EU recognized this issue and have setup programs to collect and

analyze information about the risks of UNGD in Europe. For example, the European Science and

Technology Network on Unconventional Hydrocarbon Extraction was setup to collect, analyze,

and review results from shale gas exploration projects in the EU (example output, Baranzelli et al

2015). A number of funded academic/industrial partnerships have also been established (Table

2). These partnerships conduct research about environmental risks with the intent of

characterizing and mitigating the risks associated with UNGD.
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Table 2. Summary of EU funded research programs looking at the impacts of UNGD. Programs
represent a multi-party partnership between academia and industry.

Project Name Project Aims
M4SHALEGAS Measure, monitor, mitigate, and manage

environmental impact of shale gas
SHEER Develop best practices to assess and mitigate

environmental footprint of shale
SHALEXENVIRONMENT Assess the environmental footprint of shale gas

exploitation
FRACRISK Develop evidence to mitigate the environmental

impacts of shale gas development

These partnerships have begun to generate research outputs that will support environmental risk

assessments. Data is also being collected and analyzed from test sites in Poland.48 Research is

also being conducted to establish pre-drilling baseline environmental conditions.49,50. Despite this

concerted collection of data, there remains a lack of effort committed to investigating the

potential impacts of UNGD on human health in the EU.

CONCLUSIONS

In sum, EU Member State policy makers currently rely on evidence from the US to inform

environmental and human health risk assessments. We believe that EU policy makers should use

caution when considering this evidence for three reasons: 1) evidence has yet to establish firm

causality between human health risks and UNGD activities; 2) evidence from the US is site-

specific and does not generalize to an EU setting; 3) EU environmental regulation was not

conceived with HVHF in mind (e.g. induced seismicity).

Regulation to manage the environmental and human health risks associated with conventional oil

and gas development in the EU exists. It is conceivable that these regulations could address most

hazards associated with UNGD, however, recent events in the UK (i.e. induced seismicity)

suggest otherwise. As Member States address the gaps in policy, they will need activity specific

evidence to support comprehensive risk assessments. We believe that these risk assessments

would benefit from three recommendations: 1) establishment of a program to assess the impact

of UNGD on human health, for example, biomonitoring of flare emissions; 2) conduct
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comprehensive environmental baseline studies for water, air, and soil quality; 3) continue to

collect, analyze, and review evidence from controlled HVHF test sites in the EU. We believe that

our recommendations provide a useful way forward for gathering evidence specific to UNGD to

inform risk assessments about UNGD in the EU.
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