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A Hardware-in-the-Loop Test Rig for Development of Electric 

Vehicle Battery Identification and State Estimation Algorithms 

Abstract: This paper describes a hardware-in-the-loop (HIL) test rig for the test and development 

of electric vehicle battery parameterization and state-estimation algorithms in the presence of 

realistic real-world duty cycles. The rig includes two electric machines, a battery pack, a real-

time simulator, a thermal chamber and a PC for human-machine interface. Other parts of a 

vehicle powertrain system are modelled and used in the real-time simulator. A generic framework 

has been developed for real-time battery measurement, model identification and state estimation. 

Measurements are used to extract parameters of an equivalent circuit network model. Outputs of 

the identification unit are then used by an estimation unit trained to find the relationship between 

the battery parameters and state-of-charge. The results demonstrate that even with a high noise 

level in measured data, the proposed identification and estimation algorithms are able to work 

well in real-time.  

Keywords: battery modelling, electric powertrain, hardware-in-the-loop test, state-of-charge 

estimation, identification. 

Nomenclature 

fA  vehicle frontal area SOC  battery state-of-charge 

dC  drag coefficient 0SOC  battery initial state-of-charge 

rC  rolling resistance coefficient T  temperature 

tC  battery total capacity mT  electric motor torque 

aD  driver’s acceleration command , maxmT  electric motor’s maximum torque 

bD  driver’s brake command OCV  battery open-circuit voltage 
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bF  brake force tV  measured battery terminal voltage 

, maxbF  maximum brake force tV  estimated battery terminal voltage 

tF  tractive force ( )ky t  real output at time k 

g  the gravity 1
ˆ( ; )k ky t t 

 
predicted value of the output at time k  

using the parameter vector   

G  gear ratio   prediction error 

( )i t  battery current   battery coulombic efficiency 

iI  battery current vector   battery model’s parameters vector 

vM  vehicle mass   air density 

iP  a parameter of the battery model gear  efficiency of gearbox 

intR  battery internal (total) resistance m  efficiency of electric motor 

wR  wheel radius   

 

1    Introduction 

Development of electrical energy storage systems plays a significant role in the vehicle 

electrification process. Among the existing technologies in this area, batteries are the most widely 

used and still an area of constant development. In addition to the development of various battery 

chemistries, it is vital to develop proper battery management systems (BMS) to operate the 

battery in practical applications. In an electric vehicle (EV), it is important to understand state-of-

charge (SOC) or ‘remaining capacity’, which is vital for any kind of range prediction. EV range 

estimation, safe battery charge/discharge and optimal usage of batteries, all depend on efficient 

and accurate battery models. Different approaches have been used in the literature for battery 

modelling, reviewed by Fotouhi et al. (2016-b). Among all battery modelling approaches, 

equivalent circuit network (ECN) models are fast enough to be used in real-time applications. 

Because of the low computational effort and relatively good precision, ECN models have been 

the subject of studies in a wide range (Marc et al., 2008; He et al., 2011) specifically for 

automotive application (Antaloae et al., 2012; Chiasson and Vairamohan, 2005; Schweighofer 

and Brasseur, 2003). 

BMS algorithms are designed for optimal and safe use of a battery by monitoring and control. 

The monitoring process consists of real-time measurements of variables such as current, voltage 

and temperature, which are used to calculate some ‘unmeasurable’ variables like battery state-of-
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charge (SOC) and state-of-health (SOH). The simplest method of battery SOC calculation, called 

‘coulomb counting’, works based on integration of the battery current over time to calculate the 

amount of energy flowing through the battery. Because of the practical limitations of coulomb 

counting such as cumulative noise effect and the need for a known initial condition, more 

advanced battery SOC estimation techniques such as Kalman Filter-based estimators (He et al., 

2013; Thrun et al., 2005; Welch et al., 1995; Plett et al., 2004), sliding mode observers (Edwards 

et al., 1998; Kim, 2010), and fast model identification techniques (Fotouhi et al., 2017-a) have 

been developed in the literature.  

While the SOC estimation for lead-acid batteries can be relatively simple (Piller et al. 2001), 

direct measurement of physical properties of the battery is possible, due to the battery’s tolerance 

for overcharge and overdischarge to some extent. However, this is not the case for other battery 

types. Li-ion batteries for example are sensitive to overcharge and overdischarge. So, the SOC 

must be known when dynamic currents are applied, as in electric vehicles, to guarantee the safety 

and an optimal lifetime (Lu et al. 2013). Less uncertainty in the SOC estimation allows battery 

operations closer to its limits without compromising safety or reliability. For these reasons many 

SOC estimation methods were developed for Li-ion batteries with accuracies up to 1% (Cuma et 

al. 2015). Here, the estimation effort, and therefore the precision, also depends on the use. While 

most simple consumer electronics use basic methods, the SOC estimation for electric vehicles is 

usually more complex since it has to be robust against a wide range of user conditions and highly 

dynamic current profiles. 

Before applying a battery model or estimation algorithm in a real EV, a battery simulation 

environment is essential for testing the developed models and algorithms. This study describes a 

hardware-in-the-loop (HIL) test rig for the test and development of electric vehicle battery 

parameterization and state-estimation algorithms. HIL testing of BMS algorithms is a common 

technique in the literature to validate the software functionality under real working condition 

(Barreras et al., 2016; Wang, 2014). 

In most conventional battery simulators, the duty cycle (or ‘load profile’) is obtained from 

simple models of the powertrain components. For example, simplified models of electric 

machines are used, and the detail of power electronics is often neglected or treated as a simple 

efficiency map with ideal instantaneous switching (Lukic and Emado, 2003; Gao et al., 2007). 
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This study avoids these limitations as real, physical components are used within the simulation 

loop. A brushless DC (BLDC) machine driven by three-phase AC is used, together with its 

associated MOSFET-based power electronics. This type of machine is common in electric 

vehicles, and it would be hard to obtain a computational model that was sufficiently 

representative of its real-world transient behaviour. 

There are power source/sink devices available in the market which can be also used to 

charge/discharge a battery pack based on a real driving scenario. The quality of the measurements 

might be also better than the sensors used in this study. However, the high noise level in 

measurements in the proposed rig is an advantage for BMS development since it would be more 

challenging. Here the goal was to simulate the EV battery’s working condition as much as 

possible similar to real working conditions. The proposed test rig represents a scaled-down EV 

powertrain system with even less expensive sensors that are used in a typical EV. This allows the 

testing of the BMS algorithms in an environment that is more representative of real-world duty-

cycles and thereby reduces the risk of failure at a later implementation stage. 

The BMS algorithms development in this study mainly contains two parts: (i) using an ECN 

model, a fast system identification technique is applied to real-time parameterization of a battery 

pack, and (ii) the battery parameters are used for real-time battery state estimation. For this 

purpose, a generic framework has been developed including battery measurement, model 

identification and state estimation units. In the measurement unit, battery load current and 

terminal voltage are recorded to be used by the identification unit in order to extract the 

parameters of an ECN battery model. Outputs of the identification unit are then used by an 

estimation unit to estimate the battery SOC. The important point is that all these functions are 

performed in real-time, so all the algorithms should be fast enough. The proposed algorithms in 

this study are tested in real-time using the test rig and the results are discussed in section 4. 

Battery test rig is explained in detail in section 2 and the identification and estimation techniques 

are presented in section 3. 

2    Battery HIL Test Rig 

2-1 HIL structure 

The HIL test rig and its main components are shown in Figure 1.  It includes two back-to-back 

connected electric machines, the respective power electronic controllers, a target battery pack (in 
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this case, containing NiMH cells), a lead-acid battery pack to provide independent power 

sourcing and sinking, a dSPACE real-time simulator, a thermal chamber and a PC for human-

machine interface. The test rig contains two BDLC machines of 5kW each. One of these – shown 

to the left in Figure 1 – is used to represent EV traction motor and the second machine is used to 

apply dynamic loads (‘load’ machine) representing the torques experienced in a vehicle-level 

duty cycle.  The ‘traction’ machine is connected to the battery pack under test. The load machine 

is connected to a bi-directional power source consisting of a separate DC supply built from 

readily available lead-acid batteries.  

 

 

Figure 1: Battery HIL test rig and its components 

 

2-2 Electric Machines and motor controllers 

As mentioned above, 5 kW brushless DC (BLDC) machines are used in the battery test rig. A 

BLDC machine has a trapezoidal air gap flux distribution obtained through electronic 

commutation implemented through power electronics.  In a three-phase ac machine of this type, a 

‘current controller’ converts a ‘torque reference’ from an ‘outer’ speed controller to the 

respective current references for each of the three phase windings; to achieve this, the current 

controller outputs gate trigger signals to  MOSFETs in the (hardware) motor controller block 
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(Bose, 2001). The current controller employs nonlinear hysteresis type current comparators, 

which are the most rugged analog controllers. The rotor position required for the correct 

commutation of the windings is obtained from Hall-effect position sensors in the stator. The same 

rotor position signals are used to calculate the rotor speed. Since the machine has eight permanent 

magnet poles, three Hall-effect sensors are placed in the stator, 15 mechanical degrees apart.  In 

the speed calculation algorithm, any change in the Hall-effect sensor output (corresponding to a 

rotor pole movement) is detected and the time between two consecutive such changes is 

calculated.  The inverse of this time multiplied by the angle rotated (15 degrees) gives the 

rotational speed of the machine. 

2-3 Battery packs 

Two battery packs are used in the test rig: the ‘main’ battery pack under test (connected to the 

traction machine) and a ‘secondary’ lead-acid pack (connected to the load machine). The 

secondary pack provides the load and is not the subject of study: the role of the EV traction 

battery is supplied by the main battery pack. The secondary pack consists of five 12 V lead-acid 

batteries connected in series, giving a nominal 60 V which matches the motor controller’s voltage 

range. In this study, for the main battery pack under test, a NiMH battery chemistry has been 

selected as a first attempt while keeping this option to replace it with any other battery type in the 

same scale. The NiMH battery pack was built with the general aim to simplify development of 

the test rig but still being sufficiently representative of the automotive context. NiMH batteries 

have advantages in experimental development due to their high safety in charge and discharge 

and tolerance to abuse (overcharge and overdischarge), their good volumetric energy, power and 

thermal properties, and their simple and inexpensive charging and control circuits (Fetcenko et 

al., 2007). As an initial configuration, radio-controlled car cell packs (with six cells each) were 

used with their original charging power supplies, since they charge the packs similarly to a 

defined point. Here nine modules in series (shown in Figure 2) are used to create a nominal 

voltage (64.8 V) within the window of the motor controller. The layout of six NiMH cells per 

module, connected in series, is particularly close to automotive applications since it is also used 

in hybrid cars (Kelly et al., 2002). Table 1 summarizes the battery pack configuration for Honda 

Insight and Toyota Prius from (Kelly et al., 2002), together the pack used here.  
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Figure 2: NiMH battery pack consisting of nine modules 

 

Table 1: HIL battery pack configuration in comparison to two real EV battery packs 

 Honda Insight Toyota Prius Test Rig Pack 

Battery Type NiMH NiMH NiMH 

Nominal cell voltage 1.2 V 1.2 V 1.2 V 

Rated capacity 6.5 Ah 6.5 Ah 5 Ah 

Cells per module 6 6 6 

Number of modules 20 38 9 

Total voltage 144 V 273.6 V 64.8 V 

Nominal energy storage 936 Wh 1778 Wh 324 Wh 

2-4 Simulation model 

The parts of the vehicle not represented by the test rig are implemented in software simulation 

model in MATLAB and Simulink. A typical EV model is developed which has been 

parameterized to represent the Nissan LEAF with specifications listed in Table 2 (Choi and 

Jahns, 2013; Hayes et al., 2011). The rig is used to simulate vehicle-level driving cycles such as 

the well-known urban dynamometer driving schedule (UDDS) (DieselNet, 2017), and because of 

the inclusion of physical components, it provides a good representative electrical load at battery 

level. As the components used in the test rig are not full size, appropriate scaling has been 

implemented to ensure that torques and speeds are appropriately matched to the components in 

use.  

As illustrated in Figure 3, the first part of the proposed model is a driver model to follow the 

drive cycle. The driver model uses the drive cycle and velocity as inputs, and calculates an 

acceleration/deceleration command (
aD  or 

bD ) as output. The driver model is a Proportional-

Integral (PI) controller tuned using Ziegler-Nichols method (Ziegler and Nichols, 1942) as 
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discussed by Fotouhi et al. (2014). The output is scaled between 0 and 1 showing released and 

pushed pedal statuses.  

The vehicle dynamics block in Figure 3, contains different parts as follows. The required 

tractive force (
tF ) is simply calculated based on electric motor’s (EM) maximum torque and the 

driver’s command as follows: 

   m.
. .t m gear

w

G T
F

R
                                                          (1) 

,max.m a mT D T                                                             (2) 

where 
m  and 

gear  are efficiencies of EM and gearbox respectively, 
wR  is wheel radius, G is 

gear ratio, 
mT  is EM’s required torque and 

, maxmT  is EM’s maximum torque calculated based on 

EM’s torque-speed map. Having the tractive force value, vehicle’s acceleration and speed are 

calculated regarding the opposing forces including air drag, rolling resistance, road gradient and 

brake forces. The coefficients’ values are listed in Table 2. Brake force (
bF ) is calculated as 

follows:  

,max.b b bF D F                                                          (3) 

where 
, maxbF  is the maximum friction brake force. 

The summation of the opposing forces is produced by the load machine (right EM) using a 

reference torque calculated in vehicle dynamics block as demonstrated in Figure 3. A torque 

sensor measures the real torque between the EMs and the measured signal (EM torque in Figure 

3) is feed backed to the control block which is responsible to control the torque. On the other 

hand, the traction machine (left EM) should follow the speed. A speed sensor measures the EM’s 

RPM and this signal is used by a speed controller to follow the reference RPM calculated in 

vehicle dynamics block. Both speed and torque controllers are Proportional-Integral (PI) type 

controllers tuned using Ziegler-Nichols method. The speed tracking results are presented and 

discussed in section 4. For the sake of simplicity and the limitations of capacity and maximum 

current of the NiMH battery pack, a small constant torque is considered. Otherwise, the battery 

pack would be subjected to high current and be depleted very quickly since there are not parallel 

circuits in the pack. In a full-scale battery pack test, the required current would be distributed 
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between parallel circuits. Because the main goal of this study was to run and validate the 

identification and estimation algorithms in real-time, full-scale battery pack testing was not 

necessary so, the small pack described in section 2.3 was tested. 

The controllers’ outputs are acceleration/deceleration commands sent to the motor controllers 

in the rig. The motor controllers run the machines according to the commands and consequently 

the target battery pack is tested under real driving condition. The test continues by repeating the 

drive cycle until the battery is depleted. Battery depletion is recognized when battery terminal 

voltage drops below the cut-off voltage, i.e. 54 V in this case. 

The last block is related to battery model identification and state estimation using the real-time 

measurements as demonstrated in Figure 3. This block has two inputs, current and voltage of the 

battery pack, and a number of outputs depending on the battery model’s structure. Battery SOC is 

the main output of this block and is estimated by the proposed algorithms explained in more 

detail in section 3. 

 

 
Figure 3: MATLAB-Simulink blocks used in test rig 
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Table 2: Numerical values of EV model parameters 

Parameter Description Value Unit 

Af Vehicle frontal area 2.27 m2 

Cd Drag coefficient 0.29 – 

Cr 
Rolling resistance 

coefficient 
0.012 – 

Fb, max Maximum brake force 3500 N 

g Gravity 9.81 m/s2 

G
 

Gear ratio 7.94 – 

Mv Vehicle mass 1685 kg 

Rw Wheel’s radius 0.31 m 

  Air density 1.225 kg/m3 

m  Electric motor’s efficiency 0.88 – 

gear  Gearbox efficiency 0.97 – 

2-5 Real-time simulator 

The real-time communication between the rig (electric machines and battery) and the 

simulation model (vehicle model) is provided using dSPACE system. It consists of a DS1006 

processor with the dSPACE 2013b real-time operating system, and DS2202 input-output card 

interfaced to the user through ControlDesk 5.1 proprietary software platform. All the 

sensors/actuators are connected to dSPACE through proper wiring.  

The simulation files, developed in MATLAB/Simulink environment, are converted to readable 

codes for the real-time use in the dSPACE simulator using ControlDesk. This is performed using 

an icon in MATLAB/Simulink (shown in Figure 4), called Build Model, that compiles the files 

automatically. The variables to be monitored and recorded, are then determined in ControlDesk 

software. Consequently, the simulation model and all inputs/outputs are transferred and stored in 

the dSPACE system before the test through the connection between the PC and dSPACE. 
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Figure 4: simulation model in MATLAB-Simulink and real-time simulation interface (ControlDesk) 

3    Real-Time Battery Model Identification and SOC Estimation 

A generic framework has been used for real-time battery measurement, model identification 

and state estimation as demonstrated in Figure 5. Although the idea of this framework was 

discussed in another study (Fotouhi et al., 2017-a), it has not been tested in real-time before. In 

this study, embeddable versions of the identification and estimation algorithms were developed 

and tested in real-time using the HIL test rig. The advantage of this framework is its flexibility to 

handle different battery types and various targets such as SOC estimation, state-of-health (SOH) 

estimation, etc. For more details of the framework presented in Figure 5, please refer to Fotouhi 

et al., 2017-a. In the first unit of this framework, battery current and voltage are measured as well 

as the temperature. The measurements are then used by the identification unit to extract battery 

parameters in real-time. This is called real-time battery modelling. As shown in Figure 5, the 

number of outputs from this unit is not pre-determined and it depends on the complexity of the 

model. It is recommended by Fotouhi et al. (2016-a) that the number of parameters is chosen 

based on what is required for effective state estimation and can change with regard to the battery 

chemistry. For example, here the target is to estimate SOC of the NiMH battery pack and for this 

purpose, we just need to have battery pack’s open-circuit-voltage (OCV) value. This might not be 

true for other battery chemistries such as lithium-sulfur cell which has a flat shaped OCV curve 

as discussed by Fotouhi et al., 2017-a.  

The outputs of the identification unit (estimates of unknown parameters) are then used by the 

estimation unit which uses an artificial intelligent technique (described later in the paper) and is 
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trained to find the relationship between the battery parameters and SOC. The effect of the 

temperature is also taken into account in this unit however; the results of this study are presented 

for a constant temperature.  

It is also worth mentioning how the system works in real-time through the following steps:  

1) The measurements are performed continuously at a fixed sampling rate (i.e. 0.1 second 

in this study).  

2) A limited number of latest measured data points are temporarily stored on the BMS 

board to be used for identification. The data is updated continuously at each time step 

by eliminating the oldest point and adding the most recent point. For the test explained 

later in section 4, a two-minute time window was considered. Consequently, the time 

window contains 1200 data points for each variable (i.e. current and terminal voltage). 

3) Identification process is done at certain points (not continuously) using the updated 

batch of data (1200 data points for each current and voltage). Identification is repeated 

based on a SOC window. For example, every 0.1% change in SOC that simply means 

1000 repetition of the identification process if we start a test from 100% SOC and 

continue until the depleted state (0% SOC). Figure 6 shows a battery identification 

trigger that works based on SOC change in real-time. In this mechanism, an integrator 

calculates the summation of the energy flow from/into the battery and it resets to zero 

value every time that the summation value equals or becomes bigger than a threshold 

(i.e. 0.1% SOC). The battery model parameters are then updated every time that an 

identification process is completed; otherwise they keep their previous values. 

4) The estimator also works based on a similar (but separate) trigger that updates the 

estimation results in real-time. Simply speaking, it works like a nonlinear mapping 

function that determines SOC value by using the identification results (i.e. battery 

model’s parameters). In this study, the estimation trigger acts every 2% change in SOC 

that simply means 50 repetition of the estimation process if we start a test from 100% 

SOC and continue until the depleted state (0% SOC). The reason of choosing a wider 

window for estimation is the uncertainties and consequently the fluctuations in the 

identification results which are filtered by an averaging technique. In this technique, 
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SOC estimation interval is determined based on the identification interval and the 

number of points we need for averaging:  

SOC_estimation_interval = number_of_points × identification_interval          (4) 

In this study, the average value is calculated using 20 points (identified parameter 

values every 0.1% SOC) as discussed in section 4. 

In the following sections, more explanation about each part is presented. 

 

Figure 5: Battery measurement, identification and estimation in real-time 

 

Figure 6: Battery identification trigger, working based on SOC change in real-time 

3-1 Battery measurements 

The battery measurement consists of recording load current and terminal voltage during the 

tests. Temperature is controlled to be fixed at 25 °C during the experiments by using the thermal 

chamber (depicted in Figure 1). Test data is stored with a sampling time of 0.1 second. Each test 

starts from fully charged state and continues until the terminal voltage drops below the cut-off 

voltage (i.e. 54 V in this case) which means depleted state. The discharge rate depends on the 

power demand from the motor controller however, it is limited to 10 A to protect the battery 

pack. The setup uses a LEMTM 5V maximum output ±19.2 A current transducer (model number 

LTS 6NP) for current measurement. The voltage output of the current transducer is fed to the 

analog-to-digital (AD) input of the dSPACE setup. The battery terminal voltage is measured 
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using a simple resistive potential divider circuit. The divider resistors are selected such that the 

current through them is less than 0.1 mA and the output voltages are less than 10 V, which is a 

limit of dSPACE system. 

3-2 Battery parameter identification 

A system identification technique is used to find the battery parameters based on input-output 

battery measurements which are current and terminal voltage. Various ECN model structures and 

fitting algorithms can be used for this purpose depending on the required level of complexity and 

speed in each application. In the present case that the final target is the NiMH pack’s SOC 

estimation, the results presented by Fotouhi et al. (2017-a) demonstrate that the battery pack’s 

OCV would be sufficient. Consequently, the only unknown parameter (referring to Figure 5) 

which should be obtained during the identification process is OCV in this case. For this purpose, 

an internal resistance model (
intR  model) (Johnson, 2002) is used which contains a voltage source 

and a resistor in series.  

After selecting the battery model structure, the unknown parameters should be found during the 

identification process. The parameter vector (θ) is determined so that the prediction error ( ) is 

minimized, defined as follows (Fotouhi et al., 2016-a):  

1
ˆ( , ) ( ) ( ; )k k k kt y t y t t                                                         (5) 

where ( )ky t  is the measurement data at time k and 
1

ˆ( ; )k ky t t 
 is the model’s prediction at 

time k using the parameters θ. Using root mean square error (RMSE) criterion, the following 

fitness function is minimized; 

1

22

1

1
( , )

N

k

k

RMSE t
N

 


 
  
 

                                                      (6) 

In this case, the battery model’s parameters are optimized so that the least difference between 

the measured terminal voltage and the model’s output is achieved so we have:   

0.5

2

, ,

1

1 ˆ( )
n

t i t i

i

RMSE V V
n 

 
  

 
                                            (7) 
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where 
tV  and ˆ

tV  are measured and estimated values of the battery terminal voltage respectively. 

Using 
intR  model, the estimated value can be obtained as follows; 

int
ˆ .t OCV V R I                                                               (8) 

In this case, the RMSE is a function of the two variables, 
OCV  and 

intR . To minimize the RMSE, 

optimal values of the variables are obtained by putting the gradients equal to zero that gets the 

following closed-form formulas (Fotouhi et al., 2016-a): 

2

, ,

1 1 1 1
int

1 1

n n n n

t i i t i i i

i i i i

n n

i i

i i

V I V I I

R
n n

I I

   

 

   
   
     
   
   
   

   

 

                                          (9) 
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                                                     (10) 

The above formulas give us optimal values of 
OCV  and 

intR  corresponding to the least RMSE. 

Some points that should be considered when using this analytical solution are: 

1) The analytical solution is obtained for the 
intR  model and is not valid for other ECN 

models.  

2) The formula can be used for any battery type (not limiting to NiMH battery).  

3) It gives the average values of 
OCV  and 

intR  by using charge and discharge data at the same 

time. 

3-3 Battery SOC estimation 

An adaptive neuro-fuzzy inference system (ANFIS) was used for battery pack’s SOC 

estimation in this study. This is about the last part of the whole framework presented in Figure 5. 

Here ANFIS performs as an estimator which uses OCV and temperature as the inputs to predict 

SOC as the output as shown in Figure 7. Indeed, ANFIS needs to be trained to learn the 

relationship of the battery parameters (i.e. OCV in this case) and temperature with SOC. The 

battery parameters are identified and used in real-time as an indicator of SOC. So, a nonlinear 
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mapping tool is required, that is ANFIS here. (It should be noted that other mapping tools may 

also be applicable as well as ANFIS.)  

It is demonstrated in the literature that battery’s performance is a function of different factors 

such as SOC, state of health (SOH), temperature, etc. So, generally cell’s parameters (Pi) are 

functions of those variables as follows: 

( , , ,...) , 1..i iP f SOC SOH T i n                                         (11) 

The number of parameters and variables which are used in a battery model depends on the 

required precision. In some cases, high-fidelity models are needed whereas in other cases, a fast 

low-fidelity model is desired. In this study, a simple and fast model is needed for real-time SOC 

estimation. The idea of SOC estimation is to find an inverse function (nonlinear mapping) which 

is able to predict SOC by using the identified parameters. Being aware of the influence of SOH 

on our results, we assume fixed value for this variable and plan to extend our algorithms in our 

future works. So, the following equation is used for the sake of simplicity:  

( , ) , 1..i iP f SOC T i n                                                 (12) 

The battery parameters (Pi) are obtained by using the system identification algorithm and then a 

nonlinear function like g in bellow (i.e. ANFIS) is utilized for SOC estimation. 

1 2( , ,.., )nSOC g P P P                                                    (13) 

 

Figure 7: ANFIS structure used for NiMH pack’s SOC estimation 

 

ANFIS is a powerful tool for modelling, prediction and control by integrating synergy of the 

artificial neural network and the fuzzy logic. A fuzzy set (which works based on fuzzy logic) is 

an efficient tool for modelling of a phenomenon related to human knowledge by using linguistic 

labels that are embedded in a number of membership functions. A fuzzy inference system (FIS) is 

a collection of fuzzy if-then rules which contains human expertise and knowledge. Because a FIS 

doesn’t have learning and adaptation capabilities, neuro-fuzzy techniques have been developed in 

order to add this functionality to a FIS as well. A hybrid learning approach is used in ANFIS 
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structure that combines the gradient-descent and the least squares methods for the parameter 

tuning (Jang et al 1997). ANFIS has been used in a wide range of applications and particularly, it 

has been used for battery SOC estimation in previous studies (Cai et al 2003; Tsai et al 2012). For 

more details on the theory of ANFIS and the training algorithms, the reader is suggested to refer 

to Jang et al (1997). 

The advantages of the proposed framework (presented in Figure 5) can be summarized as 

follows:  

(i) It is a flexible framework that can be applied to various battery types. It is demonstrated by 

Fotouhi et al. (2017-b) that the framework can even handle the flat OCV curve of a lithium-

sulfur cell. Because of the observability issues, most of the existing estimation techniques 

are not applicable for lithium-sulfur cell (Fotouhi et al. 2017-b). 

(ii) Unlike coulomb-counting, it can start from any initial SOC value and no initial condition 

data is needed to run the estimator. 

(iii) Unlike coulomb-counting, the whole battery capacity is not needed for SOC calculation. 

(iv) Unlike recursive adaptive filters, no time is needed for convergence of the algorithm at the 

beginning. 

(v) The proposed method is simple and fast enough to be used in real-time applications. In 

addition, ANFIS models are adaptive and can be retuned very fast. 

For validation of the estimations, ‘ideal’ coulomb-counting (CC) technique is used as a 

benchmark. CC is a theoretical method which cannot be used in practice because of its 

restrictions however; it is a good benchmark for checking other techniques (Kutluay et al., 2005). 

In CC, battery SOC is obtained by integrating the current over time. Assuming 
0SOC  as the initial 

SOC at time 
0t , the battery pack’s SOC at time t is: 

0

0

( )
, 0 1

t

tt

i
SOC SOC d SOC

C

 


 
    

 
 
                                          (14) 

where ( )i t  is the battery current (A) (assumed positive for discharging and negative for 

charging).   is the battery’s coulombic efficiency (dimensionless) and tC  is the total capacity 

(As). In this representation, the SOC value is a number between 0 and 1 that 0 indicates a fully 

depleted state and 1 represents a fully charged state. 
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4    Results Analysis 

In a case study, a 64.8 V NiMH battery pack was tested using the HIL test rig and the proposed 

algorithms were used in real-time. The test was performed according to UDDS standard 

(DieselNet, 2017), under constant temperature at 25 °C, starting from fully-charged state (100% 

SOC) to fully-discharged state (zero SOC) when the terminal voltage drops below 54 V (i.e. the 

cut-off voltage of the battery pack). Figure 8 demonstrates how the battery terminal voltage has 

changed over 5 consecutive UDDS cycles. Since the sampling rate was 10 Hz, the time in the 

figures is presented in decisecond (0.1 second).  

The driver model followed the driving cycle by generating an acceleration command when the 

actual velocity is less than the reference velocity. Rotational speed of the electric motors was 

measured and a velocity tracking error was calculated. The reference velocity and measured 

velocity are illustrated in Figure 8 (for the whole test) and Figure 9 (for the first cycle only), 

demonstrating a good tracking performance. Variations of battery pack’s current and voltage are 

also depicted in Figure 8 (for the whole test) and in Figure 9 and Figure 10 (for the first cycle 

only). As shown in Figure 8 to Figure 10, the measurements are quite noisy due to using 

inexpensive sensors. This is done by purpose because we were interested in providing a real 

challenging platform for BMS algorithms testing. Such a testing platform is similar to a real 

automotive application with budget constraints. In addition, we believe that testing and validation 

of the proposed BMS algorithms using such noisy data would be sufficient to be sure about other 

‘less challenging’ situations.  

In the test presented in Figure 8, speed following of the traction motor is performed without 

braking (i.e. no negative command, no energy regeneration). In this scenario, an acceleration 

command was generated when increase in speed is required and zero acceleration when decrease 

in speed is required. This works in practice because of the friction in the whole system and also 

small rotational momentum of the system (vehicle inertia is neglected for the sake of simplicity).  

Although the effect of regenerative braking is not considered in this study, the algorithms are 

able to deal with instantaneous charging pulses (between the discharge pulses) as well. However, 

a continuous charging profile needs particular considerations. 
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Figure 8: velocity and battery measurements for the whole test 

 

Figure 9: reference and measured velocity profiles for the first cycle 
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Figure 10: battery current and terminal voltage profiles for the first cycle 

Identification and estimation results are presented in Figure 11 including battery internal 

resistance and OCV as discussed in section 3.2 and battery SOC estimation using ANFIS 

explained in section 3.3. According to the results demonstrated in Figure 11, the identification 

and estimation algorithms perform well against the high level of noise (caused by using low-cost 

sensors) which is designed by purpose to test the algorithms in the worst scenario.  

Identification was repeated every 0.1% change in SOC using a two-minute time window. One 

of the main advantages of the proposed identification formula is its high speed that makes it 

suitable for real-time applications. In this case, the identification process was repeated every 6 

seconds however, it is possible to run it much faster (Fotouhi et al., 2016-a). On the other hand, 

the identification algorithm has limitations as well: (i) as shown in Figure 11, there are 

fluctuations in the identification results depending on the current profile. There is an error in the 

identification results especially at high discharge rate. (ii) the algorithm has also limitation during 

continuous discharge since identifying battery resistance and OCV is challenging in this case. No 

drop or jump is detectable during a continuous discharge pulse. To overcome these limitations, an 

averaging technique is used by repeating the identification faster and doing the estimation in a 

longer window. SOC estimation was performed using the last 20 identification points which 

means every 2% change in SOC in this case. The reason of using a number of identification 

points (20 points in this case) for every estimation attempt is to make the estimation results more 
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robust against the identification uncertainties. Consequently, one or two faulty points in the 

identification process can not affect the estimation result very much.  

Regarding the estimation results shown in Figure 11, the theoretical (ideal) coulomb-counting 

was used as a benchmark for evaluation of the ANFIS method. It is worth mentioning that the 

‘ideal’ coulomb-counting is not applicable in a real application because of its practical limitations 

such as cumulative noise effect (due to the integration of the current signal as presented in 

equation 14) and the need for ‘known’ initial condition (Kutluay et al., 2005). In Figure 11, 

coulomb-counting is calculated based on an assumption that we know the initial SOC value. 

However, the ANFIS method is able to recognize the initial state by using the OCV value. On the 

other hand, each estimation try by ANFIS is independent of its previous try. So, there is no 

cumulative error when using ANFIS technique. The drawback of the ANFIS technique is its 

robustness against the identification accuracy (OCV values in this case) that can cause to 

fluctuations in the estimation results. 

 

Figure 11: real-time battery parameter identification and SOC estimation during UDDS test 
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5    Conclusions 

Performance of the proposed BMS algorithm was tested properly using the HIL test rig, 

representing a scaled-down electric vehicle powertrain system. Using such a HIL test rig for 

BMS algorithm development, is a quite useful approach to evaluate the proposed algorithms in a 

more realistic scenario by considering the effects of noise and uncertainties. A generic framework 

was explained and tested for real-time battery model identification and state estimation. Battery 

internal resistance and open-circuit voltage were obtained in real-time using current and voltage 

measurements. The main advantage of the proposed identification algorithm is its simplicity and 

speed that makes it suitable to be easily embedded on battery management boards. Another 

advantage of the proposed framework is its flexibility that makes it usable for other applications 

like state-of-health estimation and other battery types too. Drawbacks of the proposed BMS 

algorithm were also investigated. There were fluctuations in the identification results especially at 

high discharge rate. The identification algorithm has also limitation during continuous discharge 

pulses without any drop or jump in between. Using the solutions like averaging technique and 

ANFIS, battery SOC estimation result was satisfactory against the limitations of the identification 

unit.  
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