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ABSTRACT: 

This paper provides an investigation on thickness effects on fibre-bridged fatigue 

delamination growth (FDG) in composite laminates. A modified Paris relation was 

employed to interpret experimental fatigue data. The results clearly demonstrated that 

both thickness and fibre bridging had negligible effects on FDG behaviors. Both 

energy principles and fractography analysis were subsequently performed to explore 

the physical reasons of this independence. It was found that the amount of energy 

release of a given crack growth was not only independent of fibre bridging, but also 

thickness. Fibre print was the dominant microscopic feature located on fracture 

surfaces，physically making the same energy dissipation during FDG. Furthermore, 

the present study provides extra evidence on the importance of using an appropriate 

similitude parameter in FDG studies. Particularly, the strain energy release rate (SERR) 

range applied around crack front was demonstrated as an appropriate similitude 
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parameter for fibre-bridged FDG study. 

Keywords: B. Fatigue; B. Delamination; Fibre bridging; A. Polymer-matrix 

composites (PMCs) 

1. Introduction 

Composite laminates, with widespread use in high-tech industry, are vulnerable to 

delamination growth, owing to lack of reinforcement in thickness direction. This 

damage can gradually propagate under cyclic loading and may finally result in 

catastrophic failure of a composite structure during its service life. In the past, 

engineers usually applied no crack growth philosophy in composite structural design, 

which can significantly reduce weight-saving potential of composites. Since 2009, the 

US Federal Aviation Administration (FAA) has changed the design philosophy of 

composite structures from no crack growth to slow crack growth in the certification 

procedure [1]. This change makes it even crucial to have in-depth understanding of 

FDG in composites. 

People indeed have paid a lot of attention into FDG, and as a result, a vast number of 

research papers have been published on this topic [2-8]. Pascoe et al [5] gave a critical 

literature review on FDG studies in both composites and adhesive bonds. It was 

reported that methods based on the fracture mechanics were useful to determine FDG 

behaviors. Particularly, the Paris relation and its variations have been successfully 

employed in FDG studies. In these relations, fatigue crack growth rate da/dN was 

usually correlated to the SERR. However, one should bear in mind that there was no 

consensus on the specific expressions of SERR in these relations. Researchers usually 
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would like to use the maximum SERR [2,3,4], SERR range [2,6], or combinations of 

them [2,3,7,8] as similitude parameter to interpret FDG behaviors. The selection of an 

appropriate similitude parameter was one of the most important issues in FDG studies 

[5]. The lack of consensus on this parameter can cause controversy in fatigue data 

interpretation, taking stress ratio effects as examples [2-6]. 

Fibre bridging is a unique and important shielding mechanism frequently observed in 

delamination of composite laminates. The presence of bridging fibres in the wake of a 

crack front can bridge fracture surfaces and prohibit crack growth. Significant studies 

have been conducted on quasi-static delamination [9-11]. As a result, the 

corresponding experiment and prediction methods have been developed to 

characterize this shielding phenomenon. However, to the best knowledge of the 

authors, not enough attention has ever been paid into FDG with fibre bridging.  

Hojo et al [12] proposed a Gmax-constant test program to evaluate FDG behaviors with 

fibre bridging. Hwang et al [13] completed FDG tests with width tapered DCB 

specimens under constant SERR range. Both of them found that the presence of fibre 

bridging can significantly retard fatigue crack growth rate. Khan et al [10] made a 

comparison on FDG with and without fibre bridging by removing part of fibre 

bridging via a thread cutting method. The results also demonstrated that fibre bridging 

can decrease fatigue crack growth. Yao et al [14-16] experimentally examined FDG 

with different amounts of fibre bridging and proposed empirical power law relations 

to determine fibre-bridged FDG behaviors. Furthermore, it was reported that the 

significance of fibre bridging was related to loading regime. Similar conclusion was 
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also made by Stutz et al [17], in which bridging stress distribution in quasi-static 

delamination was much higher than that in fatigue. As a result, one can reason that the 

resistance curve (R-curve) obtained in quasi-static delamination cannot well represent 

resistance increase in fatigue delamination. In addition, it has been proven that stress 

ratio also affected the significance of fibre bridging, due to crack closure or other 

unknown reasons [16,18]. Particularly, fibre bridging of a high stress ratio 

delamination was much more significant than that of a low stress ratio.  

To take fibre bridging into account, people usually applied the normalized SERR 

range, i.e. ΔG/GIC(a-a0), or the normalized maximum SERR, i.e. Gmax/GIC(a-a0), as 

similitude parameter in FDG studies [3,7,13,19]. Particularly, in the studies of Murri 

et al [3] and Hwang et al [13], they used quasi-static R-curve to normalize Gmax in 

fatigue data analysis. However, it is questionable to directly use quasi-static data in 

FDG studies, as there was difference in the amount of fibre bridging generated in 

quasi-static and fatigue loading [14,16,17]. To address this problem, in the studies of 

Zhao et al [7,19], the resistance increase in fatigue delamination was determined via a 

compliance method and subsequently used in FDG study. Once the normalized 

parameter was employed, fatigue data scatter can be reduced significantly and clear 

trend of FDG can be observed. 

According to quasi-static studies [9,20,21], thickness had important effects on the 

significance of fibre bridging. However, there was no agreement on this dependence. 

Some researchers found that the increase of thickness can cause more fibre bridging 

[21], whereas other studies provided evidence that thickness had no obvious effect on 
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fibre bridging [9,20]. At this point, it is reasonable to ask a question that what 

thickness effects on fibre-bridged FDG in composite laminates. The aim of present 

study is, therefore, to explore fibre-bridged FDG behaviors in composite laminates 

with different thicknesses.  

2. Material and fatigue experimental program 

To investigate thickness effects on fibre-bridged FDG behaviors, mode I delamination 

tests were conducted on unidirectional DCB specimens with three thicknesses, i.e. 

h=3.75mm, h=5.0mm and h=7.5mm, at the same stress ratio R=0.5.  

2.1 Material and specimen preparation 

Composite laminates were produced by hand-lay-up of thermosetting unidirectional 

carbon/epoxy prepreg layers of M30SC/DT120 (high strength and modulus carbon 

fibre/toughened thermosetting epoxy), supplied by Delta-Tech S.p.A Italy. A 12.7μm 

Teflon film was inserted in the middle plane of these laminates during the hand-lay-up 

process to act as an initial delamination a0=60mm. Three laminates with different 

nominal thicknesses of 3.75mm, 5.0mm and 7.5mm were prepared, such to 

investigate the influence of laminate thickness on the fatigue crack growth 

performance. The laminates were cured in vacuum in an autoclave at a pressure of 6 

bars and curing temperature of 120℃ for 90 min. All laminates were C-scanned to 

detect potential imperfections. These plates were subsequently cut by a diamond saw 

into 25 mm width beams with 200 mm length. Only these samples were tested where 

the C-scan did not reveal any obvious imperfections. A pair of aluminum loading 

blocks, 25 mm width by 20 mm length with 6 mm thickness, was adhesively bonded 

onto a specimen at the side of the Teflon insert for load introduction.  
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One side of a DCB specimen was coated with thin typewriter correction fluid to 

enhance visibility of crack front during fatigue delamination test. A strip of grid paper 

was pasted on the coated side of a specimen to aid in measuring crack propagation 

length. 

2.2 Fatigue delamination program 

One should note that there was no test standard for mode I FDG in composites until 

now [4]. In practice, fatigue tests can be conducted under either displacement control 

or force control. In a recent study [22], it was reported that displacement control was 

more stable and can result in less data scatter, in comparison with force control. Thus, 

displacement control was applied in present study. Particularly, all fatigue tests were 

performed on a 10kN MTS machine at a frequency of 5Hz with the same stress ratio 

R=0.5 in ambient conditions. A computer controlled digital camera system was 

employed to automatically monitor crack growth at the maximum displacement with 

pre-defined intervals. The force, displacement and number of cycles were stored in an 

Excel file every 100 cycles enabling data evaluation after the test. The experimental 

setup is demonstrated in Fig.1. 

The amount of fibre bridging can increase with crack propagation until a full damage 

process zone was formed [9,10]. To determine FDG with different amounts of fibre 

bridging, DCB specimens were tested for several times with different applied 

displacements, but keeping stress ratio the same. FDG gradually decreased with crack 

extension and a test was manually terminated in case of crack retardation to save test 

duration. Subsequently, the test was repeated with increased displacements at the 
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same stress ratio. This sequence was repeated several times until the maximum 

displacement capacity of the test machine was reached. With this test procedure, 

multiple delamination resistance curves were obtained, with each one representing 

delamination resistance equivalent to a specific fatigue pre-crack length, i.e. 

delamination length at which that particular fatigue test was initiated. 

The presence of fibre bridging in delamination can enhance interlaminar resistance 

significantly. R-curve was therefore used in present study to quantitatively determine 

the critical resistance increase because of fibre bridging in FDG. However, one should 

note that it was difficult to directly evaluate the critical resistance GIC(a-a0) during 

fatigue delamination, as fatigue load was much lower than the critical load. To address 

this issue, after each fatigue test, a loading-unloading procedure was added on DCB 

specimen to measure the critical resistance at the nonlinear point via the Modified 

Compliance Calibration (MCC) method recommended in the ASTM D5228-01 

standard. This procedure can also provide important information for the selection of 

the suitable maximum and minimum displacements applied in the subsequent FDG 

test. 

Some people may argue that load history of this test program may affect FDG 

behaviors. In a previous study [15], multiple fatigue delamination tests were 

conducted on different DCB specimens. And a uniform empirical power law relation 

has been successfully obtained to determine FDG with different amounts of fibre 

bridging. One should note that the load histories applied on different DCB specimens 

were not the same. If there is load-history dependence of this test procedure, one 
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cannot obtain the same relation to determine FDG behaviors in different DCB 

specimens. In addition, it has been reported that there was a plateau state in FDG with 

fibre bridging [15-16]. And FDG in this state of different DCB specimens remained 

the same, even though the load histories were different. In our opinion, both of these 

can provide evidence that the effect of load history is negligible for FDG via the test 

procedure used in present study. 

3. FDG models 

The use of different similitude parameters in FDG study can result in various Paris 

type relations [5]. The basic Paris relation, see Eq.(1), has been widely used in FDG 

studies in composite laminates. In the previous studies via this relation [14-16], it was 

clearly found that the presence of fibre bridging can significantly retard fatigue crack 

growth. Particularly, the obtained Paris resistance curves decreased shift with crack 

extension, violating the requirement on similitude principle (i.e. for the same value of 

a similitude parameter, fatigue crack growth should be the same). To solve this 

problem, a modified Paris relation with a new similitude parameter, see Eq.(2), was 

developed and recommended to appropriately explore fibre-bridged FDG in 

composite laminates [23].  

𝑑𝑎

𝑑𝑁
= 𝑐(∆√𝐺)

𝑛
= 𝑐 [(√𝐺𝑚𝑎𝑥 − √𝐺𝑚𝑖𝑛)

2
]

𝑛

          (1) 

where c and n are two curve-fitting parameters of the Paris relation; Gmax and Gmin 

represent the maximum and minimum SERRs of a fatigue loading. They were 

calculated via the MCC method. The 7-point Incremental Polynominal Method, 

recommended in ASTM E647-00 standard, was applied to determine fatigue crack 
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growth rate da/dN. 

𝑑𝑎

𝑑𝑁
= 𝑐∗(∆𝐺𝑒𝑓𝑓)

𝑛∗

= 𝑐∗ [
𝐺0

𝐺𝐼𝐶(𝑎−𝑎0)
∆√𝐺]

𝑛∗

           (2) 

where c
*
 and n

*
 are two curve-fitting parameters of the modified Paris relation; G0 

represents fatigue delamination resistance with no fibre bridging; GIC(a-a0) 

determines fatigue R-curve. 

4. Results and discussion 

4.1 Fatigue delamination resistance 

To use the modified Paris relation Eq.(2) in determining FDG with large-scale fibre 

bridging, one should first evaluate the critical resistance increase in fatigue 

delamination, i.e. GIC(a-a0). This parameter can be experimentally measured via the 

loading-unloading procedure introduced in Section 2.2 at several fatigue crack 

intervals. Fig.2 summarizes resistance increase during FDG in terms of GIC against 

the normalized crack extension (a-a0)/Lpz. It is clear that interlaminar resistance 

significantly rises with crack extension from a low value to a high plateau of each 

thickness. This is similar to the R-curve usually observed in quasi-static delamination 

[9,10,24]. With crack extension, more fibre bridging can be present in the wake of a 

crack front and affect crack profiles, making more energy dissipation of a given crack 

increment. And interlaminar resistance finally can become constant as fibre bridging 

reaches saturation. One should note that there are two important features of the 

resistance increase illustrated in Fig.2. The first one is delamination resistance of 

composite laminates with different thicknesses remains the same at a given value of 

(a-a0)/Lpz. As fibre bridging is the main reason for the critical resistance increase, this 
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implicitly indicates the significance of fibre bridging in FDG is independent of 

thickness for a given normalized crack length. The second feature is the initial 

delamination resistance remains the same with increase of thickness. Referring to 

quasi-static delamination study [24], the onset crack growth was dominantly governed 

by the matrix property, regardless of fibre bridging. As a result, it is reasonable to 

have the same value of G0.  

The approach of R-curve was frequently employed to determine resistance increase 

because of fibre bridging. From the experimental results shown in Fig.2, a linear 

increase apparently exists between interlaminar resistance and the normalized crack 

extension. The linear relation proposed in literature [10], see Eq.(3), was therefore 

employed to quantitatively determine this increase as shown in Fig.2. This determined 

relationship will be used in the modified Paris relation in fatigue data analysis at the 

following section. 

𝐺𝐼𝐶(𝑎 − 𝑎0) = {
𝐺0 + 𝐺𝑏𝑟

(𝑎−𝑎0)

𝐿𝑝𝑧
      (0 <

(𝑎−𝑎0)

𝐿𝑝𝑧
≤ 1)

𝐺𝑝𝑙𝑎                (1 <
(𝑎−𝑎0)

𝐿𝑝𝑧
)

            (3) 

where Gpla represents resistance at the plateau state; Gbr is the difference between Gpla 

and G0; Lpz is the length of process zone.  

4.2 Fibre-bridged FDG in composite laminates with different thicknesses 

Incorporating with the results shown in Fig.2, all fatigue data can be interpreted via 

the modified Paris relation. Fig.3 provides a summary of this interpretation. And 

detailed Paris law representation of these fatigue data can be found in literature [25], 

in which the effects of fibre bridging on the Paris relation were carefully examined. 
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Considering the scatters usually observed in fatigue [3,4,22,26], two important 

features of the results shown in Fig.3 should be highlighted. The first one is the 

experimental data with different amounts of fibre bridging converge into a narrow 

band region. The second one is the experimental data from composite laminates with 

different thicknesses overlap each other very well. As a result, a master resistance 

curve can be fitted to characterize all fatigue data, as illustrated in Fig.3. Therefore, it 

can be concluded that both fibre bridging and composite laminate thickness have 

negligible effect on FDG behaviors. 

The results illustrated in Fig.3 agree well with the basic requirement of similitude 

principle. For the same value of ΔGeff, the corresponding fatigue crack growth remains 

the same. This means this new similitude parameter can appropriately represent the 

consistency or similitude in fibre-bridged FDG in composite laminates. Comparing to 

the results interpreted via the basic Paris relation [25], these data shown in Fig.3 

highlight the importance of using an appropriate similitude parameter in correctly 

interpreting FDG behaviors. In the following section, both energy dissipation and 

damage mechanism analysis will be performed to provide physical explanations on 

this independence as well as to physically verify the appropriateness of the new 

similitude parameter.  

5. Physical interpretation of fibre-bridged FDG 

5.1 Energy dissipation of per fatigue cycle 

FDG is an energy release process, obeying the first law of thermodynamic. 

Particularly, energy dissipation in FDG can be explicitly determined via Eq.(4) 
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[27-28]. If there is a crack increment da/dN, certain amount of energy dU/dN must be 

available and dissipated. Knowing the energy dissipation per unit crack area G
*
 (i.e. 

fracture toughness in FDG), the original cause dU/dN can be linked to the 

consequence da/dN. And the value of dU/dN can be calculated via a derivation of the 

total applied energy U with respect to fatigue cycle number N. 

𝑑𝑈

𝑑𝑁
=

𝑑𝑈

𝑑𝐴

𝑑𝐴

𝑑𝑁
= 𝐺∗ 𝑑𝐴

𝑑𝑁
                       (4) 

where dA/dN=Bda/dN represents new crack surface generation; B is the width of the 

sample. 

All fatigue data were re-interpreted in terms of da/dN against dU/dN, as illustrated in 

Fig.4. Interestingly, the amount of energy release of a given fatigue crack growth 

keeps constant with fibre bridging development. This implicitly indicates there is little 

damage occurring in bridging fibres during FDG. As a result, the corresponding 

energy dissipation is negligible and most energy dissipation is actually concentrated to 

damage evolution around crack front. In our understanding, these bridging fibres just 

periodically store and release strain energy under cyclic loading, but have little 

contribution to permanent energy release. However, different situations exist in 

quasi-static delamination. The applied displacement continuously increases and can 

cause continuous failures in both bridging fibres and crack front. As a result, the total 

energy dissipation is the sum of the energy release in bridging fibres and crack front. 

In addition, in a FDG study by Stutz et al [17], it was reported that the magnitude of 

the maximum stress applied on these bridging fibres was relatively low, typically no 

more than 0.5 MPa. At such a low stress state, it is reasonable to believe no obvious 
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fatigue damage can occur in bridging fibres. Besides fibre bridging, energy 

dissipation of a given fatigue crack growth is independent of thickness. And a single 

curve, with a coefficient of determination R
2
 close to 1, can be fitted to determine 

energy dissipation in fibre-bridged FDG of composite laminates with different 

thicknesses. It should be stressed here that the magnitude of the exponent illustrated in 

Fig.4 is close to unit, indicating the constant resistance G
*
 during FDG with fibre 

bridging and thickness increase. The deviation of the exponent from unit has been 

well explained in a previous study by the authors [28]. Bridging fibres may be 

damaged or pulled out from matrix at the beginning several thousand fatigue cycles, 

as the applied displacement is close to the critical value. However, once crack 

propagates, the applied displacement becomes lower than the critical value. As a 

result, negligible damage related to fibre bridging can occur and all damage evolution 

is concentrated to crack front, leading to the same energy dissipation. The data 

illustrated in Fig.4 implicitly indicates the corresponding damage evolution around 

crack front should be the same during FDG, regardless of fibre bridging and 

composite laminate thickness. Detailed discussion related to the damage mechanisms 

will be completed in the following section via SEM observations on the fracture 

surfaces. 

5.2 Fractography analysis 

To provide detailed physical explanations on energy dissipation results shown in Fig.4, 

fractography examinations were conducted to explore the related damage mechanisms 

in fibre-bridged FDG of composite laminates with different thicknesses. Fig.5 
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summarizes the SEM results (with the same magnification 2000X) on fatigue fracture 

surfaces at both short and long cracks of each thickness. The morphology for different 

crack lengths (i.e. different amounts of fibre bridging) of each thickness remains the 

same, indicating the identical damage mechanisms with fibre bridging development. 

In other words, fibre bridging has no obvious effect on the damage mechanisms 

during FDG. Particularly, fibre print is the most dominant feature located on fracture 

surfaces. The presence of this microscopic feature is a result of debonding between 

fibre and matrix around crack front. In some locations, hackles are also observed. This 

is a typical feature usually observed in mode II or mixed-mode I/II delamination 

because of shear stress. Its appearance in mode I delamination mainly attributes to 

local shear stress generated during fibre pullout from matrix in the wake of crack front. 

In comparison with the large proportion of fibre prints, the presence of hackles is 

relatively limited and in really small scale. Furthermore, the microscopic features 

remain the same with increase of laminate thickness, demonstrating the same damage 

mechanisms. Accordingly, one can make a conclusion that damage mechanisms in 

FDG remain the same with fibre bridging and thickness increase. Most damage 

evolution in fibre-bridged FDG is concentrated around crack front. This is the 

physical reason for the same energy dissipation behaviors illustrated in Fig.4.  

For the identical damage mechanisms, the same crack driving force reasonably result 

in the same crack growth behavior. As a result, it is appropriate to use the modified 

Paris relation in determining fibre-bridged FDG in composite laminates. The derived 

results, as illustrated Fig.3, agree well with the energy dissipation results and damage 
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mechanisms. 

6. Further discussion on the modified Paris relation 

According to above discussion, fibre bridging has no effect on FDG in composite 

laminates. Based on this, the calculated data illustrated in Fig.3 indeed quantify FDG 

with zero-bridging. In a recent study [29], an extrapolation method has been proposed 

to determine FDG with zero-bridging via extrapolating the Paris resistance curves 

with different amounts of fibre bridging. Fig.6 provides a comparison of the same 

fatigue data set (h=5.0mm) interpreted via the modified Paris relation as well as 

calculated via the extrapolation method. As expected, FDG data calculated with 

different methods overlap each other very well, providing further evidence on the 

validity of using the modified Paris relation in fibre-bridged FDG study. In addition, 

Jones et al [30] provided a thorough discussion on fibre bridging in FDG and 

highlighted the importance of using FDG without fibre bridging in design and 

material characterization. The data illustrated in Fig.6 demonstrates that the use of the 

new fatigue model is an effective and convenient way to determine zero-bridging 

FDG. Furthermore, the use of the modified Paris relation in FDG study takes an 

advantage of resulting in a lower exponent, as compared to the basic Paris relation 

[25]. A smaller value of the exponent indicates less sensitivity of the prediction model. 

This is really important for its engineering applications.  
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Figure 6 FDG with zero-bridging 

Back to the pioneering work completed by Irwin et al [31] and Paris et al [32], crack 

growth was a local phenomenon. As the crack tip stress field can be governed by 

stress intensity factor K, a power law relation in terms of da/dN against the range in 

the governing crack tip parameter (i.e. ΔK or Kmax) was proposed to determine fatigue 

crack growth. One should bear in mind that these parameter was used to characterize 

crack tip stress field. However, the use of Δ√G in fibre-bridged FDG violates this 

original intension. And one cannot make direct equivalence between Δ√G and ΔK. For 

FDG with fibre bridging, Δ√G is actually a parameter to describe the total SERR range 

under fatigue loading. Schematically, it is the sum of SERRs in bridging fibres and 

around crack front. As most damage evolution and corresponding energy dissipation 

are concentrated around crack front, regardless of fibre bridging, the parameter which 

can well determine the stress field around crack front seems more appropriate in 

fibre-bridged FDG studies. According to above discussion and analysis, the SERR 

range indeed applied on crack front ΔGeff, rather than the total applied SERR range 
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Δ√G, is a reasonable parameter in representing the similitude of fibre-bridged FDG. 

This is also in line with the original purpose of using stress intensity factor K in 

determining fatigue crack growth.  

The importance of using an appropriate similitude parameter in FDG study has been 

discussed in literature [5]. People alternative used Gmax or Δ√G as similitude in FDG 

studies in the past [2-7]. These selections were based on the description of fatigue 

loading, rather than physics. This shortcoming sometimes can result in misinterpreting 

experimental fatigue data and obscuring our understanding on FDG. Based on present 

and previous studies [23,27,28], physical understanding on damage evolution and 

corresponding energy dissipation should be conducted first for choosing a reasonable 

similitude parameter in fatigue data analysis. And the fatigue model based on this 

reasonable similitude parameter can appropriately interpret FDG behaviors and 

correctly enrich our understanding on FDG in composite laminates. 

7. Concluding remarks 

Thickness effects on fibre-bridged FDG in unidirectional composite laminates were 

investigated in present study. It was found that the significance of fibre bridging was 

independent of thickness at a given normalized crack extension. Experimental fatigue 

data were explained via a modified Paris relation. The results clearly demonstrated 

that both thickness and fibre bridging had no obvious effect on FDG behaviors. As a 

result, a single resistance curve can be obtained to determine fibre-bridged FDG in 

composites of different thicknesses. This finding is really important for engineering, 

as it can significantly reduce fatigue workload in determining FDG behaviors. 
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Physical explanations on fibre-bridged FDG behaviors were provided via energy 

dissipation analysis and the SEM observations on fracture surfaces. The damage 

mechanisms remained the same with the increase of thickness and fibre bridging, 

causing the same energy release. Most damage evolution in fibre-bridged FDG was 

concentrated around crack front in terms of fibre/matrix debonding. As a result, it is 

reasonable to expect the same FDG behavior.  

This study gives extra evidence on the importance of using an appropriate similitude 

parameter in FDG studies. Particularly, an appropriate similitude parameter can well 

interpret FDG behaviors and promote our understanding on FDG, whereas an 

inappropriate similitude parameter can misinterpret FDG behaviors and obscure our 

understanding. Furthermore, a reasonable similitude parameter can be derived by the 

physical understanding of the damage mechanisms and the corresponding energy 

dissipation behaviors. 

Acknowledgements 

The authors gratefully acknowledge financial support from the International 

Postdoctoral Exchange Fellowship Program, Harbin Institute of Technology, P.R. 

China. The research work is also financially supported by the China Postdoctoral 

Science Foundation with grant No. 2016M601422 and Heilongjiang Postdoctoral 

Fund with grant No. LBH-Z16071. 

References 

[1] Federal Aviation Authority. Airworthiness Advisory Circular No: 20-107B. 

Composite Aircraft Structure. 09/08/2009 



19 
 

[2] M. Hojo, K. Tanaka, C.G. Gustafson, R. Hayashi. Effect of stress ratio on 

near-threshold propagation of delamination fatigue cracks in unidirectional CFRP. 

Composites Science and Technology 1987. 29: 273-292 

[3] G.B. Murri. Effect of data reduction and fiber-bridging on mode I delamination 

characterization of unidirectional composites. Journal of Composite Materials 2014. 

48: 2413-2424 

[4] S. Stelzer, A.J. Brunner, A. Argüelles, N. Murphy, G.M. Cano, G. Pinter. Mode I 

delamination fatigue crack growth in unidirectional fiber reinforced composites: 

Results from ESIS TC4 round-robins. Engineering Fracture Mechanics 2014. 116: 

92-107 

[5] J.A. Pascoe, R.C. Alderliesten, R. Benedictus. Methods for the prediction of 

fatigue delamination growth in composites and adhesive bonds – A critical review. 

Engineering Fracture Mechanics 2013. 112-113: 72-96 

[6] C.G. Gustafson, M. Hojo. Delamination fatigue crack growth in unidirectional 

Graphite/Epoxy laminates. Journal of Reinforced Plastics and Composites 1987. 6: 

36-52 

[7] L. Peng, J. Zhang, L. Zhao, R. Bao, H. Yang, B. Fei. Mode I delamination growth 

of multidirectional composite laminates under fatigue loading. Journal of Composite 

Materials 2010. 45: 1077-1090 

[8] D.R. Atodaria, S.K. Putatunda, P.K. Mallick. A fatigue crack growth model for 

random fiber composites. Journal of Composite Materials 1997. 31: 1838-1855 

[9] B.F. Sorensen, T.K. Jacobsen. Large-scale bridging in composites: R-curves and 



20 
 

bridging laws. Composites Part A: Applied Science and Manufacturing 1998. 29: 

1443-1451 

[10] C.G. Dávila, C.A. Rose, P.P. Camanho. A procedure for superposing linear 

cohesive laws to represent multiple damage mechanisms in the fracture of composites. 

International Journal of Fracture 2009. 158: 211-223 

[11] B.D. Manshadi, E. Farmand-Ashtiani, J. Botsis, A.P. Vassilopoulos. An iterative 

analytical/experimental study of bridging in delamination of the double cantilever 

beam specimen. Composites Part A: Applied Science and Manufacturing 2014. 61: 

43-50 

[12] M. Hojo, S. Ochiai, T. Aoki, H. Ito. Mode I fatigue delamination for CF/PEEK 

laminates using maximum-energy-release-rate constant texts. Journal of the Society of 

Material Science Japan 1995. 44: 953-959 

[13] W. Hwang, K.S. Han. Interlaminar fracture behavior and fiber bridging of 

glass-epoxy composite under mode I static and cyclic loadings. Journal of Composite 

Materials 1989. 23: 396-430 

[14] L. Yao, R. Alderliesten, M. Zhao, R. Benedictus. Bridging effect on mode I 

fatigue delamination behavior in composite laminates. Composites Part A: Applied 

Science and Manufacturing 2014. 63: 103-109 

[15] L. Yao, R.C. Alderliesten, R. Benedictus. The effect of fibre bridging on the Paris 

relation for mode I fatigue delamination growth in composites. Composite Structures 

2016. 140: 125-135 

[16] L. Yao, Y. Sun, M. Zhao, R.C. Alderliesten, R. Benedictus. Stress ratio 



21 
 

dependence of fibre bridging significance in mode I fatigue delamination growth of 

composite laminates. Composites Part A: Applied Science and Manufacturing 2017. 

95: 65-74 

[17] S. Stutz, J. Cugnoni, J. Botsis. Studies of mode I delamination in monotonic and 

fatigue loading using FBG wavelength multiplexing and numerical analysis. 

Composites Science and Technology 2011. 71: 443-449 

[18] R. Khan, R. Alderliesten, L. Yao, R. Benedictus. Crack closure and fibre bridging 

during delamination growth in carbon fibre/epoxy laminates under mode I fatigue 

loading. Composites Part A: Applied Science and Manufacturing 2014. 67: 201-211 

[19] J. Zhang, L. Peng, L. Zhao, B. Fei. Fatigue delamination growth rates and 

thresholds of composite laminates under mixed mode loading. International Journal of 

Fatigue 2012. 40: 7-15 

[20] T.K. Jacobsen, B.F. Sorensen. Mode I intra-laminar crack growth in composites- 

modelling of R-curves from measured bridging laws. Composites Part A: Applied 

Science and Manufacturing 2001. 32: 1-11 

[21] E. Farmand-Ashtiani, J. Cugnoni, J. Botsis. Specimen thickness dependence of 

large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite. 

International Journal of Solids and Structures 2015. 55: 58-65  

[22] A.J. Brunner, S. Stelzer, G. Pinter, G.P. Terrasi. Cyclic fatigue delamination of 

carbon fiber-reinforced polymer-matrix composites: Data analysis and design 

considerations. International Journal of Fatigue 2016. 83: 293-299 

[23] L. Yao, Y. Sun, L. Guo, M. Zhao, L. Jia, R.C. Alderliesten, R. Benedictus. A 



22 
 

modified Paris relation for fatigue delamination with fibre bridging in composite 

laminates. Composite Structures 2017. 176: 556-564 

[24] M.M. Shokrieh, M. Heidari-Rarani, M.R. Ayatollahi. Delamination R-curves as a 

material property of unidirectional glass/epoxy composites. Materials and Design 

2012. 34: 211-218 

[25] L. Yao, Y. Sun, L. Guo, R.C. Alderliesten, R. Benedictus, M. Zhao, L. Jia. Fibre 

bridging effect on the Paris relation of mode I fatigue delamination in composite 

laminates with different thicknesses. International Journal of Fatigue 2017. 103: 

196-206 

[26] M. Shahverdi, A.P. Vassilopoulos, T. Keller. Experimental investigation of 

R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB 

joints under CA loading. Composites Part A: Applied Science and Manufacturing 

2012. 43: 1689-1697 

[27] L. Yao, R.C. Alderliesten, M. Zhao, R. Benedictus. Discussion on the use of the 

strain energy release rate for fatigue delamination characterization. Composites Part A: 

Applied Science and Manufacturing 2014. 66: 65-72 

[28] L. Yao, R.C. Alderliesten, R. Benedictus. Interpreting the stress ratio effect on 

delamination growth in composite laminates using the concept of fatigue fracture 

toughness. Composites Part A: Applied Science and Manufacturing 2015. 78: 135-142 

[29] L. Yao, J.A. Pascoe, R.C. Alderliesten. Experimental method to account for fibre 

bridging in mode I fatigue delamination growth data. (Under review) 

[30] R. Jones, A.J. Kinloch, J. G. Michopoulos, A.J. Brunner, N. Phan. Delamination 



23 
 

growth in polymer-matrix fibre composites and the use of fracture mechanics data for 

material characterisation and life prediction. Composite Structures 2017. 180: 

316-333 

[31] G.R. Irwin. Fracture Dynamics. In Fracturing of Metals. 147-166. 1947. 

American Society for Metals. Cleveland. 

[32] P.C. Paris, F. Erdogan. A critical analysis of crack growth propagation laws. 

Journal of Basic Engineering 1963. 528-533 

 

 


