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Optimal Proportional-Integral Guidance with

Reduced Sensitivity to Target Maneuvers
Shaoming He and Chang-Hun Lee*

Abstract

This paper proposes a new optimal guidance law based on proportional-integral (PI) concept to reduce the

sensitivity to unknown target maneuvers. Compared to existing PI guidance laws, the proposed guidance command

is derived in the optimal control framework while guaranteeing finite time convergence. The kinematics equation

with respect to the zero-effort-miss (ZEM) is utilized and the integral ZEM is augmented as a new system state. The

proposed guidance law is derived through the Schwarz’s inequality method. The closed-form solution of proposed

guidance law is presented to provide better insight of its properties. Additionally, the working principle of the integral

command is investigated to show why the proposed guidance law is robust against unknown target accelerations. The

analytical results reveal that the proposed optimal guidance law is exactly the same as an instantaneous direct model

reference adaptive guidance law with a pre-specified reference model. The potential significance of the obtained

results is that it can provide a point of connection between PI guidance laws and adaptive guidance laws. Therefore,

it allows us to have better understanding of the physical meaning of both guidance laws and provides the possibility

in designing a new guidance law that takes advantages of both approaches. Finally, the performance of the guidance

law developed is demonstrated by nonlinear numerical simulations with extensive comparisons.

Index Terms

Optimal guidance law, PI control, Target maneuver, Schwarz’s inequality

I. INTRODUCTION

The conventional proportional navigation guidance (PNG) law [1], [2] has been extensively applied to various

missile systems as the terminal homing guidance law over the past several decades. The key features driving the

success of PNG are its simplicity and efficiency of implementation. The basic idea of PNG is that it generates

a guidance command to nullify the line-of-sight (LOS) rate, forcing the missile to follow the collision course.

Moreover, the PNG with a specific navigation constant, N = 3, is known as an energy optimal homing guidance

law. However, it is well-known that the performance of conventional PNG degrades drastically with the increase of

target maneuverability. Also, as shown in [3]–[8], the performance of conventional PNG, when against a maneuvering

target, is far away from the optimal one. As a remedy, the augmented PNG (APNG) law was proposed by
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introducing a target acceleration rejection term in the PNG guidance command [1]. Obviously, the information

on target acceleration is required for the implementation of APNG [1], [9]. In practice, unfortunately, it is difficult

to obtain the information on target acceleration since it is uncertain in nature. A filtering algorithm can be utilized to

estimate the unknown target acceleration for the implementation of APNG. However, APNG with estimated target

acceleration cannot provide good performance in some engagement scenarios as shown in [10].

In order to tackle the issue of maneuvering target interception, adaptive control technique is found to be widely-

accepted in robust guidance law design. The basic idea of adaptive guidance is that it leverages a direct or indirect

adaptive law to estimate the unknown target maneuver and feedback this information to the guidance command to

partially reject the effect of target maneuvers. In [11], the authors proposed a nonlinear adaptive guidance law by

considering the autopilot dynamics to compensate for the unknown target maneuver. The numerical results revealed

that the presented guidance law was better than PNG and sliding mode guidance law. Further extension of [11] was

made in [12] through an observer design to estimate the higher-order LOS rate derivatives for practical applications.

A systematic backstepping in conjunction with adaptive control was suggested in [13] to design robust guidance

law with input saturation constraint. A new fast adaptive guidance law based on the optimal modification was

proposed in [14] to intercept highly maneuverable targets. A novel integrated guidance and control was developed for

maneuvering target interception using adaptive control technique in [15], where a nonlinear observer was designed

to estimate both uncertainties and unknown system states. Recently, adaptive control technique was also leveraged

for target maneuver estimation in guidance law design to cater for impact angle constraint [16], [17].

In the field of control technology, it is well-understood that the concept of PI control, apart from the adaptive

control technique, is a simple and an effective way to attenuate the effect of external disturbances. Based on this

aspect, guidance laws based on PI-control were proposed recently in [18], [19]. The rationale behind this approach

is that if the unknown target acceleration is considered as an external disturbance of the guidance system from the

control perspective, then the integral term in the guidance command can help reduce the sensitivity to the unknown

target acceleration. Recent works regarding PI guidance in [18], [19] revealed that it can significantly improve

the guidance performance for a maneuvering target in terms of miss distance compared to the conventional PNG.

However, the guidance law, proposed in [18], disregards what is the optimal PI guidance law in terms of a meaningful

performance index. Although the authors in [19] have attempted to find out the optimal PI guidance command,

the solution obtained was incomplete: the guidance gains associated with PI terms were not given by explicit form

and should be tuned at each time step. In both PI guidance laws [18], [19], the finite time convergence was not

strictly guaranteed. Moreover, there is no rigorous explanation regarding the working principle of PI guidance

laws. Namely, in these approaches, there still remain some concerns that how the PI guidance laws can reduce the

sensitivity to the unknown target acceleration and what is the physical meaning of the integral command part. In

practice, such information is important in ensuring confidence in the performance and reliability of the guidance

law when implementing it in a real system.

Motivated by the above observations, this paper aims to propose a new PI guidance law based on optimal control

framework while guaranteeing finite time convergence. Additionally, this paper also aims to investigate the physical

meaning of guidance laws based on the PI concept, especially for the interpretation of the integral term. To this end,
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unlike previous approaches [18], [19], which were based on the LOS rate format, the ZEM is selected as the state

variable to be controlled. This selection allows us to formulate the guidance problem simply. In order to exploit the

benefit of PI control, the integral of ZEM is introduced as an augmented state variable in the kinematic equation.

The proposed optimal guidance law is derived by solving a predetermined linear quadratic (LQ) optimal guidance

problem through the Schwarz’s inequality approach [1], [20]. The obtained guidance command is given by a time-

varying PI controller with respect to the ZEM. By introducing the relationship between the ZEM and the LOS rate,

the proposed guidance command can be realized as the conventional PNG with an additional integral term of PNG

command weighted by the time-to-go. The closed-form solution of the proposed guidance law is also derived to

provide better insight of its properties. By using an inverse approach (i.e. directly differentiating the integral term

of the proposed PI guidance law) and utilizing the instantaneous linear time-invariant system concept, it is shown

that the proposed optimal PI guidance law is exactly the same as an instantaneous direct model reference adaptive

guidance law with a specified reference model. In this analysis, the physical meaning of the proposed guidance law

is clearly shown. Also, in a similar way, other PI guidance laws can be analyzed.

The main contributions of this paper are as twofolds. On one hand, in order to reduce the sensitivity against

unknown target maneuver, we propose a new optimal PI guidance law that guarantees finite time convergence. On

the other hand, the physical meaning of the PI guidance laws is analyzed by comparing it with adaptive guidance

laws. This result provides us better understanding of the PI guidance and establishes a theoretical link between

PI guidance and adaptive guidance. Accordingly, it suggests the possibility in designing a new guidance law that

exploits the benefits of both approaches.

The rest of the paper is organized as follows. Sec. II presents some preliminaries and backgrounds of this paper.

Sec. III derives the proposed optimal PI guidance law, followed by the theoretical analysis shown in Sec. IV. Finally,

some numerical simulations and conclusions are offered.

II. PROBLEM FORMULATION

This section states the problem formulation of this paper. Before introducing the system kinematics, we make

three basic assumptions as follows:

Assumption 1. Both thel missile and the target are assumed as ideal point-mass models.

Assumption 2. The engagement occurs in a 2-D plane.

Assumption 3. Both the missile and the target are flying with constant velocity.

Note that these assumptions are widely accepted in guidance law design for tactical missiles: (Assumption 1)

Typical philosophy treats the guidance and control loops separately by placing the guidance kinematics in an

outer-loop, generating guidance commands tracked by an inner dynamic control loop, also known as autopilot.

(Assumption 2) It is assumed that the missile employs an ideal attitude control system that provides roll stabilization

such that the guidance problem can be treated in two separate channels. Accordingly, homing engagement can be
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Fig. 1: The homing engagement geometry and parameter definitions.

treated as a 2-D problem. (Assumption 3) The vehicle’s velocity is generally slowly varying and hence can be

assumed as piece-wise constant.

A. Missile-Target Relative Kinematics

Figure 1 shows the planar homing engagement geometry in this study, where M and T denote the missile and

target, respectively. The notation of (XI , YI) represents the inertial frame. The reference frame (XR, YR) is also

introduced with the purpose of deriving the linearized engagement kinematics. The reference frame is rotated from

the inertial frame by the initial LOS angle σ0, which is the reference angle. The variables σ and γ stand for the

LOS angle and flight path angle, respectively. The variable r represents the relative distance between the missile

and the target. The variable y denote the relative lateral position between the missile and the target perpendicular

to the XR-direction. The variables aM and aT denote the missile and target accelerations normal to their velocity

vectors, respectively. Dually, the variables aMσ and aTσ represent the missile and target accelerations normal to the

LOS vector, respectively. From Fig. 1, the engagement kinematics equation with respect to the reference frame can

be obtained as
ẏ = v

v̇ = aTσ cos (σ − σ0)− aMσ
cos (σ − σ0)

(1)

where v represents the relative lateral velocity between the missile and the target perpendicular to XR-direction.

During the terminal homing phase, the LOS angle does not deviate too much from the initial LOS in general.

Therefore, the LOS angle with respect to the initial LOS (i.e., σ− σ0) is small enough to linearize system Eq. (1)

as
ẏ = v

v̇ = aTσ − aMσ

(2)

The complementary equation that describes the relationship between aMσ
and aM is given by

aMσ
= aM cos (γM − σ) (3)

From Fig. 1, the LOS angle in the linearized engagement kinematics can be approximated as

σ =
y

r
+ σ0 (4)
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Taking the time-derivative of Eq. (4) provides the LOS rate in the linearized engagement kinematics as

σ̇ =
y + vtgo
Vct2go

(5)

where Vc denotes the closing velocity, and tgo the remaining flight time or the so-called time-to-go.

B. Problem Definition

Note that the engagement kinematics shown in Eq. (2) contains the unknown target acceleration. In order to

provide a satisfactory guidance performance for intercepting maneuvering targets, a guidance law should be less

sensitive to the unknown target accelerations. Accordingly, as mentioned in the introduction, the main purpose of

this paper is to devise a new guidance law to reduce the sensitivity against the unknown target maneuver using

PI-control concept. Different from existing PI guidance laws [18], [19], we formulate the aforementioned guidance

problem based on the rigorous optimal control framework in order to consider optimality and finite time convergence

simultaneously.

In guidance law design, it is well-known that the ZEM or the LOS rate should converge to zero in a finite time

in order to guarantee a perfect interception. To this end, we consider the system equation in terms of ZEM because

it makes the derivation of the proposed guidance law simple. In this study, let z be the ZEM and the most widely

used definition of ZEM [1] is adopted. Additionally, in order to avoid dependency of target acceleration information

in a resultant guidance law, the ZEM definition in the absence of target acceleration is used. Accordingly, in the

linearized engagement kinematics, the considered ZEM is given as

z = y + vtgo (6)

The ZEM, defined in Eq. (6), is then leveraged in guidance law design and the unknown target acceleration is

considered as a disturbance for the guidance system to be rejected. From Eqs. (3) and (6), the time derivative of z

is given by

ż = −tgoaMσ + tgoaTσ (7)

As shown in Eq. (7), the unknown target acceleration aTσ appears in the ZEM dynamics. Since aTσ is unknown,

we neglect this disturbance term as

ż = −tgoaMσ (8)

Instead, in order to reduce the sensitivity against the neglected term, we exploit the PI control concept as discussed

before: we introduce the integration of ZEM, i.e.,
∫
zdt, as an augmented state variable. For notation convenience,

we define new variables x1 and x2 as

x1 =

∫
zdt, x2 = z (9)

By using these two variables, the system equations shown in Eqs. (6) and (8) can then be rewritten in a compact

matrix form as  ẋ1

ẋ2

 =

 0 1

0 0

 x1

x2

+

 0

−tgo

 aMσ (10)

March 26, 2018 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. XX 6

where the aMσ is the guidance command to be designed.

Based on the system equation shown in Eq. (10), the proposed guidance law aims to minimize

J =
1

2

∫ tf

t

R (τ) a2
Mσ

(τ) dτ (11)

subject to the terminal constraints

x1 (tf ) = 0, x2 (tf ) = 0 (12)

where tf represents the time of impact, R(t) > 0 the arbitrary weighting function.

The constraint x2 (tf ) = 0 is the zero terminal ZEM, ensuring the interception of the target, and the constraint

x1 (tf ) = 0 is leveraged to minimize the cumulative ZEM so as to reduce the sensitivity to external disturbances.

Note that if we only enforce the constraint x2 (tf ) = 0 in guidance law design, the resulting formulation is the

well-justified PNG law. In the next section, the proposed guidance law will be determined by solving the optimal

guidance problem, described by Eqs. (11) and (12).

III. DERIVATION OF THE PROPOSED OPTIMAL GUIDANCE LAW

In this section, we first derive the proposed guidance law using Schwarz’s inequality approach and then discuss

the implementation issue of the proposed guidance law.

A. Derivation of the Proposed Optimal Guidance

As shown in Eq. (10), the system equation contains the time-varying nonlinear term due to time-to-go (i.e., tgo).

Accordingly, because of this nonlinearity, it is relatively difficult to apply the standard optimal control approach to

find the analytical guidance command. We thereby seek to solve the preceding optimal control problem through

Schwarz’s inequality approach [1]. According to the linear control theory, the general solution of Eq. (10) can be

expressed as

x1 (tf ) = f1 −
∫ tf

t

h1 (τ) aMσ
(τ) dτ

x2 (tf ) = f2 −
∫ tf

t

h2 (τ) aMσ (τ) dτ

(13)

where

f1
∆
= x1 (t) + (tf − t)x2 (t) , h1

∆
= (tf − τ)

2

f2
∆
= x2 (t) , h2

∆
= tf − τ

(14)

Imposing the terminal constraints Eq. (12) on Eq. (13) gives

f1 =

∫ tf

t

h1 (τ) aMσ
(τ) dτ

f2 =

∫ tf

t

h2 (τ) aMσ (τ) dτ

(15)

Obviously, the considered problem is an under-actuation problem, in which two constraints are required to be

satisfied with only one control input. To this end, a Lagrange multiplier λ is introduced to merge these two constraints

as

f1 − λf2 =

∫ tf

t

[h1 (τ)− λh2 (τ)] aMσ
(τ) dτ (16)
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Introducing a slack variable R(t) renders Eq. (16) to

f1 − λf2 =

∫ tf

t

[h1 (τ)− λh2 (τ)]R−1/2 (τ)R−1/2 (τ) aMσ
(τ) dτ (17)

Applying the Schwarz’s inequality to the preceding equation yields

(f1 − λf2)
2

2
∫ tf
t

[h1 (τ)− λh2 (τ)]R−1 (τ) dτ
≤ 1

2

∫ tf

t

R−1 (τ) a2
Mσ

(τ) dτ (18)

which gives a lower bound of the performance index. According to the Schwarz’s inequality, the equality of Eq.

(18) holds if and only if there exists a constant C such that

aMσ
(τ) = C [h1 (τ)− λh2 (τ)]R−1 (τ) (19)

Substitution of Eq. (19) into Eq. (15) results in

f1 = C

∫ tf

t

h1 (τ) [h1 (τ)− λh2 (τ)]R−1 (τ) dτ (20)

Solving Eq. (20) for C gives

C =
f1∫ tf

t
h1 (τ) [h1 (τ)− λh2 (τ)]R−1 (τ) dτ

(21)

Substituting Eq. (21) into Eq. (19) results in

aMσ
(τ) =

f1 [h1 (τ)− λh2 (τ)]R−1 (τ)∫ tf
t
h1 (τ) [h1 (τ)− λh2 (τ)]R−1 (τ) dτ

(22)

which is an incomplete guidance command due to the unknown Lagrange multiplier λ.

From Eq. (18), it can be obtained that the minimum value of the performance index as

J =
(f1 − λf2)

2

2
∫ tf
t

[h1(τ)− λh2(τ)]
2
R−1(τ)dτ

=
(f1 − λf2)

2

2
(
g1 − 2λg12 + λ2g2

) (23)

where

g1 =

∫ tf

t

h2
1(τ)R−1(τ)dτ

g12 =

∫ tf

t

h1(τ)h2(τ)R−1(τ)dτ

g2 =

∫ tf

t

h2
2(τ)R−1(τ)dτ

(24)

In order to find the optimal Lagrange multiplier λ, we impose the condition dJ/dλ = 0 on Eq. (23) and then

one can easily obtain that

λ =
f1g12 − f2g1

f1g2 − f2g12
(25)

Substituting Eq. (25) into Eq. (22) gives the optimal guidance command as

aMσ (τ) =
{f1h1 (τ) g2 − [f2h1 (τ) + f1h2 (τ)] g12 + f2h2(τ)g1}R−1(τ)

g1g2 − g2
12

(26)

Using Eqs. (9), (13), and (14), the optimal guidance command can be formulated in the ZEM format as

aMσ = k1

∫
zdt

t3go
+ k2

z

t2go
(27)
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where

k1 =

(
g2t

5
go − g12t

4
go

g1g2 − g2
12

)
R−1(τ)

k2 =

(
g2t

5
go − 2g12t

4
go + g1t

3
go

g1g2 − g2
12

)
R−1(τ)

(28)

To shape the guidance command, we consider a time-to-go weighting function as R−1(t) = tNgo with N ≥ 0

[1], [20], [21]. Accordingly, if the value of N is chosen as N = 0, the resulting optimal guidance law is for

energy consumption minimization. Additionally, we can safely predict that the designed guidance law with N > 0

guarantees a small terminal acceleration command since the weighting function with N > 0 becomes infinite as tgo

approaches 0. This property provides the missile with guaranteed operational margins to cope with the undesired

disturbances when the missile approaches the target. Obviously, one can utilize other weighting functions to further

shape or distribute the guidance command during the terminal homing phase. Substituting R−1(t) = tNgo into Eq.

(28) gives

k1 = (N + 4) (N + 5) , k2 = 2 (N + 4) (29)

In this case, the proposed guidance command can then be obtained as

aMσ
= (N + 4) (N + 5)

∫
zdt

t3go
+ 2 (N + 4)

z

t2go
(30)

Obviously, the term 2 (N + 4) z/t2go is the well-known PNG with a navigation ratio 2 (N + 4), whereas the term

(N + 4) (N + 5)
∫
zdt/t3go is the integration of the ZEM to reduce the sensitivity to the unknown disturbances,

e.g., target maneuvers. This property is totally different from previous guidance laws, where the information on the

target maneuver is required for the implementation, and will be further analyzed in the following section.

B. Implementation Issue

For the implementation, it would be better to express the proposed guidance law in terms of the measurements

of on-board seekers. From Eqs. (5) and (6), we can determine the kinematics relationship between the LOS rate

and the ZEM as

z = σ̇Vct
2
go (31)

Substituting Eq. (31) into Eq. (30) gives the explicit guidance command as

aMσ = (N + 4) (N + 5)

∫ (
σ̇Vct

2
go

)
dt

t3go
+ 2 (N + 4)Vcσ̇ (32)

Note that this guidance command is given by the function of closing velocity, LOS rate, and time-to-go.

Therefore, the proposed guidance law requires only one additional information, e.g., the time-to-go, compared

to the conventional PNG. This means that the proposed guidance law is also easy for practical implementation. For

the implementation, the closing velocity and the LOS rate can be obtained from on-board seekers with a dedicated

homing filter. In practice, the time-to-go information can be determined by using the conventional approximation

method as

tgo ≈ r/Vc (33)
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Note that although the time-to-go estimation, shown in Eq. (33), tends to be smaller than the true time-to-go

during the initial flight period, especially for large heading angle scenarios [21]–[24], this time-to-go estimation

error gradually converges to zero as the missile approaches the target. Also, in the proposed guidance law, the time-

to-go information is only used for computing the integral term, which is utilized to reduce the sensitivity against the

unknown target acceleration. This implies that the time-to-go estimation error may degrade the robustness against

the unknown target acceleration initially, but the degradation of final intercept accuracy due to this time-to-go

estimation error is negligible in practice.

IV. ANALYSIS OF THE PROPOSED OPTIMAL GUIDANCE LAW

In this section, we will analyze the properties of the proposed guidance law. First, we discuss the ZEM dynamics

and the closed-form solution of the guidance command to provide better understanding of the proposed guidance

law. Then, the working principle of the proposed guidance law is investigated by comparing it with the adaptive

guidance law.

A. Behavior of the ZEM Dynamics

Substituting Eq. (30) into Eq. (7) gives the second-order ZEM dynamics as

ż + k2
z

tgo
+ k1

∫
zdt

t2go
= tgoaTσ (34)

The left-hand side of Eq. (34) represents the characteristic equation of the ZEM dynamics under the proposed

guidance law. Additionally, the right-hand side of Eq. (34) is the external forcing term to the ZEM dynamics. From

Eq. (34), we can determine the natural frequency ω and damping ratio ζ of the ZEM dynamics as

ω =

√
k1

tgo
, ζ =

k2

2
√
k1

(35)

which reveals that √
k1

tf
≤ ω <∞ (36)

The preceding inequality shows that the bandwidth of the guidance loop increases to infinite under the proposed

guidance law when the interceptor approaches the target. Also, we can readily observe that the damping ratio is

proportional to the value of k2, which is the guidance gain of the PNG term.

B. Closed-Form Solution of the Proposed Guidance Law

To further analyze the characteristics of the ZEM, we seek to find its closed-form solution. It can be noted that

Eq. (34) is a second-order Cauchy-Euler differential equation with respect to tgo. By considering
∫
zdt = ctngo as a

fundamental solution of Eq. (34), where c and n are two nonzero constants, one can readily derive the homogeneous

solution as ∫
zdt = c1t

N+5
go + c2t

N+4
go (37)

where c1, c2 are two constants governed by the initial conditions.
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Additionally, by assuming aTσ is constant and considering
∫
zdt = pt3go as a particular solution of Eq. (34),

where p is a nonzero constant, one can obtain the particular solution as∫
zdt =

aTσ
(N + 1) (N + 2)

t3go (38)

Then, combining Eqs. (37) and (38) gives the closed-form solution of the integral ZEM as∫
zdt = c1t

N+5
go + c2t

N+4
go +

aTσ
(N + 1) (N + 2)

t3go (39)

Applying the initial boundary conditions (i.e., z (0) = z0 and
∫
zdt = 0) on the generic solution Eq. (39)

generates

c1 = −z0t
−N−4
f +

aTσ
N + 2

t−N−2
f (40)

c2 = z0t
−N−3
f − aTσ

N + 1
t−N−1
f (41)

Differentiating Eq. (39) with respect to time gives the closed-form ZEM as

z = −c1 (N + 5) tN+4
go − c2 (N + 4) tN+3

go − 3aTσ
(N + 1) (N + 2)

t2go (42)

which clearly reveals that the ZEM can converge to zero as the missile approaches the target, tgo → 0, even in the

presence of unknown target accelerations. Therefore, unlike to previous PI guidance laws [18], [19], the proposed

guidance law can rigorously guarantee the finite time convergence. Also, from Eq. (42), we can readily observe

that the effect of unknown target acceleration on the ZEM can be mitigated as N increases.

Substituting Eq. (39) and Eq. (42) into Eq. (30) results in

aMσ
= −c1 (N + 4) (N + 5) tN+2

go − c2 (N + 3) (N + 4) tN+1
go +

(N + 4) (N − 1)

(N + 1) (N + 2)
aTσ (43)

which shows that the guidance command converges to a specific value at the time of impact once as

aMσ
(tf ) =

(N + 4) (N − 1)

(N + 1) (N + 2)
aTσ (44)

As shown in Eq. (44), the magnitude of the final guidance command is governed by N and the magnitude of

target acceleration. Therefore, we can readily predict that the proposed guidance command converges to zero under

N ≥ 0 for a non-maneuvering target (i.e., aTσ = 0). Additionally, taking the derivative of aMσ
with respect to

time, one can imply that

ȧMσ
= c1 (N + 2) (N + 4) (N + 5) tN+1

go + c2 (N + 1) (N + 3) (N + 4) tNgo (45)

Solving ȧMσ = 0 for tgo gives

tgo,m = −c2 (N + 1) (N + 3)

c1 (N + 2) (N + 5)
(46)

which reveals that the guidance command takes its maximum magnitude either at the boundary points or tgo = tgo,m.

This information is helpful in finding the required acceleration demand with physical constraints.
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C. Sensitivity to Unknown Target Acceleration

This subsection reveals how the proposed guidance law can be used to reduce the sensitivity against unknown

target maneuvers (i.e., the working principle of the proposed guidance law). Especially, the physical meaning of

the integral term in the guidance command is analyzed by introducing an alternative form of the proposed guidance

law. To this end, substituting Eq. (30) into Eq. (7) gives the closed-loop ZEM dynamics as

ż = −tgo
(
k2

z

t2go
+ k1

∫
zdt

t3go

)
+ tgoaTσ (47)

For notation simplicity, let us define the equivalent proportional gain kP , the equivalent integral gain kI , and the

control input gain b, as

kP =
k2

t2go
, kI =

k1

t3go
, b = tgo (48)

Then, by using these variables, the closed-loop ZEM dynamics shown in Eq. (47) can be rewritten as

ż = −b
(
kP z + kI

∫
zdt

)
+ baTσ (49)

Since the gains kP , kI and b are time-varying due to the time-to-go, we utilize the widely-accepted instantaneous

linear time-invariant system concept for analysis. In other words, we assume that kP , kI and b are piece-wise

constants. Note that this assumption is widely-used in guidance loop analysis. Next, let us define a new variable as

âTσ = kI

∫
zdt (50)

Then, the ZEM dynamics (49) can be rearranged using this variable as

ż = −bkP z − bâTσ + baTσ (51)

Additionally, by the instantaneous linear time-invariant system concept, the time-derivation of Eq. (50) can be

determined as

˙̂aTσ = kIz (52)

In the guidance problem, since zero ZEM will lead to a perfect interception, the desired value of the ZEM can

be written as zd = 0. Then, by using a slack variable zd, Eq. (52) can be rewritten as

˙̂aTσ = kI (z − zd) (53)

From Eq. (53), the term (z − zd) can be considered as the ZEM tracking error between the current value and the

desired value. Therefore, from Eqs. (51) and (53), one can clearly observe that the proposed optimal PI guidance

law can be interpreted as an instantaneous direct model reference adaptive guidance law. In the proposed guidance

law, zd = 0 is considered as the reference model and kI can be regarded as the adaptive gain. Compared to the

adaptive guidance law, the term, corresponding to the adaptive gain, is given by a time-varying function of the

time-to-go in the proposed guidance law. Based on this observation, we can readily predict that the integral term in

the optimal PI guidance law plays the same role as the adaptive/update law in adaptive guidance law. This is why

the PI guidance law can be utilized to attenuate the effect of the unknown target maneuver: the integral term, acting

as an instantaneous direct adaptive law, estimates the unknown target maneuver online and the estimated signal is
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feedback to the guidance command to attenuate the effect of target maneuvers. In conclusion, the proposed optimal

PI guidance can be regarded as a special case of adaptive guidance with a specified reference model.

Hereafter, we discuss the boundedness of the closed-loop guidance system. We define ãTσ = aTσ − âTσ as the

estimation error of the adaptive signal and consider the following Lyapunov function candidate

Ω = z2 +
b

kI
ã2
Tσ (54)

Assume that the target maneuver is slowly-varying with respect to time, i.e., ȧTσ = 0, differentiating Ω with

respect to time yields

Ω̇ = 2zż +
2b

kI
ãTσ ˙̃aTσ

= 2z (−bkP z + bãTσ )− 2b

kI
ãTσ

˙̂aTσ

= 2z (−bkP z + bãTσ )− 2bãTσz

= −2bkP z
2

≤ 0

(55)

where the fact bkP > 0 is used in the derivation. The preceding inequality proves that the ZEM and the target

maneuver estimation errors are uniformly ultimately bounded. Application of Barbalat’s lemma [25] reveals that

the ZEM can converge to zero even in the presence of target maneuvers. From the above Lyapunov analysis, we

notice that the ZEM can be upper bounded by

‖z‖ ≤
√

Ω ≤
√

Ω (0) =

√
z2 (0) +

b

kI
ã2
Tσ (0) (56)

This bound reveals that the effect of target maneuver on ZEM can be reduced by increasing the integral gain

kI . This coincides with the property of adaptive gain in adaptive control. Furthermore, since the integral gain kI

increases as time goes in the proposed guidance law, fast adaptation is guaranteed as the missile approaches the

target. In the analysis, the results of sensitivity to target maneuvers under the proposed optimal PI guidance law

are derived based on the instantaneous linear time-invariant system concept for the purpose of analysis. Therefore,

the presented results may not be exactly the same as the practical ones, but the tendency of the presented results

is still valid.

The findings in this subsection have potential importance. First, the results give us better understanding of how

PI guidance law works in maneuvering target interception through the integral action. In practice, such information

is important in ensuring confidence in the performance and reliability of the guidance law when implementing it

in a real system. Second, the results can also provide a point of connection between the PI guidance and adaptive

guidance. This allows us to have better understanding and utilization of both guidance laws. For example, we can

design new PI guidance laws that provide better performance through appropriate choice of the reference model,

like the approaches in modified adaptive control.

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed optimal PI guidance law is validated through nonlinear numerical

simulations. We first investigate the fundamental characteristics of the proposed guidance law. Then, the capability
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TABLE I: Initial conditions for homing engagement.

Parameters Values

Missile initial position, (xM (0), yM (0)) (200m, 3200m)

Missile flight velocity, VM 1000m/s

Missile initial flight path angle, γM (0) 0◦

Target initial position, (xT (0), yT (0)) (1000m, 3100m)

Target velocity, VT 600m/s

Target initial flight path angle, γT (0) 30◦

TABLE II: Control effort for various guidance gains.

N = 0 N = 1 N = 2 N = 3

Control effort 23044 24862 27337 29576

of reducing the sensitivity to the unknown target maneuver is tested and compared with the benchmark PNG law and

APNG. Finally, the proposed optimal PI guidance is compared with other PI guidance laws. In all simulations, we

consider a fast moving target interception scenario. The initial conditions for the considered scenario are summarized

in Table I.

A. Characteristics of the Proposed Guidance Law

This simulation in this subsection investigates the basic characteristics of the proposed guidance law with various

guidance gains N = 0, 1, 2, 3. For this purpose, we assume that the target performs no evasive maneuvers in this

case. Fig. 2 compares the patterns of state variables with various guidance gains. From this figure, it can be noted

that the ZEM can converge to zero at the time of impact and therefore successful interception is guaranteed. This

result matches with the analytical results of the closed-form solution. The results in Fig. 2 also clearly reveal that the

proposed guidance law with larger guidance gain N leads to faster convergence speed of the ZEM. The response of

the integral ZEM
∫
zdt with various guidance gains is presented in Fig. 3, which shows that the terminal constraint∫ tf

0
zdt = 0 is satisfied by the proposed guidance law. Furthermore, Fig. 3 also reveals that the variation of the ZEM

can be reduced by increasing the guidance gain N , leading to the improved robustness against external disturbances.

Figure 4 provides the required guidance commands for various guidance gains. Due to physical limits, we enforce

hard constraint |aM | ≤ 400m/s2 in the simulations. The corresponding control efforts, defined as
∫ tf

0
a2
M (τ) dτ , for

various guidance gains are summarized in Table II. One can note from Fig. 3 that the proposed guidance law shown

with N ≥ 0 guarantees zero guidance command at the time of impact for a non-maneuvering target as expected in

the closed-form solution. However, increasing the guidance gain N requires higher acceleration command during

the initial flight period, thereby generating more control effort, as shown in Table II.
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Fig. 2: ZEM with various guidance gains.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Flight Time (s)

0

2

4

6

8

10

12

14

16

18

In
te

gr
al

 Z
E

M

N = 0
N = 1
N = 2
N = 3

Fig. 3: Integral ZEM with various guidance gains.
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B. Reduced Sensitivity to Unknown Target Maneuvers

The simulation in this subsection investigates the robustness against unknown target maneuvers under the proposed

optimal PI guidance law. To justify the robustness of the proposed guidance scheme, two different cases of target

maneuvers are considered: (1) aT = 300m/s2; and (2) aT = −300m/s2. For better illustration, we compare the

proposed guidance law with the benchmark PNG and APNG. The acceleration command of the PNG law is given

by

aMσ
= (N + 3)Vcσ̇ (57)

which is proved to be an optimal guidance law that minimizes the performance index

J =

∫ tf

t

a2
Mσ

(τ)

(tf − τ)
N
dτ (58)

The acceleration command of the APNG law is defined as [1]

aMσ
= (N + 3)Vcσ̇ +

(N + 3)

2
aTσ (59)
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TABLE III: Miss distance and control effort of different guidance laws.

Scenario PNG5 PNG10 Proposed PI APNG

Miss distance
Case1 2.018m 1.114m 0.743m 0.651m

Case2 30.669m 1.554m 0.914m 0.663m

Control effort
Case 1 125582 92221 84605 83511

Case 2 200028 190457 151577 50864

In the simulations, two different PNG laws are utilized: (1) PNG5 with N = 2; and (2) PNG10 with N = 7.

The guidance gain of the proposed guidance law and APNG is chosen as N = 2. Note that the proposed guidance

law with N = 2 minimizes the same performance index as PNG5 and APNG with N = 2. From (59), note that

the implementation of the APNG law requires the information on target maneuver, which is an ideal case.

The interception trajectories for cases 1 and 2, obtained from these four different guidance laws, are presented

in Fig. 5 (a) and (b). The recorded miss distance and control effort are summarized in Table III. Fig. 5 (a) and (b)

show that both PNG10 and the proposed optimal PI guidance law successfully intercept the target in both cases with

guaranteed miss distance, whereas the missile guided by PNG5 misses the target in case 2. Moreover, the recorded

miss distance, provided in Table III, reveals that the proposed guidance law exhibits better performance in terms of

the interception accuracy. The responses of ZEM for cases 1 and 2 under different guidance laws are presented in

Fig. 5 (c) and (d). From these two figures, it can be noted that the ZEM under the proposed optimal PI guidance

law as well as the PNG10 law can converge to zero at the time of impact to guarantee successful interception and

has a divergent pattern under the PNG5 law for case 2. Fig. 5 (e) and (f) provide the acceleration command of

different guidance laws for both cases. Compared to the PNG10 law, the proposed guidance law requires relatively

higher acceleration command at the initial flight phase but the demand command converges to a low level when

the interceptor approaches the target. Furthermore, the recorded control efforts, given in Table III, reveal that the

proposed optimal PI guidance law requires less energy consumption than the other two laws in the two considered

scenarios. From the results, shown in Table III, one can note that APNG achieves the best performance in terms of

miss distance and control effort. However, APNG is an ideal law that is limited to implement in real applications

due to the requirement of accurate target maneuver information. Compared to two PNG laws, the performance of

the proposed optimal PI guidance law is comparable to that of the APNG and it is not required target maneuver

information, which demonstrates the superiority of the proposed approach.

C. Comparison with Previous PI Guidance Laws

To further show the superiority and gain insight of the proposed guidance law, comparisons with previous PI

guidance laws [18], [19] are performed in a same scenario in this subsection. In [18], the PI guidance was intuitively

formulated using PI-control concept as

aMσ
= NpVcσ̇ +NIVcσ (60)

where Np and NI are the user-defined constant guidance gains.
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(e) Acceleration command of case 1
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Fig. 5: Comparison results of different guidance laws.
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Also, the authors in [19] further developed an optimal PI guidance law based on the kinematics ignoring the

target maneuver term as

ẋ1 = x2

ẋ2 = −2ṙ

r
x2 −

1

r
aMσ

(61)

where x1 = σ and x2 = σ̇. The guidance command proposed in [19] is given by

aMσ
= KP (t) σ̇ +KI (t)σ (62)

where the time-varying gains KP (t) and KI (t) are obtained by solving a infinite time linear quadratic regulation

(LQR) problem at each step with the cost function

J =

∫ ∞
0

(
xTQx+ aTMσ

RaMσ

)
dt (63)

where Q and R are the user-defined positive definite matrices.

It follows from Eq. (60) and Eq. (62) that PI guidance law, shown in Eq. (60), is a special form of the optimal

PI guidance law shown in Eq. (62). Therefore, we only compare the proposed PI guidance law with the optimal

PI guidance law Eq. (62). It is known that, in LQR control, increasing the value of the diagonal elements of Q

increases the penalty on the system states while increasing R helps to reduce the control effort. Therefore, we

utilize different Q and R for the implementation of guidance law Eq. (62) to demonstrate the effectiveness of the

proposed approach: (1) PI guidance 1: Q = 104I , R = 1; (2) PI guidance 2: Q = 106I , R = 1; and (3) PI guidance

3: Q = 106I , R = 10.

The simulations results, including interception trajectory, ZEM profile and guidance command with aT =

−300m/s2 are presented in Figs. 6-8. The recorded miss distance and control effort are summarized in Table

IV. From these results, it is clear that both PI guidance law 2 and the proposed guidance law can intercept the

target successfully while other two PI guidance laws miss the target due to limited maneuverability of the interceptor.

Additionally, the proposed guidance law can reduce the required acceleration command when the missile approaches

the target and the control effort during the entire engagement. Since kinematics Eq. (61) is nonlinear and time-

varying, it is intractable to derive a closed-form solution for KP (t) and KI (t). Therefore, implementing optimal

PI guidance law Eq. (62) requires solving a LQR problem at every time instant, which is time-consuming for the

onboard flight computer. As a comparison, the proposed guidance law is given in an explicit form of the measured

information and thus is more suitable for practical application. Another issue of the optimal PI guidance law Eq.

(62), as stated in [19], is that there is no theoretical way to choose proper Q and R. In contrary, the guidance

gain N of the proposed PI guidance law can be easily selected to achieve desired convergence rate of the ZEM by

utilizing the closed-form solution, as we discussed in the previous section.

VI. CONCLUSIONS

This paper proposes a novel optimal guidance law using PI control concept to reduce the sensitivity to the

unknown target maneuvers. We first augment the integral ZEM as a new system state and formulate a finite time

regulation problem for the augmented system. Based on this result, a time-to-go weighted optimal guidance law is
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TABLE IV: Miss distance and control effort of different guidance laws.

PI Guidance 1 PI Guidance 2 PI Guidance 3 Proposed PI

Miss distance 27.127m 0.981m 17.003m 0.914m

Control effort 191581 167722 180454 151577
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Fig. 6: The interception trajectory of different guidance

laws.
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Fig. 7: The ZEM with various guidance laws.

derived through the Schwarz’s inequality approach. The final guidance command is shown to be a PI form with

time-varying gains in the ZEM format, where the proportional term is the well-known PNG to nullify the ZEM and

the integral term is an additional guidance command to reduce the sensitivity against the disturbance (i.e., unknown

target maneuver). The closed-form solution and the closed-loop ZEM dynamics under the proposed guidance law

are determined to investigate the properties of the proposed guidance law. Additionally, by introducing an alternative

form of the guidance command, the working principle of the proposed optimal PI guidance law is analyzed and

the results reveal that the proposed guidance law is exactly the same as an instantaneous model reference adaptive

guidance law with a specified reference model. Future work includes extending the proposed guidance approach to

impact angle control.
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