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In this work, a multi-objective aeroassisted trajectory optimization problem with

mission priority constraints is constructed and studied. To effectively embed the

priority requirements into the optimization model, a specific transformation technique

is applied and the original problem is then transcribed to a single-objective formula-

tion. The resulting single objective programming model is solved via an evolutionary

optimization algorithm. Such a design is unlike most traditional approaches, where

the nondominated sorting procedure is required to be performed to rank all the

objectives. Moreover, in order to enhance the local search ability of the optimization

process, a hybrid gradient-based operator is introduced. Simulation results indicate

that the proposed design can produce feasible and high-quality flight trajectories.

Comparative simulations with other typical methods were also performed and the

results show that the proposed approach can achieve a better performance in terms of

satisfying the pre-specified priority requirements.
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I. Introduction

The design of flight vehicle optimal trajectory is among the most important and difficult compo-

nents of modern guidance and control systems [1–3]. Due to the uncertainties in the flight conditions

and multiple constraints, it is still difficult to design a robust and efficient algorithm such that the

vehicle can fly along an optimum path and fulfill different mission requirements [4, 5]. To effective-

ly solve the problem, techniques based on optimal control theory are commonly used and various

mission scenarios have been studied during the past decades [4]. For example, Fahroo and Ross [6]

developed a Chebyshev pseudospectral method for solving general trajectory optimization problems

with control and state constraints. In their follow-up work [7], a pseudospectral knotting technique

was constructed in order to solve nonsmooth optimal control problems. Liu et al. [8] applied convex

programming methods to solve trajectory optimization problems in flight entry phase. However,

all reported investigations target a single objective. In many practical spacecraft guidance sys-

tems, multiple mission performance indices and different priority requirements must frequently be

considered during the trajectory planning phase. This brings the development of multi-objective

trajectory optimization techniques.

The problem addressed in this research is an optimal flight path design for a constrained multi-

objective aeroassisted vehicle trajectory planning problem, where the objective functions are speci-

fied with different priority requirements. These type of problems are becoming popular since multiple

practical requirements can be taken into account during the design phase. For instance, in [9] the

authors applied a Multi-Objective Evolutionary Algorithm (MOEA) to solve a two-objective reen-

try problem. Although the objective could be optimized based on the definition of pareto-optimal,

the computational burden caused by the optimization process was high. Gao et al. [10] calculated

the optimal control for a multi-objective spacecraft rendezvous problem. In their work, the multi-

objective optimal control problem was transcribed into a convex optimization problem subject to

linear matrix inequality constraints. However, the formulation can hardly be extended to solve the

multi-objective optimal control problems with simultaneous consideration of priority requirements.

Due to these issues, an extended optimization approach, named Fuzzy Goal Programming-based

Gradient Hybrid Genetic Algorithm (FGP-GHGA), is introduced and applied in this paper. In or-

2



der to construct the priority constraints explicitly, an FGP technique [11, 12] is firstly adopt to

fuzzify the objective functions and reformulate the problem. Following that, an enhanced evolu-

tionary optimization algorithm is used to calculate the optimal control sequences. The FGP-GHGA

approach designed in this paper does not relay on the designer’s physical understanding of the prob-

lem. Another important feature of the proposed method is that it unifies the mission objectives,

constraints and preemptive priorities in one optimization formulation such that the optimization

process can then be simplified. Compared with traditional MOEAs, the proposed approach will not

apply the nondominant principle, which implies that the computational complexity can be reduced

significantly. Furthermore, it can optimize different objectives as well as meeting the designer’s

preference.

The motivation for the use of evolutionary optimization algorithms relies on their ability in

dealing with local optimal solution and control constraints, that naturally arise in nonlinear optimal

control problems [1, 4, 5]. Contributions made to apply evolutionary optimization techniques can

be found in literatures. For instance, a constrained space plane reentry problem was solved in

[13], wherein a Genetic Algorithm (GA) was applied to generate the optimal reentry trajectories.

Similarly, in [14] a low-thrust interplanetary trajectory problem was formulated and solved via a

modified GA. Pontani and Conway [15] investigated an optimal finite-thrust rendezvous trajectory

problem. In their work, a Particle Swarm Optimization (PSO) algorithm was applied to solve the

rendezvous optimal control problem. The main advantage with evolutionary optimization methods is

that it is simple to understand and easy to apply. Besides, it is more likely than traditional gradient-

based methods to locate the global optimum solution. Therefore, in this study, an enhanced GA is

introduced to optimize the transcribed optimization model. Compared with traditional GA, it uses

a hybrid evolutionary strategy and tends to have better local searching ability.

It is worth noting that in [16], the authors designed a multi-objective algorithm, namely In-

teractive Fuzzy Physical Programming (IFPP) method, to solve the multi-objective trajectory op-

timization problem. This method was analyzed as an effective tool to drive different objectives

into the preference regions. However, its optimization model is largely depended on the designer’s

knowledge of the problem, and it tends to be sensitive with respect to the aspiration levels and the
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preference regions. When priority constraints are taken into account, the IFPP approach might not

be as effective as the one developed in this study. This will be further discussed in the simulation

section of this paper.

II. Basic Formulation of MOPs

Some mathematical preliminaries are necessary to facilitate the presentation of the main results.

A typical Multi-objective Optimization Problem (MOP) can be expressed as follows [17]:

Find design variables x = [x1, x2, ..., xn]

To minimize objective functions f(x) = [f1, f2, ..., fm]

subject to xmin ≤ x ≤ xmax

hi(x) = 0 i = 1, 2, ..., E

gj(x) ≤ 0 j = 1, 2, ..., I

(1)

where n and m are the number of decision variables and objectives (e.g. x ∈ <n, f ∈ <m). E and I

are the number of equality constraints h(x) = [h1(x), h2(x), ..., hE(x)]T and inequality constraints

g(x) = [g1(x), g2(x), ..., gI(x)]T , respectively. xmin and xmax stand for the lower and upper bounds

of the decision variables.

In most practical MOPs, it is hard for the designer to find a solution that can optimize all

the objective functions, since some of the objectives are usually contradicting. Therefore, the

goal of MOPs is to find a good compromise between different objectives (performance indices).

This leads to the definition of pareto-optimal solution. A solution that is pareto-optimal means

no other solution can be found in the current search space that can improve all the performance

indices. Currently, most of the existing studies are focusing on the development or implementation

of MOEA for general MOPs [18–22]. This type of technique is effective for analyzing the relations

between objectives and generate the pareto front. However, since all the objectives are involved

in the optimization iteration and rank sorting process, the computational complexity can be high.

Moreover, if the priority factors are required to be taken into account, the MOEA-based approach

might need to relay on the interactive process, which is still a challenging problem for the decision

makers.

Due to these drawbacks and challenges, in this paper a transcription strategy is proposed and
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applied to handle the mission-dependent priority constraints and reduce the computational com-

plexity. This strategy is based on the FGP theory and the original multi-objective formulation is

reformulated to a Single-Objective Problem (SOP). Compared with MOEA strategies studied in

[18, 19], the present method has the capability to handle the priority requirement and does not rely

on the time-consuming rank sorting process. It should be noted that another typical transcription

technique that has been widely used is the weighted sum method. However, as analyzed in [16],

weighted sum algorithm might not reflect the true compromise between different objectives (e.g. a

higher weight value may not produce a higher satisfaction degree). Compared with the weighted-

sum approach, the FGP optimization model has the capability to directly reflect the magnitude of

goal attainment with respect to different objectives. The transcribed programming model is then

solved via an evolutionary optimization technique, which will be detailed in the next section.

III. FGP-based Gradient Hybrid Genetic Algorithm

Considering the preemptive priorities associated with each objective function, the MOP model

to be analyzed is given by:

Find design variables x = [x1, x2, ..., xn]

To minimize objective functions f(x) = [f1, f2, ..., fm]

subject to xmin ≤ x ≤ xmax

x ∈ F , f(x) ∈P

(2)

where F is defined as F = {x|h(x) = 0, g(x) ≤ 0}. P = {f(x)|P (fi(x)) ≥ P (fj(x))}, in which P (·)

represents priority factors of the different objectives. The inequality P (fi(x)) ≥ P (fj(x)) means

the priority of the ith objective is higher than the jth objective.

In order to deal with the pre-specified priority constraints, the fuzzy relations are firstly in-

troduced. Generally, there are three typical fuzzy relations (e.g. “�”, “�” and “'”) between the

objectives fi and their goal values f∗i [11, 12]. The fuzzy relation “�” denotes the requirements

of fuzzy objective should be less or equal to the goal value (expected value), and the membership
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function associated with it can be given by:

µfi(x) =


0, fi(x) ≥ fmaxi ;

1− fi(x)−f∗
i

fmax
i
−f∗

i
, f∗i ≤ fi(x) ≤ fmaxi ;

1, fi(x) ≤ f∗i .

(3)

where (f∗i , f
max
i ) is the tolerant region of the objective fi. Similarly, for “�” and “'”, the member-

ship functions are given by Eq.(4) and Eq.(5), respectively.

µfi(x) =


0, fi(x) ≤ fmini ;

1− f∗
i −fi(x)

f∗
i
−fmin

i

, fmini ≤ fi(x) ≤ f∗i ;

1, fi(x) ≥ f∗i .

(4)

µfi(x) =



0, fi(x) ≤ fmini ;

1− f∗
i −fi(x)

f∗
i
−fmin

i

, fmini ≤ fi(x) ≤ f∗i ;

1, fi(x) = f∗i ;

1− fi(x)−f∗
i

fmax
i
−f∗

i
, f∗i ≤ fi(x) ≤ fmaxi ;

0, fi(x) ≥ fmaxi .

(5)

In Eqs.(3)-(5), the value of f∗i (goal value) can be calculated by solving the corresponding single

objective optimization problem. For example,

f∗i = arg min
x∈F

fi, subject to xmin ≤ x ≤ xmax (6)

The SOP formulation shown in Eq.(6) is solved for i = 1, 2, ...,m. Assuming that x∗i is the

optimal solution for the ith SOP, the lower and upper limits of the objective fi (e.g. fmini

and fmaxi ) can be obtained by performing fmini = min(f1(x∗i ), f2(x∗i ), ..., fm(x∗i )) and fmaxi =

max(f1(x∗i ), f2(x∗i ), ..., fm(x∗i )), respectively. These values are obtained using the same approach

stated in [23]. Hence µ can be used as the satisfactory degree of the objectives and its value can

directly reflect the magnitude of achieving the goal value.

Following the introduction for the definition of satisfactory degree, by constructing several

inequalities the priority constraints arising from the MOPs can be obtained. Since it can be expected

that an objective with a high priority has larger µ value, the original priority constraint (e.g.
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P (fi(x)) ≥ P (fj(x))) can then be transcribed to:

µfj (x)− µfi(x) ≤ 0 (7)

where i, j = 1, 2, ...,m, i 6= j.

A. FGP Optimization Formulation

The FGP model can be constructed based on the fuzzy relationships, satisfactory degree and

priority constraints. Defining the deviation parameters pi = fi(x)− f∗i ≥ 0 and qi = f∗i − fi(x) ≥ 0,

the membership functions of fuzzy relations � and � become µfi(x) = 1 − pi
fmax
i
−f∗

i
and µfi(x) =

1− qi
f∗
i
−fmin

i

, respectively. Suppose the objectives have the following fuzzy relationships:

fi(x) � f∗i , i = 1, 2, ..., k1

fj(x) � f∗j , j = k1 + 1, k1 + 2, ..., k2

fk(x) ' f∗k , k = k2 + 1, k2 + 2, ...,m

(8)

A general Goal Programming (GP) optimization formulation can firstly be constructed as follows

[11, 24]:

Minimize J =
∑k1
i=1(pi + qi) +

∑k2
j=k1+1(pj + qj) +

∑m
k=k2+1(pk + qk)

subject to fi(x) + pi − qi = f∗i , i = 1, 2, ..., k1

fj(x) + pj − qj = f∗j , j = k1, k1 + 1, ..., k2

fk(x) + pk − qk = f∗k , k = k2, k2 + 1, ...,m

pi, pj , pk, qi, qj , qk ≥ 0, pi · qi = 0, pj · qj = 0, pk · qk = 0

xmin ≤ x ≤ xmax, x ∈ F

(9)

Without loss of generality, let us assume that the priority of the objective fi(x) is higher than fj(x)

and is lower than fk. By applying Eqs.(3)-(7) and the general GP model (9), the original MOP
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shown in Eq.(2) is then reformulated to an FGP formulation given by Eq.(10).

Minimize J = 1
m [
∑k1
i=1

pi
fmax
i
−f∗

i
+
∑k2
j=k1+1

qj
f∗
i
−fmin

i

+
∑m
k=k2+1( qk

f∗
k
−fmin

k

+ pk
fmax
k
−f∗

k
)] + β

subject to fi(x) + pi − qi = f∗i , i = 1, 2, ..., k1

fj(x) + pj − qj = f∗j , j = k1, k1 + 1, ..., k2

fk(x) + pk − qk = f∗k , k = k2, k2 + 1, ...,m

xmin ≤ x ≤ xmax, x ∈ F

pi ≤ f∗i − fmini , pj ≤ f∗j − fminj , pk ≤ f∗k − fmink

qi ≤ fmaxi − f∗i , qj ≤ fmaxj − f∗j , qk ≤ fmaxk − f∗k

pi, pj , pk, qi, qj , qk ≥ 0

pi · qi = 0, pj · qj = 0, pk · qk = 0

pi
fmax
i
−f∗

i
− qj

f∗
i
−fmin

i

≤ β

[ qk
f∗
k
−fmin

k

+ pk
fmax
k
−f∗

k
]− pi

fmax
i
−f∗

i
≤ β

(10)

where β ∈ [−1, 0]. After introducing the deviation parameters, the dimension of the optimization

problem has increased to include the p and q. The last two inequalities in Eq.(10) are the explicit

expressions of Eq.(7) (priority constraints). The first term in the modified objective function J can

be treated as the deviations of different objectives to their desired values. Minimizing this term is

equivalent to maximizing the satisfactory degree for each objective. It is important to remark that

the term β entailing in the objective and the last two priority constraints is designed for the case

when it is desired to have a “much higher” relationship. For example, the priority of the objective

fi(x) is much higher than fj(x), which can be expressed as P (fi(x)) � P (fj(x)). Therefore,

minimizing β can result in a larger deviation regarding the satisfactory degree between fi and fj . If

there is no such specific requirement, this parameter can be removed from the programming model

or set to zero.

One main advantage of using the transformed model given by Eq.(10) is that the pre-specified

priority requirements can be involved in the optimization process explicitly. Furthermore, if Evo-

lutionary Algorithms (EA) are applied to solve the optimization model, the time-consuming non-

dominant sorting procedure [19] is no longer necessary since the original MOP is transformed to
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an extended SOP formulation. This can reduce the worst-case computational complexity of the

algorithm significantly (this will be further analyzed in the simulation section of this paper).

B. Gradient-based Hybrid Genetic Algorithm

Following the construction of the optimization model, the next step is to find an effective op-

timization algorithm. In recent years, numerous algorithms have been proposed for solving the

general nonlinear optimization problems. There are two major classes of optimization algorithms:

the gradient-based techniques and heuristic methods. A detailed introduction including the ad-

vantages and disadvantages of these algorithms can be found in [4, 25]. This paper applies an

augmented genetic algorithm to solve the FGP model given by Eq.(10). In order to enhance the

searching ability of the GA, a gradient-based local search strategy is proposed and embedded in the

algorithm framework, hence the name Gradient-based Hybrid Genetic Algorithm (GHGA).

Prior to introducing in detail the local search operation, a brief description of the constraint-

handling procedure is elaborated. It is well known that for heuristic approaches, a major challenge is

to implement a constraint handling strategy that can directly reflect the magnitude of the solution

infeasibility. The constraint handling procedure used for the GHGA is based on the constraint

violation degree V (similar with the satisfactory degree). For instance, the violation degree for

inequality constraints “≤” (gj ≤ g∗j , j = 1, ..., I) and equality constraints (hk = h∗k, k = 1, ..., E) can

be defined as follows [25]:

µgj =


0, gj ≤ g∗j ;

gj−g∗i
gmax
j
−g∗

j
, g∗j ≤ gj ≤ gmaxj ;

1, gj ≥ gmaxj .

µhk
=



1, hk ≥ hmaxk ;

hk−h∗
k

hmax
k
−h∗

k
, h∗k ≤ hk ≤ hmaxk ;

0, hk = h∗k;

h∗
k−hk

h∗
k
−hmin

k

, hmink ≤ hk ≤ h∗k;

1, hk ≤ hmink .

(11)

where gj is the value of jth constraint for each individual, whereas (g∗j , g
max
j ) and (hmink , hmaxk )

stand for the tolerance regions. These tolerance regions can be assigned by the users. For example,

in terms of the equality constraint hk = h∗k, h
∗
k > 0, hmink and hmaxk can be set as 0.5h∗k and 2h∗k,

respectively. Similarly, for the inequality constraint gj ≤ g∗j , g
∗
j > 0, gmaxj can be assigned as 2g∗j .

Based on Eq.(11), the total violation degree for each individual among the population V can be

9



obtained via V =
∑I
j=1 µgj +

∑E
k=1 µhk

. In this way, priorities can be given to feasible individuals

and individuals with a small value of V in the selection process. On the basis of this, the augmented

objective function (fitness function) becomes:

Jaug =


J, if V = 0;

J + JmaxV, if V > 0.
(12)

where Jmax is the worst objective value among the current generation.

The gradient-based operator is then introduced. If J and V are first-order continuous partial

differential in the feasible region, the gradient vectors of J and V , known as Jacobian vectors,

have the form: ∇J(x) = [∂J(x)
∂x1

, ∂J(x)
∂x2

, ..., ∂J(x)
∂xn

]T and ∇V (x) = [∂V (x)
∂x1

, ∂V (x)
∂x2

, ..., ∂V (x)
∂xn

]T . To find a

direction for minimizing the objective and constraint violation, the following equation is applied to

calculate the search direction e:

e = −
(
∇J(x)
‖∇J(x)‖ + ∇V (x)

‖∇V (x)‖

)
(13)

It follows from Eq.(13) that if e is chosen as the search direction, a decrease in the augmented

objective function Jaug is expected. This conclusion can be easily proven by performing the inner

product 〈e,−(∇J(x)/‖∇J(x)‖)〉 or 〈e,−(∇V (x)/‖∇V (x)‖)〉. After the local search direction is

determined, a new candidate solution xG+1 of the previous generation xG is obtained by the gradient

operator:

xG+1 = xG + sGe (14)

where sG can be treated as the step length along the direction e. This expression is equivalent to

the line search process that commonly used in gradient optimization algorithms. The determination

of the step size parameter sG is based on the Goldstein condition [25]. That is,

Jaug(xG) + c1sG∇Jaug(x)e ≤ Jaug(xG+1) ≤ Jaug(xG) + c2sG∇Jaug(x)e (15)

with 0 < c1 < c2 < 1. The first inequality term is applied to control the step length, whereas the

second term is the general sufficient decrease condition.

The proposed GHGA method uses a gradient-based hybrid operator that combines the local

gradient operator with the crossover and mutation operators. A new population is then created.
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For simplicity reasons, this hybrid operator is abbreviated in the following equation:

w1OperCro ⊕ w2OperMut ⊕ w3OperGrad (16)

where w1, w2, w3 ≥ 0 are the probabilities. Eq.(16) indicates that the next group of candidates

are generated by the crossover OperCro, mutation OperMut and local gradient operators OperGrad

with the probability w1, w2 and w3, respectively. The algorithm will firstly initialize a random

number rand, if this number is less or equal than wi, i = 1, 2, 3, then the algorithm will perform the

corresponding operation. The crossover and mutation operations are widely used in the traditional

GA [13, 14]. In this study, a local gradient operation is embedded in the algorithm framework.

Hence, the local searching ability of the algorithm can be improved. The combination of the above

three operations is expected to facilitate global expansion of the search space without sacrificing

good quality local solutions.

Remark 1 It should be noted that according to the definition of satisfactory and violation degrees,

Jaug given by Eq.(15) might not be differentiable at some x. This is because µf and µg defined in

Eq.(3) and Eq.(11) are only piecewise continuous but not smooth functions. This indicates that the

gradient information for J and V may not be applicable directly to Eq.(13) [5]. To deal with this

issue, a smooth function is considered to replace µf and µg in practical implementations. Take the

violation degree µg as an example, the smooth function can be described as:

δ(µg,m, n) =



0, µg < −m;

(µg +m)2/4m, −m ≤ µg ≤ m;

µg, m < µg < 1− n;

(−µ2
g + 2(1 + n)µg − (n− 1)2)/4n, 1− n ≤ µg ≤ 1 + n;

1, µg > 1 + n.

(17)

where m and n are two small positive parameters. Note that δ(µg,m, n) function is continuously

first-order differentiable for any µg. Eq.(17) also implies that

lim
m→0+,n→0−

δ(µg,m, n) = µg (18)
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C. General Framework of the Proposed Algorithm

In order to better show the structure of the proposed FGP-based GHGA method scheme, the

overall procedure is illustrated in the Pseudocode (see Algorithm 1).

Algorithm 1 Part 1
1: procedure (FGP transformation)

2: Perform a fuzzification for different design objectives based on Eq.(3)-(5).

3: Build the membership function for each objective function.

4: Formulate the priority constraint based on line 1-2 and Eq.(7).

5: Construct the fuzzy goal programming model according to Eq.(10).

6: Output the transformed SOP model.

7: end procedure

Algorithm 1 Part 2
1: procedure (GHGA method)

2: Set the control parameters for GHGA and initialize the first population P with population size Np

3: Calculate the value of the augmented fitness function for each individual among P based on Eq.(10)-

(12)

4: for G := 1, 2, ..., Gmax do

5: (a). Choose the best number of the current population as Pfather

6: (b). Generate the offspring generation Poffspring by applying gradient-based hybrid operator

7: (c). Set P = Pfather

⋃
Poffspring

8: (d). Perform elite selection

9: end for

10: Evaluate all xi ∈ P

11: return xbest

12: end procedure
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Algorithm 1 Part 3
1: procedure (Gradient-based hybrid operator )

2: for i := 1, 2, ..., Np do

3: if rand(1) ≤ w1 then

4: Perform crossover operation operator OperCro to obtain xG+1
i

5: end if

6: if rand(1) ≤ w2 then

7: Perform mutation operation operator OperMut to obtain xG+1
i

8: end if

9: if rand(1) ≤ w3 then

10: /*Gradient operation OperGrad*/

11: (a). Compute the local search direction e by using Eq.(13)

12: (b). Perform the local search according to Eq.(14) and Eq.(15) to obtain xG+1
i

13: end if

14: end for

15: end procedure

IV. Multi-Objective Aeroassisted Vehicle Trajectory Optimization

A. Dynamics

This section presents the mission scenario simulated in this investigation. It should be noted that

the mission scenario is similar with the one proposed in [16]. For completeness, a brief description

is recalled. Taking the rotation of the Earth into account, the following three degree-of-freedom

equations of motion represent the flight dynamics of the vehicle [16, 26]:

ṙ = V sin γ

θ̇ = V cos γ sinψ
r cosφ

φ̇ = V cos γ cosψ
r

V̇ = 2T cosα−ρV 2SCD

2m − g sin γ + Ω2r cosφ(sin γ cosφ− cos γ sinψ cosψ)

γ̇ = 2T sinα+ρV 2SCL cosσ
2mV + (V

2−gr
rV ) cos γ + 2Ω cosφ sinψ + Ω2r cosφ(cos γ cosφ+ sin γ cosψ sinφ)

ψ̇ = ρV 2SCL sinσ
2mV cos γ + V

r cos γ sinψ tanφ+ Ω2r cosφ sinφ
cos γ − 2Ω(tan γ cosψ cosφ− sinφ)

ṁ = − T
Ispg

, α̇ = Kα(αc − α), σ̇ = Kσ(σc − σ), Ṫ = KT (Tc − T )

(19)
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in which r is the radial position; θ, φ, γ and ψ are the longitude, latitude, flight path angle (FPA)

and azimuth angle, respectively. CL and CD are the lift and drag coefficients, whereas m and ρ

stand for the mass of the vehicle and the density of the atmosphere. Ω = 7.2921151e−5rad/s is the

Earth’s rotation rate. It can be seen from Eq.(19) that the state equations have been augmented

by adding the angle of attack α, bank angle σ and thrust T . αc, σc and Tc can be treated as the

demanded angle of attack, bank angle and thrust variables, respectively. These three equations

permit to limit the control rate and will have positive influences in the optimization process when

evolutionary algorithms are chosen as the optimizer [13].

B. Constraints and Objectives

The path constraints entailing in the optimization model are the aerodynamic heating Q̇, dy-

namic pressure q and normal acceleration nz. These three path constraints can be calculated

according to [26]:

Q̇ = KQρ
0.5V 3, q =

1

2
ρV 2, nz =

√
L2 +D2

mg0
(20)

where L and D are the lift and drag accelerations, respectively. g0 represents the gravitational

acceleration at sea level, while kq is a constant depending on the geometry of the thermal protection

system.

In the past, early studies on spacecraft trajectory optimization problems usually focussed on

single objective. However, in order to achieve more practical requirements, this type of problem

should be constructed to contain multiple objectives and this is where nowadays the majority of

research is focusing on. Therefore, to take more of the mission requirements into account, four

objectives are considered in this investigation. That is,

min f1 = tf

min f2 =
∫ tf
t0
Q̇(t)dt

max f3 = m(tf )

max f4 = V (tf )

(21)

In Eq.(21), the first objective f1 is designed to minimize the time duration so as to complete

the mission in the shortest possible time interval. In addition, as indicated in [16], minimizing the
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total amount of aerodynamic heating is also considered as one of the mission objectives since the

vehicle structure integrity is largely affected by this performance index. The third mission objective

f3 is set to maximize the final mass value, which is equivalent to minimizing the fuel consumption.

Moreover, for this mission, to ensure the aeroassisted vehicle has a greater terminal velocity (higher

kinetic energy) to perform several continuous missions, the final objective f4 is chosen as maximizing

the final velocity value.

C. Priority Requirements

As stated in Section.III of this paper, in practice, for a MOP problem, it is a challenge to

optimize all the objective at the same time. Therefore, priority factors should be assigned to

different objectives. Specifically, for the mission scenario considered in this research, if the primary

task for the vehicle is to maximize final mass such that it can perform further tasks, then the priority

factor with respect to f3 (maximizing the terminal mass value) should be higher than the others.

On the other hand, if it is desirable for the flight vehicle to complete a reconnaissance mission in the

shortest time possible, then reducing the flight time duration might have the highest priority factor.

In order to provide a good illustration of the proposed FGP-GHGA algorithm capability in handling

the multi-objective trajectory optimization problem with priority constraints, the following six cases

that highlight different aspects of the mission are considered:

Case 1: The priority factor should satisfy: P (f1), P (f2) > P (f3) > P (f4).

Case 2: The priority factor should satisfy: P (f1), P (f2) > P (f4) > P (f3).

Case 3: The priority factor should satisfy: P (f1), P (f2) > P (f3)� P (f4).

Case 4: The priority factor should satisfy: P (f1), P (f2) > P (f4)� P (f3).

Case 5: The priority factor should satisfy: P (f3) > P (f1), P (f2) > P (f4).

Case 6: The priority factor should satisfy: P (f3) > P (f1), P (f2)� P (f4).

Combining the above definitions of vehicle dynamics, path constraints, objective functions and

priority requirements; the multi-objective entry optimal control problem to be solved is complete.
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Then the proposed FGP-GHGA algorithm is applied to solve this problem in order to obtain the

optimized trajectories.

V. Simulation Results

This section presents the numerical simulation results obtained using the FGP-GHGA algorithm

developed in the previous sections and applied to the multi-objective aeroassisted vehicle trajectory

planning problem. The main aim of the simulations is to illustrate the effectiveness of the proposed

strategy in satisfying the pre-assigned priority constraints as well as achieving safe and stable flight.

A. Parameters Specification

The vehicle-dependent parameters, reference values of the states and controls, and control pa-

rameters of the GHGA algorithm are tabulated in Table.1. The initial conditions for the vehicle

are assigned as: h0 = 260000ft, θ0 = 0◦, φ0 = 0◦, V0 = 25600ft/s, γ0 = −1.064◦, ψ0 = 90◦,

m0 = 6109.43slug, α0 = 17◦, σ0 = −75◦ and T0 = 0N, whereas the boundary conditions at the

minimum altitude point (time instant t1) and final boundary point (time instant tf ) are set to:

ht1 = 164000ft, γt1 = 0◦ and htf = 260000ft, respectively [25]. Besides, the state variable at time

instants t1 and tf should be less than a certain limit (accuracy level). These constraints are set as:

eh1
= |ht1 − h(t1)| ≤ 500ft

ehf
= |htf − h(tf )| ≤ 500ft

eγ1 = |γt1 − γ(t1)| ≤ 0.1deg

(22)

The upper limits associated with the path constraints are set to Q̇ ≤ 200BTU, q ≤ 280lb and

nz ≤ 2.5. All the numerical simulations carried out in this investigation are experimented using

Matlab 2016a under Windows 7 and Intel(R) Core(TM) i7-4790 CPU, 3.60GHZ, with 12.00 GB

RAM.
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Table 1 Parameters used in the simulation

States Values/ranges Controls Values/ranges GHGA parameters Values

Altitude, h [164000, 260000ft] Angle of attack, α [0, 40◦] Population size, NP 300

Longitude, θ [−180, 180◦] Bank angle, σ [−90, 1◦] Iteration number, Iter 10000

Latitude, φ [−180, 180◦] Thrust, T [0, 2× 106N ] w1 0.8

Velocity, V [10, 35000ft/s] αc [0, 40◦] w2 0.2

FPA, γ [−90, 90◦] σc [−90, 1◦] w3 0.6

Azimuth, ψ [−90, 90◦] Tc [0, 2× 106N ] c1 0.2

Mass, m [1527.3, 6109slug] Terminal time, tf [500, 2500s] c2 0.8

B. Discretization of the problem

To solve the optimal control problem, an important procedure is to discretize/parametrize

the continuous-time system. Currently, there are two types of discretization methods: collocation

techniques [6, 27] and shooting techniques [1, 28]. This paper applies the shooting-based technique

to parameterize the continuous-time dynamics. That is, only the control variable is discretized

at temporal nodes [t0, t1, ..., tf ]. Then, the state variable is obtained by performing the numerical

integration (e.g. Runge-Kutta methods).

Let us assume the number of temporal nodes is Nk, for the problem considered in this research,

the problem decision variable can be expressed as x = [αc,1, ..., αc,Nk
, σc,1, ..., σc,Nk

, Tc,1, ..., Tc,Nk
]T .

An attempt is also made to combine other discretization techniques such as the direct collocation

or pseudospectral methods with the GHGA optimization method. However, this attempt failed

since for direct methods using polynomials, both the control and state variables will be discretized.

Subsequently, the equations of motion will be transcribed to a series of equality constraints (alge-

braic equations). If an optimization problem contains a large number of equality constraints, the

evolutionary solver might use a large amount of iterations to capture the true behaviour or even

fail to satisfy all the constraints. Therefore, when evolutionary algorithm is chosen to optimize the

trajectory, it is suggested to use collocation methods with a relatively small temporal set or apply

shooting-based discretization schemes to transcribe the continuous-time problem.
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C. Overall Analysis of Relationships Between Different Objectives

According to the mission objectives formulated in Section.IV of this paper (see Eq.(21)), it can

be observed that f3 and f4 are two contradicting objectives. Specifically, maximizing the terminal

velocity can only be achieved at the expense of fuel consumption. This conclusion can also be verified

by the dynamic equations of the vehicle velocity and mass. Moreover, it is worth mentioning that the

main parameter responsible for the increase in the total amount of aerodynamic heating (f2) is the

dynamic pressure. From Eq.(20), dynamic pressure is a function of air density and velocity. Since

the air density in the entry phase is relatively small compared to the velocity, it can be concluded

that the f2 and f4 are also contradicting objectives. This implies that increasing the satisfactory

degree of f2 will result in a decrease in the satisfactory degree of f4. On the other hand, according

to the definition of f2 in Eq.(21), the total amount of aerodynamic heating is largely affected by

the flight time duration. For example, longer mission duration may result in a larger value of total

amount of aerodynamic heating. Therefore, f1 and f2 are highly correlated objectives.
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D. Case Study

To construct the FGP model, the optimal results for each single objective programming problem

are firstly generated using the GHGA algorithm. This step is used to determine the numerical values

of f∗i , fmini and fmaxi . The general strategy are stated in Section.III. In order to better describe

this strategy, implementation steps are summarised as follows:

Step 1: For i = 1, 2, 3, 4, construct the SOP formulation given by Eq.(6).

Step 2: Solve the SOP model via GHGA to obtain x∗i and f∗i .

Step 3: For j = 1, 2, 3, 4, j 6= i, calculate fj(x∗i ).

Step 4: Set i = i+ 1 and go back to Step 2.

Step 5: Output fmini = min(f1(x∗i ), f2(x∗i ), ..., fm(x∗i )); fmaxi = max(f1(x∗i ), f2(x∗i ), ..., fm(x∗i )).

By formulating the single objective programming problem based on Eq.(21), it is calculated that the

optimum solution values associated with each objective are: f∗1 = 850.31, f∗2 = 72.83, f∗3 = 4296.7

and f∗4 = 29297.01, while the corresponding worst-case values are: fmax1 = 2086.2, fmax2 = 219.35,

fmin3 = 1527.3 and fmin4 = 15011.9, respectively.

Based on the optimal and worst-case solutions, the FGP model can then be constructed (see

Eq.(10)). The improved genetic algorithm is then applied to solve the FGP model. It should be

noted that since stochastic algorithm is chosen to optimize the results, it is not enough to analyze

the simulation results in only one trial. Therefore, ten trials were conducted independently and

the best solution is presented. Fig.1 shows the optimal time history with respect to the state

variables. The optimal control trajectories obtained using the proposed FGP-GHGA algorithm

are plotted in Fig.2(a)-Fig.2(c), whereas the three path constraint profiles are given in Fig.2(d)-

Fig.2(f). The average running time for the optimization algorithm is around 6h 19m (22740.42s).

From the path constraint profiles, it can be concluded that the structural and thermal safety of

the aeroassisted vehicle is guaranteed, which is the prerequisite for the validity of an approach to

trajectory optimization.
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Fig. 2 Control and constraint profiles obtained for different cases

Table 2 Satisfactory degree values for each case

µf1 µf2 µf3 µf4

Case 1 0.6931 0.9453 0.4803 0.4788

Case 2 0.6927 0.9450 0.4737 0.4829

Case 3 0.7356 0.9757 0.5982 0.2552

Case 4 0.6501 0.8861 0.3760 0.6369

Case 5 0.6994 0.7066 0.8037 0.3642

Case 6 0.6935 0.7095 0.9147 0.2884

It can be observed that in the results presented in Fig.1 and Fig2, a difference in the optimal

trajectories between Cases.1 to 4 and Cases.5 to 6 can be found. This can be explained by the fact

that since the primary task for Case.5 and Case.6 is to achieve a higher satisfactory degree value for

minimizing the fuel consumption, the vehicle tends to maneuver relying more on the aerodynamic

forces rather than the engine thrust. Therefore, for Case.5 and Case.6, the controls (especially

the angle of attack and the thrust) will not experience a significant increase. The corresponding

satisfactory degree values of each mission case are tabulated in Table.2, from where it can be seen
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that the proposed FGP-GHGA approach can offer satisfactory performance for all the cases in the

absence of priority requirements. Based on all the figures and tables, it can be concluded that the

proposed technique can be effective to generate credible solutions for the multi-objective trajectory

optimization problem. Specifically, the state and control trajectories can be smooth and are all in

their tolerant regions. Besides, the path constraints can be guaranteed and the pre-specified priority

requirements can also be achieved.

VI. Comparison with Existing Designs

A. Comparison with Multi-objective Results of [16]

In [16], the authors proposed an IFPP formulation for solving the multi-objective trajectory

planning problem. This approach was analyzed as an efficient and effective tool to handle a specific

preference requirement. Different with the problem considered in this paper, the mission scenario

investigated in [16] required that the objective should be moved to a pre-specified tolerable/desirable

region. Based on the decision maker’s physical knowledge of the problem, the IFPP method can

drive different mission objectives into their pre-specified tolerant regions successfully (mainly by

adjusting the aspiration level and preference functions through its interactive process). However,

for the preference requirements considered in this study, the IFPP method might not be as effective

as the FPG-GHGA algorithm. This is because the current IFPP design does not have the capability

to deal with the priority constraints directly. Moreover, all the definitions of the preference regions

are largely depended on the designer’s experience. If the tolerable/desirable regions specified by the

designers are not accurate, then the results cannot be credible. Although the IFPP method can use

its interactive process to adjust the aspiration level and preference functions, it may need several

tentative trials and this will result in large computational demand.

Therefore, it is proposed that if the primary task of the mission is to drive all the mission objec-

tives into their pre-designed tolerable, desirable, or highly desirable regions, then it is advantageous

to use the IFPP method developed in [16] for solving the problem. On the other hand, if the pri-

ority constraints are required to be considered in the mission optimization model, the FGP-GHGA

method proposed in this paper might be more effective.
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B. Comparison with MOEAs

For general MOPs, current studies are mainly focused on the application of MOEAs for solving

this type of problem. Numerous updates and modifications have been made for this type of ap-

proach over the past decade [18, 19]. For the purposes of comparison, an Improved Nondominated

Sorting Genetic Algorithm II (I-NSGA-II) developed in [19], coupled with the gradient local search

operation process is used in this work. The approximated pareto front results are plotted in Fig.3,

where the pareto front results are projected onto three planes: minimizing the total amount of

aerodynamic heating versus minimizing the time duration, maximizing the terminal velocity versus

minimizing the fuel consumption, and finally minimizing the total amount of aerodynamic heating

versus maximizing terminal velocity.
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Fig. 3 Pareto front solutions obtained using I-NSGA-II [19]

As can be seen from Fig.3, the relationship between different mission objectives is present-

ed and the results follow the analysis stated in Section.V of this paper. Therefore, the results
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confirm that the MOEA-based approach can be used to reflect the contradicting or correlated re-

lationships of the multi-objective trajectory planning problem. Once the pareto front is generated,

the obtained solution is then presented to the decision-maker such that the designer can select

one candidate solution that can meet the pre-specified priority requirements (e.g. Cases.1 to 6).

Based on the results shown in Fig.3, the first front set (rank 1) obtained by the I-NSGA-II can

be extracted and used to calculate satisfactory degrees with respect to different objectives. Ap-

plying Eq.(3) and Eq.(4), the calculated satisfactory degrees with respect to different objectives

are µf1 ∈ [0.6348, 0.7356], µf2 ∈ [0.8821, 0.9757], µf3 ∈ [0.3433, 0.5982], and µf4 ∈ [0.2499, 0.6459],

respectively. These values are only used as an indicator to assess the solution distribution and the

result indicates that not all the mission cases can be achieved by selecting candidates from the

obtained I-NSGA-II results. For example, from the obtained pareto set, we cannot find a candidate

solution that can satisfy the priority requirement for Case.5 (P (f3) > P (f1), P (f2) > P (f4)) or

Case.6 (P (f3) > P (f1), P (f2)� P (f4)).

Typically, a main challenge faced by MOEAs is that it has the restriction of dimensionality in

solving problems containing more than three objectives. This is because the current domination

principle which is usually used and embedded in the MOEA framework lacks the ability to provide an

adequate selection pressure and emphasize feasible solutions [21, 28]. In other words, the selection

pressure can hardly be allocated to each objective uniformly, thereby resulting in poor diverse

representation of the pareto front. Consequently, based on the obtained pareto results shown in

Fig.3, it can be concluded that the MOEA-based methodology may fail to generate a well-distributed

pareto front for the trajectory planning problem investigated in this paper.

C. Computational complexity of different multi-objective algorithms

In terms of the computational complexity, as indicated in [19], the worst-case computational

complexity of NSGA-II algorithm is O(MN2
p ), where M represents the number of mission objec-

tives. For the designed approach, the calculation and fuzzification of objectives require O(M2Np)

computations. O(NpE) and O(NpI) computations are required for the constraint handling process.

The computational complexity of the gradient-based hybrid operator is largely depended on the gra-

dient operator. This procedure can be divided into two parts: local search and gradient estimation.
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Calculating the directional vector e is rather straightforward and it requires O(n) computations.

To calculate the gradient itself, the computational complexity should be O(nF ), where F is the

complexity for one single gradient evaluation. Therefore, taking into account all the above com-

putations, the overall worst-case computational complexity of the proposed FGP-GHGA method is

O(N2
p + nF ), which is generally lower than the I-NSGA-II approach (e.g. O(MN2

p +MnF )).

D. Potential applications of different multi-objective algorithms

From an application point of view, the solution obtained using the proposed FGP-GHGA

method and MOEA-based algorithms can be used in different ways. It is well known that an

important practical implementation of the pre-designed trajectory is the design of online guidance

law. One main class of guidance methods is the reference-tracking guidance [29]. That is, the guid-

ance law is achieved by tracking a reference trajectory. Therefore, the FGP-GHGA solution can

be used to provide a high quality reference trajectory for the online tracking algorithms. Recently,

a database-based online guidance scheme is designed for the entry vehicles [30]. In this guidance

scheme, a large database of optimal trajectories is firstly generated, and a subset of trajectories is

then selected by the onboard algorithm. For this case, the set of pareto-optimal solutions calcu-

lated using the MOEA-based approach can be used to provide an alternative to constructing the

trajectory database.

VII. Conclusion

In this paper, a multi-objective aeroassisted trajectory optimization problem with mission pri-

ority constraints has been solved via an FGP-GHGA algorithm. This approach unifies the mission

objectives, constraints and preemptive priorities in one optimization formulation. The new formu-

lation aims to minimize the deviation between the objective and its goal value as well as satisfying

the pre-specified priority requirements. Simulation results were carried out to demonstrate the

effectiveness of the proposed design.

An important advantage coming from the implementation of this approach is the nondominant

sorting procedure which is usually required in most traditional MOEAs is no longer necessary. As

a result, the computational complexity of the proposed design can be decreased significantly. This
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aspect, together with the good performance achieved, suggest that it is advantageous to apply

the proposed FGP-GHGA technique for solving the multi-objective aeroassisted vehicle trajectory

optimization problem with priority constraints.
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